首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Context

The anthropocene is characterised by global landscape modification, and the structure of remnant habitats can explain different patterns of species richness. The most pervasive processes of degradation include habitat loss and fragmentation. However, a recovery of modified landscape is occurring in some areas.

Objectives

The main goal is to know how lichen and bryophyte epiphytic richness growing on Mediterranean forests is influenced not only by fragments characteristics but also by the structure of the landscape. We introduce a temporal dimension in order to evaluate if the historical landscape structure is relevant for current epiphytic communities.

Methods

40 well-preserved forest fragments were selected in a landscape with a large habitat loss over decades, but with a recovery of forest surface in the last 55 years. The most relevant fragment and landscape-scale attributes were considered. Some of the variables were measured in three different years to incorporate a temporal framework.

Results

The results showed that variables at fragment scale had a higher influence, whereas variables at the landscape scale were irrelevant. Among all the historical variables analyzed, only the shift in forest fragment size had influence on species richness.

Conclusions

Mediterranean forests had suffered fragmentation along centuries. Their epiphytic communities also suffer the hard conditions of Mediterranean climate. Our results indicate that Mediterranean epiphytic communities may be in a threshold since it they will never be similar to those communities existing previous fragmentation process even a recovery habitat occur or, they may require more time to response to this habitat recovery.
  相似文献   

2.

Context

Although forest fragmentation is generally thought to impact tree growth and mortality negatively, recent work suggests some forests are resilient. Experimental forests provide an opportunity to examine the timing and extent of forest tree resilience to disturbance from fragmentation.

Objectives

We used the Wog Wog Habitat Fragmentation Experiment in southeastern Australia to test Eucalyptus growth and survivorship responses to forest fragmentation over a 26 year period.

Methods

We measured 2418 tree diameters and used spline-regression techniques to examine non-monotonic fragmentation effect over two time periods.

Results

Over the first 4 years after fragmentation, individual eucalypt tree growth was greater than in continuous forest for large trees and mortality rates were higher only within 10 m of edges. Over the following 22 years only the effects on tree growth remained and on average all fragments rebounded so that their biomass and mortality rates were equivalent to continuous forest. Importantly non-monotonic patterns were observed in growth and mortality with respect to area and distance from edge in both study periods, demonstrating that fragmentation impacts on trees can be strong in localized areas (greatest in 3 ha fragments and 0–30 m edges) and over short time periods.

Conclusions

Dry-sclerophyll eucalypt forests join the set of forest types that display resilient growth dynamics post fragmentation. Moreover, persistent non-monotonic impacts on tree growth with respect to tree size, fragment area, and fragment distance from edge, highlighting landscape fragmentation as a driver of habitat heterogeneity within remnant forest fragments.
  相似文献   

3.

Context

Terrestrial ecosystems, including tropical forests, are hypothesized to have tipping points beyond which environmental change triggers rapid and radical shifts to novel alternative states.

Objective

We explored the overarching hypothesis that fire-mediated alternative stable states exist in the semi-deciduous tropical forest zone of Ghana, and that increased fire activity has pushed some forests to a new state in which a novel ecosystem with low tree density is maintained by fire.

Methods

We combined a 30-year time series of remotely-sensed data with field measurements to assess land cover trends, the effects of fire on forest vegetation, and the reciprocal effects of vegetation change on fire regimes, in four forest reserves. We analyzed precipitation trends to determine if shifts in vegetation and fire regime reflected a shift to a drier climate.

Results

Two of the reserves experienced forest loss, were impacted by frequent fires, and transitioned to a vegetation community dominated by shrubs and grasses, which was maintained by fire–vegetation feedbacks. The other two reserves experienced less fire, retained higher levels of forest cover, and resisted fire encroachment from surrounding agricultural areas. Precipitation remained relatively stable, suggesting a hysteresis effect in which different vegetation states and fire regimes coexist within a similar climate.

Conclusion

There is potential for human land use and fire to create novel and persistent non-forest vegetation communities in areas that are climatically suitable for tropical forests. These disturbance-mediated regime shifts should be taken into account when assessing future trajectories of forest landscape change in West Africa.
  相似文献   

4.

Context

Loss and fragmentation of semi-natural grasslands has critically affected many butterfly species in Europe. Habitat area and isolation can have strong effects on the local biodiversity but species may also be strongly affected by the surrounding matrix.

Objectives

We explored how different land cover types in the landscape explained the occurrence of butterfly species in semi-natural grasslands.

Methods

Using data from 476 semi-natural grasslands in Sweden, we analysed the effect of matrix composition on species richness and occurrence. Additionally, we analysed at which spatial scales butterflies responded to matrix types (forests, semi-natural grasslands, arable land and water).

Results

Forest cover showed the strongest positive effect on species richness, followed by semi-natural grasslands. Forest also had a positive effect on red-listed species at local scales. Responses to matrix composition were highly species-specific. The majority of the 30 most common species showed strong positive responses to the amount of forest cover within 200–500 m. There was a smaller group of species showing a positive response to arable land cover within 500–2000 m. Thirteen species showed positive responses to the amount of semi-natural grasslands, generally at larger scales (10–30 km).

Conclusions

Our study showed that surrounding forest is beneficial for many grassland butterfly species and that forests might mitigate the negative effects of habitat loss caused by agricultural intensification. Also, semi-natural grasslands were an important factor for species richness at larger spatial scales, indicating that a landscape consisting mainly of supporting habitats (i.e. forests) are insufficient to sustain a rich butterfly fauna.
  相似文献   

5.

Context

Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to influence future forest conditions. Climate change compounds this uncertainty.

Objectives

We explored how continued forest recovery dynamics affect forest biomass and species composition and how climate change may alter this trajectory.

Methods

Using a spatially explicit landscape simulation model incorporating an ecophysiological model, we simulated forest processes in New England from 2010 to 2110. We compared forest biomass and composition from simulations that used a continuation of the current climate to those from four separate global circulation models forced by a high emission scenario (RCP 8.5).

Results

Simulated forest change in New England was driven by continued recovery dynamics; without the influence of climate change forests accumulated 34 % more biomass and succeed to more shade tolerant species; Climate change resulted in 82 % more biomass but just nominal shifts in community composition. Most tree species increased AGB under climate change.

Conclusions

Continued recovery dynamics will have larger impacts than climate change on forest composition in New England. The large increases in biomass simulated under all climate scenarios suggest that climate regulation provided by the eastern forest carbon sink has potential to continue for at least a century.
  相似文献   

6.

Context

In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes.

Objectives

To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon.

Methods

We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type.

Results

We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types.

Conclusions

Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
  相似文献   

7.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

8.

Context

Habitat destruction is the leading threat to terrestrial biodiversity, isolating remnant habitat in a matrix of modified vegetation.

Objectives

Our goal was to determine how species richness in several broad taxonomic groups from remnant forest was influenced by matrix quality, which we characterized by comparing plant biomass in forest and the surrounding matrix.

Methods

We coupled data on species-area relationships (SARs) in forest remnants from 45 previously published studies with an index of matrix quality calculated using new estimates of plant biomass derived from satellite imagery.

Results

The effect size of SARs was greatest in landscapes with low matrix quality and little forest cover. SARs were generally stronger for volant than for non-volant species. For the terrestrial taxa included in our analysis, matrix quality decreased as the proportion of water, ice, or urbanization in a landscape increased.

Conclusions

We clearly demonstrate that matrix quality plays a major role in determining patterns of species richness in remnant forest. A key implication of our work is that activities that increase matrix quality, such as active and passive habitat restoration, may be important conservation measure for maintaining and restoring biodiversity in modified landscapes.
  相似文献   

9.

Context

Due to the spatial heterogeneity of the disturbance regimes and community assemblages along topoclimatic gradients, the response of forest ecosystem to climate change varies at the landscape scale.

Objectives

Our objective was to quantify the possible changes in forest ecosystems and the relative effects of climate warming and fire regime changes in different topographic positions.

Methods

We used a spatially explicit model (LANDIS PRO) combined with a gap model (LINKAGES) to predict the possible response of boreal larch forests to climate and fire regime changes, and examined how this response would vary in different topographic positions.

Results

The result showed that the proportion of landscape occupied by broadleaf species increased under warming climate and frequent fires scenarios. Shifts in species composition were strongly influenced by both climate warming and more frequent fires, while changes in age structure were mainly controlled by shifts in fire regime. These responses varied in the different topographic positions, with forests in valley bottoms being most resilient to climate-fire changes and forests in uplands being more likely to shift their composition from larch-dominant to mixed forests. Such variation in the topographic response may be induced by the heterogeneities of the environmental conditions and fire regime.

Conclusions

Fire disturbance could alter the equilibrium of ecosystems and accelerate the response of forests to climate warming. These effects are largely modulated by topographic variations. Our findings suggest that it is imperative to consider topographic complexities when developing appropriate fire management policies for mitigating the effects of climate change.
  相似文献   

10.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

11.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

12.

Context

Increasing demands on land for agriculture have resulted in large-scale clearance and fragmentation of forests globally. In fragmented landscapes, species that tolerate or exploit the matrix will persist, while those that do not, frequently decline. Knowledge of matrix use is therefore critical to predicting extinction proneness of species in modified landscapes and defining the value of land for conservation management.

Objectives

In a fragmented landscape consisting of seven remnant patches surrounded by agricultural land and a large Eucalyptus forest, we explored (i) population connectivity of common ringtail possums, Pseudocheirus peregrinus, to determine the permeability of the agricultural matrix, and (ii) genetic consequences of forest fragmentation.

Methods

238 common ringtail possums were screened at 14 microsatellite markers and analysed using a range of genetic techniques.

Results

We observed significant genetic differentiation among all patches and limited dispersal through the agricultural matrix, even between neighbouring patches. Consequences of this were a six- to ten-fold increase in genetic dissimilarity over an equivalent geographic distance across patches compared with sites in the continuous forest and a significant reduction in genetic diversity, particularly in patches that were geographically more isolated from their neighbours.

Conclusions

We conclude that the agricultural matrix has a number of characteristics that make it unsuitable for facilitating movement of possums through this landscape, and recommend several management strategies to mitigate the impacts of fragmentation on this and other arboreal species for their conservation.
  相似文献   

13.

Context

The biodiversity hotspot for conservation of New Caledonia has facing high levels of forest fragmentation. Remnant forests are critical for biodiversity conservation and can help in understanding how does forest fragmentation affect tree communities.

Objective

Determine the effect of habitat configuration and availability on tree communities.

Methods

We mapped forest in a 60 km2 landscape and sampled 93 tree communities in 52 forest fragments following stratified random sampling. At each sampling point, we inventoried all trees with a diameter at breast height ≥10 cm within a radius of 10 m. We then analysed the response of the composition, the structure and the richness of tree communities to the fragment size and isolation, distance from the edge, as well as the topographical position.

Results

Our results showed that the distance from the forest edge was the variable that explained the greatest observed variance in tree assemblages. We observed a decrease in the abundance and richness of animal-dispersed trees as well as a decrease in the abundance of large trees with increasing proximity to forest edges. Near forest edges we found a shift in species composition with a dominance of stress-tolerant pioneer species.

Conclusions

Edge-effects are likely to be the main processes that affect remnant forest tree communities after about a century of forest fragmentation. It results in retrogressive successions at the edges leading to a dominance of stress-tolerant species. The vegetation surrounding fragments should be protected to promote the long process of forest extension and subsequently reduce edge-effects.
  相似文献   

14.

Context

The study of habitat fragmentation is complex because multiple, potentially synergistic, ecological processes may be acting simultaneously. Further, edge effects themselves may be complex in that additivity from multiple edges can give rise to heterogeneous nearest–edge gradients.

Objectives

We used heat diffusion as a proxy for additive edge effects in two study landscapes in order to test whether two key observations recently attributed to synergy between edge and area effects could be more simply explained by additivity; namely, steeper edge gradients in larger fragments and variation in slopes of species–area relationships as a function of distances to fragment edges.

Methods

We sampled forest structure in northwestern Madagascar at various distances from the edge in fragments and continuous forest and used an inverse modelling approach to parameterize the model. In addition, we applied the model to data from a published study of beetle communities in fragmented forests in New Zealand.

Results

With increasing proximity to edges, woody stem densities decreased and, as predicted, smaller fragments had lower stem densities and less steep edge gradients than larger ones. The model successfully predicted shifts in species–area relationships as a function of nearest–edge distances for beetle species, although observed richness for forest specialists in the smallest fragments was lower than predicted.

Conclusions

Two key observations attributed to synergy between edge and area effects were explained by edge additivity. The model is particularly useful in that it can help to disentangle the complex sets of processes acting in fragmented landscapes.
  相似文献   

15.

Context

Ecological theory suggests that large habitat fragments should harbour more species than small fragments. However, this may depend on the surrounding matrix. Matrices in fragmented landscapes may either amplify or reduce area effects, which could influence predicted extinctions based on species-area relationships (SARs).

Objective

To determine the influence of matrix type on SARs.

Methods

We surveyed birds within 59 coastal forest fragments in two matrix types, anthropogenic (South Africa) and natural (Mozambique). We classified species as forest specialists or habitat generalists and fitted species-area models to compare how SAR slopes differed among matrix types. We also calculated nestedness and evenness to determine if these varied among matrix type and used logistic regressions to identify species-specific responses to matrix type.

Results

For habitat generalists, SARs were weak within both matrices, while for forest specialists it was strong in the anthropogenic but weak in the natural matrix. In the former, the SAR was similar to those recorded for real islands within archipelagos. Forest specialist assemblages were nested by area within anthropogenic, but not natural matrices. Matrix type did not influence evenness. Area only affected the occurrence of one species when the matrix was natural, compared to 11 species when it was anthropogenic.

Conclusions

Forest specialist bird species conformed to island biogeographic predictions of species loss in forest fragments embedded in anthropogenic, but not natural matrices. Extinctions from small forest fragments might be prevented by conserving natural- or restoring anthropogenic matrices, as well as by increasing forest area.
  相似文献   

16.
17.

Context

Climate change is not occurring over a homogeneous landscape and the quantity and quality of available land cover will likely affect the way species respond to climate change. The influence of land cover on species’ responses to climate change, however, is likely to differ depending on habitat type and composition.

Objectives

Our goal was to investigate responses of forest and grassland breeding birds to over 20 years of climate change across varying gradients of forest and grassland habitat. Specifically, we investigated whether (i) increasing amounts of available land cover modify responses of forest and grassland-dependent birds to changing climate and (ii) the effect of increasing land cover amount differs for forest and grassland birds.

Methods

We used Bayesian spatially-varying intercept models to evaluate species- and community-level responses of 30 forest and 10 grassland birds to climate change across varying amounts of their associated land cover types.

Results

Responses of forest birds to climate change were weak and constant across a gradient of forest cover. Conversely, grassland birds responded strongly to changing climatic conditions. Specifically, increasing temperatures led to higher probabilities of localized extinctions for grassland birds, and this effect was intensified in regions with low amounts of grassland cover.

Conclusions

Within the context of northeastern forests and grasslands, we conclude that forests serve as a possible buffer to the impacts of climate change on birds. Conversely, species occupying open, fragmented grassland areas might be particularly at risk of a changing climate due to the diminished buffering capacity of these ecosystems.
  相似文献   

18.

Context

Forest loss and fragmentation negatively affect biodiversity. However, disturbances in forest canopy resulting from repeated deforestation and reforestation are also likely important drivers of biodiversity, but are overlooked when forest cover change is assessed using a single time interval.

Objectives

We investigated two questions at the nexus of plant diversity and forest cover change dynamics: (1) Do multitemporal forest cover change trajectories explain patterns of plant diversity better than a simple measure of overall forest change? (2) Are specific types of forest cover change trajectories associated with significantly higher or lower levels of diversity?

Methods

We sampled plant biodiversity in forests spanning the Charlotte, NC, region. We derived forest cover change trajectories occurring within nested spatial extents per sample site using a time series of aerial photos from 1938 to 2009, then classified trajectories by spatio-temporal patterns of change. While accounting for landscape and environmental covariates, we assessed the effects of the trajectory classes as compared to net forest cover change on native plant diversity.

Results

Our results indicated that forest stand diversity is best explained by forest change trajectories, while the herb layer is better explained by net forest cover change. Three distinct forest change trajectory classes were found to influence the forest stand and herb layer.

Conclusions

The influence of forest dynamics on biodiversity can be overlooked in analyses that use only net forest cover change. Our results illustrate the utility of assessing how specific trajectories of past land cover change influence biodiversity patterns in the present.
  相似文献   

19.

Context

Urbanization has altered many landscapes around the world and created novel contexts and interactions, such as the rural–urban interface.

Objectives

We sought to address how a forest patch’s location in the rural–urban interface influences which avian species choose to occur within the patch. We predicted a negative relationship between forest bird richness and urbanization surrounding the patch, but that it would be ameliorated by the area of tree cover in the patch and matrix, and that total tree-cover area would be more influential on forest bird species richness than area of tree cover in the focal patch alone.

Methods

We conducted bird surveys in 44 forest patches over 2 years in Southeast Michigan and evaluated bird presence and richness relative to patch and matrix tree cover and development density.

Results

We observed 43 species, comprised of 21 Neotropical migrants, 19 residents, and three short-distance migrants. Focal-patch tree-cover area and the matrix tree-cover area were the predominant contributors to a site’s overall forest-bird species richness at the rural–urban interface, but the addition of percent of over-story vegetation and percentage of deciduous tree cover influenced the ability of the patches to support forest species, especially Neotropical migrants. Development intensity in the matrix was unrelated to species richness and only had an effect in four species models.

Conclusions

Although small forest patches remain an important conservation strategy in developed environments, the influence of matrix tree cover suggests that landscape design decisions in surrounding matrix can contribute conservation value at the rural–urban interface.
  相似文献   

20.

Context

Forest cover change analyses have revealed net forest gain in many tropical regions. While most analyses have focused solely on forest cover, trees outside forests are vital components of landscape integrity. Quantifying regional-scale patterns of tree cover change, including non-forest trees, could benefit forest and landscape restoration (FLR) efforts.

Objectives

We analyzed tree cover change in Southwestern Panama to quantify: (1) patterns of change from 1998 to 2014, (2) differences in rates of change between forest and non-forest classes, and (3) the relative importance of social-ecological predictors of tree cover change between classes.

Methods

We digitized tree cover classes, including dispersed trees, live fences, riparian forest, and forest, in very high resolution images from 1998 to 2014. We then applied hurdle models to relate social-ecological predictors to the probability and amount of tree cover gain.

Results

All tree cover classes increased in extent, but gains were highly variable between classes. Non-forest tree cover accounted for 21% of tree cover gains, while riparian trees constituted 31% of forest cover gains. Drivers of tree cover change varied widely between classes, with opposite impacts of some social-ecological predictors on non-forest and forest cover.

Conclusions

We demonstrate that key drivers of forest cover change, including topography, road distance and historical forest cover, do not explain rates of non-forest tree cover change. Consequently, predictions from medium-resolution forest cover change analyses may not apply to finer-scale patterns of tree cover. We highlight the opportunity for FLR projects to target tree cover classes adapted to local social and ecological conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号