首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventy-eight Simmental-Angus-Hereford crossbred yearling heifers, in 1983, and 99 similar heifers, in 1984, were used to compare two estrous synchrony regimens. One treatment group (SMB) was synchronized using the commercially available Syncro-Mate-B procedure, which involved placing a norgestomet implant in the ear for 9 d and giving an injection of norgestomet and estradiol valerate at the time of implantation. A second group (PR + PG) was given a norgestomet implant (PR) for 7 d and a 5-mg injection of alfaprostol (PG) at implant removal. Percentage of heifers cycling during the synchronization period and percent conceiving in 5 d or 30 d were not different (P greater than .10) due to treatment. The interval from implant removal to onset of behavioral estrus was shorter (P less than .01) for the heifers treated with SMB than for the heifers treated with PR + PG (42.8 vs 58.0 h). The group treated with SMB had a more uniform synchrony of estrus than the group treated with PR + PG. The effect of day of the estrous cycle at implantation on hours to estrus after implant removal was determined by a regression analysis, which showed a linear response for the SMB group with a slope of .78 (P = .09); the PR + PG group regression was cubic (P less than .01); this also indicated a more uniform response by the SMB group. These results indicate that the combination of norgestomet and alfaprostol produced more variation in interval from treatment to estrus than the Syncro-Mate-B procedure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Three experiments assessed the onset of estrus and ovulation rate in gilts treated with gonadotropins after the withdrawal of an orally active progestin. In Exp. 1, all cycling gilts received the progestin (Regu-mate; Intervet America Inc., Millsboro, DE) at a rate of 15 mg/d for 18 d. Twenty-four hours after the last feeding of Regu-mate, 32 gilts received an i.m. injection of 400 I.U. PMSG and 200 I.U. hCG (P.G. 600, Intervet America, Inc.), and 32 gilts received an i.m. injection of deionized water. The percentage of gilts displaying estrus < or = 7 d (P = 0.64) and the injection-to-estrus interval (P = 0.37) were similar for P.G. 600-treated gilts (93.8% and 4.1 +/- 0.1 d) and controls (90.6% and 4.3 +/- 0.1 d). Ovulation rate was greater (P < 0.01) in P.G. 600-treated gilts (28.8 +/- 1.1) compared with controls (17.4 +/- 1.1). In Exp. 2, 58 cycling gilts received Regu-mate (15 mg/d) for 18 d. Twenty-four hours after Regu-mate withdrawal, gilts received i.m. P.G. 600 or water (n = 29/treatment). Gilts were bred via AI 12 and 24 h after first detection of estrus. The percentage of gilts displaying estrus < or = 7 d (P = 0.45) and the injection-to-estrus interval (P = 0.27) were similar for P.G. 600-treated gilts (82.7% and 4.0 +/- 0.1 d) and controls (89.7% and 4.2 +/- 0.1 d). Ovulation rate was greater (P < 0.01) in P.G. 600-treated gilts (26.2 +/- 1.8) compared with controls (18.1 +/- 1.7). Pregnancy rate (P = 0.71) and the number of live embryos at d 30 postmating (P = 0.40) were similar for P.G. 600-treated gilts (91.7% and 15.6 +/- 1.2) and controls (88.5% and 14.1 +/- 1.2). In Exp. 3, prepubertal gilts (142.6 +/- 0.7 d of age) received Regumate (15 mg/d) (n = 20) or a control diet not including Regu-mate (n = 20) for 18 d. Twenty-four hours after Regu-mate withdrawal, all gilts received i.m. P.G. 600. The percentage of gilts displaying estrus < or = 7 d (P = 0.49) and the P.G. 600-to-estrus interval (P = 0.69) were similar for Regu-mate-fed gilts (95% and 4.3 +/- 0.2 d) and controls (88.9% and 4.2 +/- 0.2 d). Ovulation rate was similar (P = 0.38) for Regu-mate fed gilts (16.6 +/-1.6) and controls (14.4 +/- 1.8). In cycling gilts, administration of P.G. 600 after withdrawal of Regu-mate increased ovulation rate, but not litter size at d 30 postmating. There was no beneficial effect of Regu-mate pretreatment on the response to P.G. 600 in prepubertal gilts.  相似文献   

3.
Early weaning of calves from anestrous cows results in formation of short-lived corpora lutea (CL) unless the animals are pretreated with a progestagen (norgestomet). This study was conducted to investigate the relationship between pre- and post-ovulatory gonadotropin secretion and luteal lifespan. Postpartum beef cows were assigned randomly into two groups, control (n = 5) and norgestomet (implant given at weaning for 9 d; n = 7). Calves from all cows were weaned 30 to 33 d postpartum. Coccygeal artery cannulas were placed into cows in the control group 1 d prior to weaning and 2 d before implant removal in cows in the norgestomet group. Plasma for determination of luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol-17 beta (E) and progesterone (P) was collected daily at 10-min intervals for 6 h from weaning (control) or the day prior to implant removal (norgestomet) to estrus (d 0) and on d 2, 4 and 6 following estrus. Average interval (X +/- SE; P less than .05) from weaning to estrus or implant removal was 4.2 +/- .8 and 2.3 +/- .2 d for the control and norgestomet groups, respectively. Estrous cycle length for the control group was 12.4 +/- 1.8 d compared with 20.4 +/- .3 d for the norgestomet group (P less than .05). Four of five control cows had an estrous cycle length of 7 to 14 d; all cows in the norgestomet group and the remaining control cow had an estrous cycle of normal length (16 to 21 d).2+ estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Boar exposure has been used for estrus induction of prepubertal gilts, but has limited effect on estrus synchronization within 7 d of introduction. In contrast, PG600 (400 IU of PMSG and 200 IU of hCG; Intervet, Millsboro, DE) is effective for induction of synchronized estrus, but the response is often variable. It is unknown whether boar exposure before PG600 administration might improve the efficiency of estrus induction of prepubertal gilts. In Exp. 1, physical or fence-line boar contact for 19 d was evaluated for inducing puberty in gilts before administration of i.m. PG600. Exp. 2 investigated whether 4-d boar exposure and gilt age influenced response to PG600. In Exp. 1, 150-d-old prepubertal gilts were randomly allotted to receive fence-line (n = 27, FBE) or physical (n = 29, PBE) boar exposure. Gilts were provided exposure to a mature boar for 30 min daily. All gilts received PG600 at 169 d of age. Estrous detection continued for 20 d after injection. In Exp. 2, prepubertal gilts were allotted by age group (160 or 180 d) to receive no boar exposure (NBE) or 4 d of fence-line boar exposure (BE) for 30 min daily before receiving PG600 either i.m. or s.c. Following PG600 administration, detection for estrus occurred twice-daily using fence-line boar exposure for 7 d. Results of Exp. 1 indicated no differences between FBE and PBE on estrus (77%), age at puberty (170 d), interval from PG600 to estrus (4 d), gilts ovulating (67%), or ovulation rate (12 corpora lutea, CL). Results from Exp. 2 indicated no effect of age group on estrus (55%) and days from PG600 to estrus (4 d). A greater (P < 0.05) proportion of BE gilts expressed estrus (65 vs. 47%), had a shorter (P < 0.05) interval from PG600 to estrus (3.6 vs. 4.3 d), and had decreased (P < 0.05) age at estrus (174 vs. 189 d) compared with NBE. Ovulation rate was greater (P < 0.05) in the BE group for the 180-d-old gilts (12.7 vs. 11.9 CL) compared with the NBE group. However, age group had no effect on ovulation (77%) or ovulation rate (12 CL). Collectively, these results indicate that physical boar contact may not be necessary when used in conjunction with PG600 to induce early puberty. The administration of PG600 to 180-d-old gilts in conjunction with 4 d prior fence-line boar exposure may improve induction of estrus, ovulation, and decrease age at puberty.  相似文献   

5.
Fifty-six cows received a norgestomet implant and an injection of norgestomet and estradiol valerate; half (n = 28) received 500 IU equine chorionic gonadotrophin (eCG) at implant removal, 9 d later. A third group (n = 25) received 2 doses of cloprostenol (500 micrograms) 11 d apart. Estrous rate was higher (P < 0.05) for cows given norgestomet and estradiol plus 500 IU eCG (75.0%) than for those receiving cloprostenol (44.0%); for those receiving norgestomet and estradiol alone, it was intermediate (67.8%). Pregnancy rates to artificial insemination (after estrus or timed) were higher (P < 0.05) for cows given norgestomet and estradiol than for those given cloprostenol (23 of 28, 82.1% vs 13 of 25, 52.0%), and intermediate (67.8%) for those given norgestomet and estradiol plus eCG. In a second experiment, for heifers treated with norgestomet and estradiol plus eCG (n = 15) or with 2 doses of cloprostenol (n = 16), estrous rates were 66.7% vs 56.2% (P > 0.5), ovulation rates were 100.0% vs 81.2% (P = 0.08), intervals from implant removal or cloprostenol treatment to estrus were 48.0 +/- 4.4 hours vs 61.3 +/- 7.0 hours (P = 0.12) and to ovulation were 70.4 +/- 4.4 hours vs 93.2 +/- 7.5 hours (P < 0.01), respectively; pregnancy rates were 41.7 and 35.7%, respectively (P > 0.5). Norgestomet and estradiol were as good as (heifers) or superior to (cows) a 2-dose cloprostenol regimen. In cows given norgestomet and estradiol, injecting eCG at implant removal did not significantly improve estrous or pregnancy rates.  相似文献   

6.
Gilt oestrus and ovulation responses to injection of a combination of equine chorionic gonadotrophin (eCG) and human chorionic gonadotrophin (hCG) (PG600) can be unpredictable, possibly reflecting inadequate circulating LH activity. The objective of this study was to determine the effect of PG600 followed by supplemental hCG on gilt ovarian responses. In experiment 1, 212 Hypor gilts (160 day of age) housed on two farms in Spain received intramuscular (i.m.) injections of PG600 (n = 47), or PG600 with an additional 200 IU hCG injected either concurrently (hCG‐0; n = 39), or at 24 h (hCG‐24; n = 41) or 48 h (hCG‐48; n = 45) after PG600. A further 40 gilts served as non‐injected controls. Ovulation responses were determined on the basis of initial blood progesterone concentrations being <1 ng/ml and achieving >5 ng / ml 10 d after the PG600 injection. The incidence of ovulating gilts having progesterone concentrations >30 ng/ml were recorded. During the study period, 10% of control gilts ovulated whereas 85–100% of hormone‐treated gilts ovulated. There were no significant differences among hormone groups for proportions of gilts ovulating. The proportions of gilts having circulating progesterone concentrations >30 ng/ml were increased (p ≤ 0.02) in all hCG treated groups compared with the PG600 group. In experiment 2, a total of 76 Hypor gilts at either 150 or 200 days of age were injected with PG600 (n = 18), 400 IU eCG followed by 200 IU hCG 24 h later (n = 20), PG600 followed by 100 IU hCG 24 h later (n = 17), or 400 IU eCG followed by 300 IU hCG 24 h later (n = 21). Blood samples were obtained 10 days later for progesterone assay. There were no effects of treatment or age on incidence of ovulation, but fewer 150‐day‐old gilts treated with PG600 or 400 IU eCG followed by 200 IU hCG had progesterone concentrations >30 ng / ml. We conclude that hCG treatment subsequent to PG600 treatment will generate a higher circulating progesterone concentration, although the effect is not evident in older, presumably peripubertal, gilts. The mechanism involved and implications for fertility remain to be determined.  相似文献   

7.
This study determined whether the interval from estrus to ovulation was altered by giving P.G. 600 to sows at weaning. Mixed-parity sows received P.G. 600 i.m. (n = 72) or no treatment (n = 65) at weaning (d 0). Beginning on d 0, sows were observed for estrus twice daily. At the onset of estrus and thereafter, ultrasound was performed twice daily to determine the average size of the largest follicles and time of ovulation. Weaning age (20.1+/-0.4 d) did not differ (P > 0.10) between treatments. More P.G. 600 sows expressed estrus within 8 d (P < 0.01) than controls (94.4% vs 78.4%, respectively). Parity was associated with expression of estrus (P < 0.02), with 78% of first-parity and 93% of later-parity sows exhibiting estrus. However, no treatment x parity effect was observed (P > 0.10). The interval from weaning to estrus was reduced (P < 0.0001) by P.G. 600 compared with controls (3.8+/-0.1 d vs 4.9+/-0.1 d). Follicle size at estrus was not affected by treatment (P > 0.10). The percentage of sows that ovulated did not differ (P > 0.10) for P.G. 600 and control sows (90.3% vs 81.5%, respectively). Time of ovulation after estrus was not affected by treatment and averaged 44.8 h. However, univariate analysis indicated that the interval from weaning to estrus influenced the interval from estrus to ovulation (r = 0.43, P < 0.0001). Further, multivariate analysis showed an effect of treatment on the intervals from weaning to estrus, weaning to ovulation (P < 0.0001), and estrus to ovulation (P < 0.04). Within 4 d after weaning, 81% of the P.G. 600 sows had expressed estrus compared with 33% of controls. However, this trend reversed for ovulation, with only 35% of P.G. 600 sows ovulating by 36 h after estrus compared with 40% of controls. The estrus-to-ovulation interval was also longer for control and P.G. 600 sows expressing estrus < or = 3 d of weaning (45 h and 58 h, respectively) than for sows expressing estrus after 5 d (39 h and 32 h, respectively). Farrowing rate and litter size were not influenced by treatment. However, the interval from last insemination to ovulation (P < 0.02) indicated that more sows farrowed (80%) when the last insemination occurred at < or = 23 to > or = 0 h before ovulation compared with insemination > or = 24 h before ovulation (55%). In summary, P.G. 600 enhanced the expression of estrus and ovulation in weaned sows but, breeding protocols may need to be optimized for time of ovulation based on the interval from weaning to estrus.  相似文献   

8.
The effect of boar exposure during artificial insemination (AI) on semen backflow, fertilization, and embryo quality was evaluated. Gilts (approximately 170 d) were induced into estrus with PG600, and ovulation was synchronized using hCG 72 h later. Estrus detection was initiated after PG600 and continued at 12-h intervals. At estrus, gilts were allotted to receive boar exposure (BE, n = 20) or no boar exposure (NBE, n = 20) during AI. Gilts receiving NBE were identified to be in estrus prior to AI and the boar was then removed for 1 h, whereas gilts in the BE group received 15 min of exposure during AI. Insemination occurred in crates at 12 and 24 h after onset of estrus with 3 x 10(9) sperm/80 mL. Backflow was collected continuously with samples taken at time 0, (during AI), and at 0.25, 0.5, 0.75, 1, 2, 4, and 8 h after first and second AI. The effect of treatment was evaluated for time of insemination (min), backflow (mL), and sperm in backflow samples. Oviducts were flushed 2 d after first AI to evaluate the effect oftreatment on fertilization rate, accessory sperm numbers on embryos (scored 1 to 5), and embryo quality. There was no effect of first or second AI; therefore, data were pooled. Average duration of AI was 3.7 +/- 0.2 min and was not influenced by BE (P < 0.10). However, during the initial stage of AI, BE reduced the volume of semen (18.6 vs 32.4 +/- 3 mL) and the number of sperm lost (0.8 vs 1.3 +/- 0.15 x 10(9) sperm) compared to NBE (P < 0.05). There was a treatment x time effect (P < 0.05) for volume of backflow. By 45 min, the BE gilts lost more volume (9.0 vs 3.6 mL) compared to the NBE group, but sperm loss did not differ. Between 1 and 8 h after AI, neither volume nor sperm loss was influenced by treatment. By 8 h, total leakage (65 vs 63 mL) and total sperm loss (1.6 x 10(9) vs 1.8 x 10(9) sperm) were not influenced by BE (P > 0.10). However, more accessory sperm (P < 0.01) were found on embryos for the NBE (> or = 11 sperm/embryo) compared to BE embryos (< or = 10 sperm/embryo). Despite this observation, percentages of fertilized embryos (99.5 +/- 0.5 %) and number of embryos (11.5 +/- 0.1) were not different (P > 0.10). In conclusion, AI in the presence of a mature boar did not affect total semen leakage, sperm loss, fertilized embryos, or embryo quality. The importance of boar exposure during insemination was evident from less leakage during insemination, but had no effect on fertility; this suggests that the elimination of boar exposure during AI may not be deleterious to reproductive performance.  相似文献   

9.
Synchronization of estrus and ovulation is essential for AI of ewes during a predetermined time frame, and progestogen-eCG treatments are typically used to prepare the ewes. However, eCG is not readily available in the United States, but P.G. 600 (400 IU of eCG and 200 IU of hCG) is available. Thus, we conducted a study to determine the effects of eCG and P.G. 600 on the timing of estrus and ovulation after progestogen withdrawal. Ewes were assigned to two replicates of an experiment with the following treatments: 1) 3-mg norgestomet implant (i.e., one-half of a Syncro-Mate-B [SMB] implant) for 10 d, plus 2 mL of saline i.m. at SMB removal (n = 11); 2) 3-mg SMB implant for 10 d, plus 400 IU of eCG i.m. at SMB removal (n = 13); and 3) 3-mg SMB implant for 10 d, plus P.G. 600 i.m. at implant removal (n = 9). On d 6 after SMB insertion, PGF2alpha was used to induce luteolysis. Beginning 12 h after implant removal, vasectomized rams were used at 12-h intervals to check for estrus. When a ewe was detected in estrus, each ovary was evaluated ultrasonically. Ovaries were evaluated again 16 h later and then at 8-h intervals until ovulation. Treatment altered the interval from implant removal to estrus (less [P < 0.05] in SMB + eCG than in the other two groups) and to ovulation (greatest [P < 0.05] in SMB). However, the treatment x replicate interaction was significant for the intervals from implant removal to estrus (P < 0.03) and from implant removal to ovulation (P < 0.05). An inconsistent response in the SMB-treated ewes seemed to be primarily responsible for the interaction. The intervals to estrus and to ovulation for the SMB-treated ewes were shorter (P < 0.05) in Replicate 1 than in Replicate 2. Also, both intervals seemed to be less consistent between replicates for the SMB + P.G. 600- than for the SMB + eCG-treated ewes; that is, eCG seemed to increase the predictability of the intervals to estrus and to ovulation. Neither the main effects of treatment and replicate nor their interaction were significant for the interval from estrus to ovulation (38.4 /- 3.3 h), size of the ovulatory follicle (7.7 +/- 0.8 mm), or ovulation rate (1.6 +/- 0.2). We concluded from this experiment that eCG is a better choice than P.G. 600 as the gonadotropin to use at the time of progestogen withdrawal to prepare ewes for AI during a predetermined interval.  相似文献   

10.
We previously reported that ovulation rate, but not pregnancy rate or litter size at d 30 after mating, was enhanced by treatment with P.G. 600 (400 IU of PMSG and 200 IU of hCG, Intervet America, Inc., Millsboro, DE) in gilts fed the orally active progestin, altrenogest (Matrix, Intervet America, Inc.) to synchronize estrus. We hypothesized that in addition to increasing ovulation rate, P.G. 600 may have altered the timing of ovulation. Therefore, mating gilts 12 and 24 h after first detection of estrus, as is common in the swine industry, may not have been the optimal breeding regimen, and as a consequence, pregnancy rate and litter size were not altered. The objective of the present study was to determine the effect of P.G. 600 on the timing of ovulation in gilts treated with altrenogest. Randomly cycling, crossbred gilts (5.5 mo old, 117 kg BW, and 14.7 mm of backfat) were fed a diet containing altrenogest (15 mg/d) for 18 d. Twenty-four hours after altrenogest withdrawal, gilts received i.m. injections of P.G. 600 (n = 25) or saline (n = 25). Gilts were checked for estrus at 8-h intervals. After first detection of estrus, transrectal ultrasonography was performed at 8-h intervals to determine the time of ovulation. Gilts were killed 9 to 11 d after the onset of estrus to determine ovulation rate. All gilts displayed estrus by 7 d after treatment with P.G. 600 or saline. Compared with saline, P.G. 600 increased (P = 0.07) ovulation rate (14.8 vs. 17.5, respectively; SE = 1.1). The intervals from injection to estrus (110.9 vs. 98.4; SE = 2.7 h; P < 0.01) and injection to ovulation (141.9 vs. 128.6; SE = 3.2 h; P < 0.01) were greater in gilts treated with saline than in gilts treated with P.G. 600. Duration of estrus (54.4 vs. 53.7; SE = 2.5 h), the estrus-to-ovulation interval (30.2 vs. 31.7; SE = 2.2 h), and the time of ovulation as a percentage of estrus duration (55.8 vs. 57.5; SE = 3.0%) did not differ for the P.G. 600 and saline-injected gilts, respectively. In summary, P.G. 600 advanced the onset of estrus and ovulation following termination of altrenogest treatment and increased ovulation rate; however, treatment of gilts with P.G. 600 had no effect on the timing of ovulation relative to the onset of estrus.  相似文献   

11.
In postpartum cows expected to have corpora lutea (CL) of normal (norgestomet-treated) compared to short (control) life spans, function of the largest follicle increases after an increase in concentrations of prostaglandin F2 alpha (PGF). To determine whether PGF alters follicular growth and subsequent life span of the CL, 43 crossbred beef cows (19 to 22 d postpartum) were assigned to one of four treatments: 1) control (C; n = 10), 2) control+PGF (CPGF; n = 10), 3) norgestomet (N; n = 13), 4) norgestomet+flunixin meglumine (NFM; n = 10). Flunixin meglumine inhibits prostaglandin endoperoxide synthase. On day 0, N and NFM cows received a 6 mg implant of norgestomet. From days 3 through 8, CPGF and NFM cows were injected every 8 hr with 10 mg PGF im or 1 g FM iv, respectively. Implants were removed on day 9. On day 11, each cow received 1000 IU of hCG im to induce formation of CL. Follicular growth was monitored by daily ultrasonography from days 6 through 11. In a majority of the cases (25/32), the largest follicle present on day 6 was still the largest on day 11; frequency of persistence did not differ with treatment. Rate of growth of the largest follicle was greater in CPGF than in N cows (.6 +/- .1 vs .3 +/- .1 mm/d, respectively; P less than .05) but did not differ between C and NFM cows (.4 +/- .1 and .5 +/- .1 mm/d, respectively). Concentrations of estradiol in NFM cows were higher (P less than .05) on day 3 and declined to concentrations similar to those of the other treatments on day 9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Gilts (n = 267) were allotted to flushing (1.55 kg/d additional grain sorghum), altrenogest (15 mg.gilt-1.d-1) and control treatments in a 2 x 2 factorial arrangement. Altrenogest was fed for 14 d. Flushing began on d 9 of the altrenogest treatment and continued until first observed estrus; 209 gilts (78%) were detected in estrus. The interval from the last day of altrenogest feeding to estrus was shorter (P less than .05) with the altrenogest + flushing treatment (6.6 +/- .2 d) than with flushing alone (7.6 + .3 d). Ovulation rates (no. of corpora lutea) were higher (P less than .05) in all flushed gilts (14.5 +/- .4 vs 13.4 +/- .4), whether or not they received altrenogest. Flushing also increased the total number of pigs farrowed (.9 pigs/litter; P = .06) and total litter weight (1.43 kg/litter; P = .01), independent of altrenogest treatment. Number of pigs born alive and weight of live pigs were higher for gilts treated with altrenogest + flushing and inseminated at their pubertal estrus than for gilts in all other treatment combinations. In contrast, gilts receiving only altrenogest had greater live litter weight and more live pigs born when inseminated at a postpubertal estrus than when inseminated at pubertal estrus. We conclude that flushing increased litter size and litter weight, particularly for gilts that were inseminated at their pubertal estrus. Increased litter size resulted from increased ovulation rates, which, in nonflushed gilts, limited litter size at first farrowing.  相似文献   

13.
Effects of norgestomet on follicular development in postpartum beef cows   总被引:1,自引:0,他引:1  
To examine effects of norgestomet pretreatment on development of follicles and their response to administration of gonadotropin releasing hormone (GnRH), 45 pluriparous suckled beef cows were assigned at random to receive a 6-mg implant of norgestomet for 9 d (inserted 24 d postpartum) or serve as untreated controls. Ovaries were obtained 48 h after removal of implants or 10 to 11 or 20 to 22 h after im administration of 150 micrograms GnRH at 48 h after removal of the implant. The largest follicle (F1) and all follicles within 3 mm in diameter of the F1 were dissected from the ovaries. Theca, granulosa and follicular fluid were separated and assayed for steroids and prostaglandins. Diameters and weights of F1 and weights of follicular components remained unchanged in control cows, but increased by 10 h and declined by 20 h in norgestomet-pretreated cows (treatment X time, quadratic, P less than .05). Ovarian volume and numbers of follicles at the surface of the ovary did not differ with treatment, but the diameter of the second-largest follicle (F2) was smaller (P less than .05) in norgestomet-pretreated cows than in controls (6.0 +/- .9 vs 8.2 +/- .7 mm). The F1 were embedded in the ovary in fewer norgestomet-pretreated than control cows (2/22 vs 8/23; P less than .05). Changes in steroids in F1 paralleled those in size (treatment X time, quadratic, P less than .05). Overall, F1 from norgestomet-pretreated cows had higher (P less than .05) contents of estradiol. Contents of prostaglandins in F1 follicles did not differ with treatment, but increased (P less than .05) following treatment with GnRH. The F2 had lower contents of estradiol than F1. It is suggested that norgestomet effected the maturation of a single follicle which produced more estradiol.  相似文献   

14.
The purpose of these studies was to investigate the pattern and timing of preovulatory endocrine events, estrus and ovulation in Brahman X Hereford (F1) heifers synchronized with norgestomet and estradiol valerate. In Exp. 1, 66 nulliparous and 191 primiparous Brahman X Hereford (F1) heifers were used to estimate the interval from norgestomet implant removal to onset of estrus. The mean interval from implant removal to onset of estrus was 29.8 +/- .5 h, with 80.9% exhibiting estrus within 48 h. Endocrine and reproductive characteristics were examined in detail during Exp. 2 with 37 primiparous heifers. Continuous observation for estrus, 6-h or 2-h blood sampling and ovarian palpation per rectum were employed. All animals were artificially inseminated 48 h after implant removal. Mean interval from implant removal to onset of estrus and to onset of the luteinizing hormone (LH) surge were closely related (r = .91; P less than .0001). Mean intervals from implant removal to ovulation, onset of estrus to ovulation and onset of LH surge to ovulation were 59.1 +/- 2.5 h, 23.3 +/- 1.4 h and 23.1 +/- 1.6 h, respectively. Approximately 73% of heifers exhibited estrus within 54 h after implant removal (optimal timing); conception rate was 59.3% in this subgroup. Conception rate of heifers that did not exhibit estrus within 54 h after implant removal or exhibited an LH surge later than 12 h after estrus (delayed timing) was 10%. Assessment of plasma estradiol-17 beta concentrations suggested that retarded selection and(or) maturation of the preovulatory follicle following implant removal delayed estrus and lowered conception in up to 28% of females timed-inseminated at 48 h.  相似文献   

15.
Ten trials involving 678 presumed prepuberal gilts (5.5 to 7.5 mo old) were conducted in North Carolina, Illinois and Missouri to evaluate the reproductive performance of gilts given a combination of 400 IU of pregnant mare's serum gonadotropin and 200 IU of human chorionic gonadotropin (P. G. 600). Gilts that were presumed to be prepuberal received P. G. 600 or no treatment (control) on the day of movement from finishing facilities to pens for breeding. Detection of estrus, with the aid of mature boars, was conducted daily for 28 d; gilts in estrus were mated naturally. Treatment with P. G. 600 increased the percentage in estrus within 7 (57.5 vs 40.9%) or 28 d (72.9 vs 59.5%); average interval to estrus was reduced (P less than .05) from 10.4 to 7.5 d. Farrowing rate (78.5 +/- 3.1%), number of pigs born alive (8.6 +/- .2) or dead (.26 +/- .06) and number of pigs weaned (8.0 +/- .2) were unaffected by treatment. Gilts that were heavier than the median for each farm were in heat sooner and more were detected in heat, but no other reproductive traits differed between heavy and light gilts. Overall, the results reveal that P. G. 600 was useful for induction of fertile estrus in prepuberal gilts.  相似文献   

16.
Effects of age of cow and a norgestomet (N) implant on number of embryos and endocrine responses to induction of superovulation were studied in old (greater than 12 yr) and young (5 to 7 yr) lactating beef cows. Seventeen cows (8 old and 9 young) received a 6-mg N ear implant on d 4 or 5 of the cycle (d 0 = estrus); the remaining 17 cows (9 old and 8 young) served as untreated controls (C). All animals were treated with 38 mg of porcine follicle-stimulating hormone (FSH-P) in decreasing dosages over a 4.5-d period beginning on d 10 or 11. Regression of the corpus luteum was induced with injections of PGF2 alpha at 0800 and 2000 on d 4 of FSH-P treatment; implants were removed at the second injection of PGF2 alpha. Cows were inseminated artificially 12 and 24 h after onset of estrus. Embryos were collected on d 7 or 8 postinsemination. Blood samples were obtained daily at 0800 from 2 d prior to initiation of treatment with FSH-P until collection of embryos. An additional sample was collected each day at 2000, from the first injection of PGF2 alpha to 1 d after onset of estrus. Samples were assayed for luteinizing hormone (LH), progesterone (P4), follicle stimulating hormone (FSH) and estradiol-17 beta (E2). Total number of embryos plus ova recovered was lower (P less than .01) in N-treated (5.2 +/- 1.1) than in C-treated (10.6 +/- 1.6) cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
An experiment was conducted to determine whether short estrous cycles following abortion of heifers between 70 and 75 d of gestation are due to factors associated with the previous presence of a conceptus or long-term exposure of the uterus and(or) ovaries to a progestogen. Fifty crossbred heifers were randomly allotted at estrus (d 0) to five groups: control (n = 10), pregnant (Preg.; n = 14), progestogen (norgestomet) implant (Norg.; n = 9), progesterone-releasing intravaginal device (PRID; n = 9), or hysterectomy (Hyst.; n = 8). Control heifers were injected during the mid-luteal phase of an estrous cycle with 25 mg prostaglandin F2 alpha (PGF2 alpha) and length of the subsequent estrous cycle was determined. Beginning 6 to 8 d after estrus, heifers in the Norg. or PRID groups were given norgestomet ear implants or intravaginal coils, respectively, every 10 d for 70 d. Heifers were hysterectomized 5 to 8 d after estrus. Seventy to 75 d after conception, progestogen treatment or hysterectomy, heifers were injected (i.m.) with 25 mg PGF2 alpha and the last norgestomet ear implants or PRIDs were removed. Interval from PGF2 alpha injection to first estrus (means +/- SE) ranged from 2.5 +/- .2 to 4.4 +/- .7 d (P greater than .05). Length of the first estrous cycle means +/- SE) following PGF2 alpha-induced luteolysis or progestogen withdrawal was shorter (P less than .01) for the Preg. group (8.2 +/- .4 d) than for the control, Norg. and PRID groups (21.5 +/- .6 d; 19.3 +/- 1.4 d; and 18.2 +/- 1.3 d, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of s.c. and i.m. administration of P.G. 600 on estrual and ovulatory responses of prepubertal gilts were investigated. One hundred eighty-four crossbred gilts between 159 and 174 d of age were assigned to receive P.G. 600 s.c. (s.c. P.G. 600) in the flank, P.G. 600 i.m. in the neck (i.m. P.G. 600), or no treatment (control). At the beginning of the study (d 0), animals were selected from a modified, open-front barn, regrouped, relocated to new pens, and exposed once daily to a mature boar to check for estrus. On d 17, ovaries were collected from all gilts and analyzed for the presence of corpora lutea (CL), cystic follicles, and cystic CL. A higher proportion of gilts expressed estrus with s.c. P.G. 600 (76%) than with i.m. P.G. 600 (52%, P < .01) or controls (15%, P < .01). The interval from initiation of treatment on d 0 to estrus was reduced (P < .01) by P.G. 600 (4.6 d) compared to controls (5.9 d), but there was no significant difference between P.G. 600 treatments. Both s.c. P.G. 600 (86%) and i.m. P.G. 600 (77%) induced more gilts to ovulate (P < .01) than controls (18%), but there was no significant difference between P.G. 600 treatments. No significant effect of treatment was detected on number of CL (17.9), number of cystic follicles (1.5), or number of cystic CL (2.1). Proportions of gilts that developed cystic follicles or cystic CL were not influenced by treatment. Results of this study indicated that s.c. administration of P.G. 600 significantly improved the induction of estrus in prepubertal gilts compared to i.m. administration.  相似文献   

19.
Two experiments were conducted to examine responses of gilts to treatment with and withdrawal of exogenous porcine somatotropin (PST). In Exp. 1, 36 prepubertal gilts (79.7 +/- .9 kg; 159.1 +/- .7 d) were allotted randomly to receive daily either 0 micrograms PST (C) or 70 micrograms PST/kg initial BW for either 21 (PST-3) or 42 d (PST-6). Gilts were examined for estrus daily by a mature boar starting on d 22 and continuing for up to 50 d. Gilts that expressed estrus were mated and removed from treatment. PST-treated gilts had higher ADG (P less than .01) and lower feed/gain (P less than .02) than C gilts. Following initiation of boar exposure, C gilts (mean interval to estrus = 2.0 d) exhibited estrus earlier than PST-3 (24.8 d) and PST-6 (24.0 d) gilts (P less than .07); however, only two C gilts were observed in estrus compared with six PST-3 and six PST-6 gilts. In Exp. 2, 40 prepubertal gilts (72.6 +/- 1.0 kg; 141.1 +/- .7 d) were allotted randomly to receive daily either 0 mg PST (C) or 5 mg PST for 30 d. On d 31, half the gilts were comingled with unfamiliar penmates and examined for estrus daily by a mature boar for up to 45 d. Estrual gilts were removed from treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two progestin-based protocols for estrus synchronization in postpartum beef cows were compared following treatment administration on the basis of estrous response, interval to and synchrony of estrus, and pregnancy. Cows were assigned to one of the two treatment protocols by age, body condition score (BCS), and days postpartum (DPP). The MGA Select-treated cows (MGA Select; n = 109) were fed melengestrol acetate (MGA; 0.5mg x cow-1 x d(-1)) for 14 d, fed carrier for 8 d, GnRH (100 microg of Cystorelin) was injected i.m. 12 d after MGA withdrawal, and PG (25 mg of Lutalyse) was administered i.m. 7 d after GnRH. Cows assigned to the 7-11 Synch protocol (7-11 Synch; n = 111) were fed carrier for 15 d, fed MGA for 7 d, injected with PG on d 22 (d 7 of MGA), injected with GnRH on d 26, and injected with PG on d 33. Mean BCS (4.8 +/- 0.1, MGA Select; 4.7 +/- 0.1, 7-11 Synch) and DPP (40 +/- 1, MGA Select; 40 +/- 1, 7-11 Synch) did not differ between treatments. Blood samples were collected 8 d and 1 d before feeding of MGA or carrier to determine the pretreatment estrous cyclicity (progesterone > or = 1 ng/mL; 10/109 [9%], MGA Select; 12/111 [11%], 7-11 Synch), and again at PG on d 33 to evaluate treatment response (81/109 [74%], MGA Select; 84/111 (76%), 7-11 Synch). Serum concentrations of progesterone at PG on d 33 differed (P < 0.01) between treatments (3.3 +/- 0.3 ng/mL [MGA Select] vs. 1.7 +/- 0.1 ng/mL [7-11 Synch]). HeatWatch was used for 6 d after PG on d 33 to detect estrus, and AI was performed 12 h after the onset of estrus. Estrous response did not differ between treatments (100/109 [92%], MGA Select; 101/111 [91%], 7-11 Synch). Mean interval to estrus (65 +/- 2.7 h, MGA Select; 52 +/- 1.8 h, 7-11 Synch) and synchrony of estrus differed (P < 0.01) between treatments. Synchronized conception and pregnancy rates (61/100 [61%], 61/109 [56%], MGA Select; 71/101 [70%], 71/111 [64%], 7-11 Synch), and final pregnancy rates (94/109 [86%], MGA Select; 99/110 [90%], 7-11 Synch) did not differ between treatments. In summary, estrous response and fertility did not differ among cows assigned to the MGA Select or 7-11 Synch protocols. Synchrony of estrus, defined as the variance in the interval to estrus from PG, however, was improved following treatment with the 7-11 Synch protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号