首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six types of starch nanocrystals were prepared from corn, barley, potato, tapioca, chickpea, and mungbean starches with an acid hydrolysis method. The yields and morphological, structural, and thermal properties of starch nanocrystals were characterized. Starch nanocrystals had yields ranging from 8.8 to 35.7%, depending on botanical origin. During acid hydrolysis, amylose was effectively degraded, and no amylose was detected in any starch nanocrystal. Shape and size of native starch granules varied between starches, whereas there was no obvious difference in shape among different types of starch nanocrystals. The average particle size of starch nanocrystals was mainly related to crystalline type of native starches. Compared with their native starch counterparts, changes in crystalline diffraction patterns of starch nanocrystals depended on the original botanical source and crystalline structure. Degree of crystallinity, melting temperature, and enthalpy of starch nanocrystals increased, whereas their thermal decomposition temperature decreased. Of six produced starch nanocrystals, potato starch nanocrystal had the lowest yield, degree of crystallinity, and onset and melting temperatures, the largest particle size, and obvious changes in crystalline diffraction pattern.  相似文献   

2.
In this study, the functional properties of A‐ and B‐type wheat starch granules from two commercial wheat flours were investigated for digestibility in vitro, chemical composition (e.g., amylose, protein, and ash content), gelatinization, retrogradation, and pasting properties. The branch chain length and chain length distribution of these A‐ and B‐type wheat starch granules were also determined using high‐performance anion exchange chromatography (HPAEC). Wheat starches with different granular sizes not only had different degrees of enzymatic hydrolysis and thermal and pasting properties, but also different molecular characteristics. Different amylose content, protein content, and branch chain length of amylopectin in A‐ and B‐type wheat starch granules could also be the major factors besides granular size for different digestibility and other functional properties of starch. The data indicate that different wheat cultivars with different proportion of A‐ and B‐type granular starch could result in different digestibility in wheat products.  相似文献   

3.
Chemical composition and in vitro digestion properties of select whole grains, before and after processing, and their components were measured. Substrates included barley, corn, oat, rice, and wheat. In addition to whole grain flours, processed substrates also were tested as were corn bran, oat bran, wheat bran, and wheat germ. Processing of most substrates resulted in higher dry matter and digestible starch and lower resistant starch concentrations. Dietary fiber fractions varied among substrates with processing. Digestion profiles for most substrates correlated well with their chemical composition. Corn bran and rice substrates were the least fermentable. Extrusion rendered barley, corn, and wheat more hydrolytically digestible and barley and oat more fermentatively digestible. Except for corn bran, all components had greater or equal fermentability compared with their native whole grains. Understanding digestion characteristics of whole grains and their components will allow for more accurate utilization of these ingredients in food systems.  相似文献   

4.
The origin of resistant starch (RS) in distiller's dried grains with solubles (DDGS) of triticale, wheat, barley, and corn from dry‐grind ethanol production was studied. A considerable portion of starch (up to 18% in DDGS) escaped from either granular starch hydrolysis or conventional jet‐cooking and fermentation processes. Confocal laser scanning microscopy revealed that some starch granules were still encapsulated in cells of grain kernel or embedded in protein matrix after milling and were thus physically inaccessible to amylases (type RS1). The crystalline structures of native starch granules were not completely degraded by amylases, retaining the skeletal structures in residual starch during granular starch hydrolysis or leaving residue granules and fragments with layered structures after jet‐cooking followed by the liquefaction and saccharification process, indicating the presence of RS2. Moreover, retrograded starch molecules (mainly amylose) as RS3, complexes of starch with other nonfermentable components as RS4, and starch–lipid complexes as RS5 were also present in DDGS. In general, the RS that escaped from the granular starch hydrolysis process was mainly RS1 and RS2, whereas that from the jet‐cooking process contained all types of RS (RS1 to RS5). Thus, the starch conversion efficiency and ethanol yield could be potentially affected by the presence of various RS in DDGS.  相似文献   

5.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

6.
The α-amylolysis of large (volume average 16 μm) barley starch granules was studied by measuring the amount of carbohydrates solubilizing during hydrolysis, and the changes in morphology and molecular structure of the granule residues by scanning electron microscopy, particlesize analysis, size-exclusion chromatography, X-ray diffraction, and differential scanning calorimetry. X-ray diffraction showed that, in the earlier stages of α-amylolysis, both amorphous and crystalline parts of the granules were equally solubilized. More extensive hydrolysis caused a gradual decrease in A-type crystallinity and degradation of the granular structure. Scanning electron microscopy revealed that hydrolysis proceeded through pinholes, and pitted and partially hollow granule residues were formed. The lipid-complexed amylose was less susceptible to α-amylolysis than free amylose and amylopectin. Lipid-complexed amylose started leaching out of the granule residues only after half of the starch had solubilized due to the α-amylase treatment. Even though scanning electron microscopy indicated that there were intact granules left throughout the hydrolysis, the results obtained suggested that α-amylolysis of large barley starch granules proceeded rather evenly among the granules.  相似文献   

7.
The raw starch granules from corn, rice, and wheat were hydrolyzed by practically pure glucoamylase (Rhizopus niveus). The bound lipids remaining in the residual starches were investigated, of which the major components of the lipids, free fatty acids (FFA) in corn starch, FFA and phospholipids (PL) in rice starch, and PL in wheat starch were determined. In each case, the bound FFA and PL were decreased to some extent during the initial stage of hydrolysis. During the later stages, the FFA continued to gradually decrease, while the level of PL stabilized. It was interesting that some of the bound lipids were released from the granules upon glucoamylase hydrolysis, differing from the model amylose-lipid complexes. Furthermore, the structures of the residual starches were investigated. The blue value and λmax of the starches were increased by partial hydrolysis of the starch granules using practically pure glucoamylase. Two gel-permeation chromatography analyses revealed that the relative amount of amylose fraction was increased by glucoamylase hydrolysis, and also that the increments were reduced by the defatting of bound lipids. The results suggest that the increase in amylose fraction is attributable to the existence of bound lipids in the granules.  相似文献   

8.
Starch granule composition and amylopectin structure affect starch digestibility, an important factor influencing wheat grain utilization for human food consumption. Six bread wheat cultivars with four belonging to the Canada Western Red Spring (CWRS) and two Canada Prairie Spring Red (CPSR) market classes were analyzed for the relationship between their grain constituents and in vitro enzymatic hydrolysis of starch. CPSR cultivars had higher starch and amylose concentrations compared with CWRS cultivars, which had a higher protein concentration. Starch granule size distribution did not differ among the genotypes, except AC Foremost, which had significantly (P < 0.05) higher volume percent of B‐type starch granules (≈15%) and lower volume percent of A‐type starch granules (≈9%) compared with other cultivars. Fluorophore‐assisted capillary electrophoresis revealed a lower content of R‐IV (DP 15–18, ≈6%) and a higher content of R‐VII (DP 37–45, ≈7%) chains in the CPSR cultivars compared with the CWRS cultivars. Starch in vitro enzymatic hydrolysis showed that compared with CWRS cultivars, the two CPSR cultivars had reduced amounts of readily digestible starch and higher amounts of slowly digestible starch and resistant starch. Consequently, the two CPSR cultivars also showed lower hydrolysis indexes in grain meal as well as extracted starch. CPSR cultivars, with higher starch and amylose concentrations, as well as a higher content of long chains of amylopectin, showed a reduced starch in vitro enzymatic hydrolysis rate.  相似文献   

9.
RS4‐type resistant wheat starch (RWS) and resistant potato starch (RPS) were subjected successively to in vitro digestion with pepsin and pancreatin‐bile, and the indigestible residues (82.1% db and 74.1% db, respectively) were recovered and subsequently fermented by in vitro techniques using fresh human fecal microbiota as inoculum. Scanning electron microscopy of the indigestible residues showed surface erosion on the residual granules. Total gas production during the in vitro fermentation increased almost linearly over time with the two resistant starches exhibiting similar gas production rates, as well as a similar rate of production of total short‐chain fatty acids (SCFA). The indigestible fractions from both starches produced acetate as the major SCFA and relatively higher levels of butyrate than propionate, but wheat starch tended to produce more butyrate over time than potato starch. Fractional molar ratios of acetate, propionate, and butyrate from the RWS and RPS were 0.586:0.186:0.228 and 0.577:0.200:0.223, respectively. The calculated caloric contributions of the RWS and RPS are ≈33% lower than for unmodified starch and are comparable to those reported in the literature for RS2 and RS3 high‐amylose maize starches.  相似文献   

10.
The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p < 0.05). Increase in grain protein concentration was not only related to total starch concentration (r(2) = -0.80, p < 0.01) but also affected enzymatic hydrolysis of pure starch (r(2) = -0.67, p < 0.01). However, an increase in amylopectin unit chain length between DP 12-18 (F-II) was detrimental to starch concentration (r(2) = 0.46, p < 0.01). Amylose concentration influenced granule size distribution with increased amylose genotypes showing highly reduced volume percentage of very small C-granules (<5 μm diameter) and significantly increased (r(2) = 0.83, p < 0.01) medium sized B granules (5-15 μm diameter). Amylose affected smaller (F-I) and larger (F-III) amylopectin chains in opposite ways. Increased amylose concentration positively influenced the F-III (DP 19-36) fraction of longer DP amylopectin chains (DP 19-36) which was associated with resistant starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p < 0.01) influenced resistant starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.  相似文献   

11.
优质小麦子粒淀粉组成与糊化特性对氮素水平的响应   总被引:1,自引:0,他引:1  
在大田条件下,选用3个不同类型优质小麦品种: 豫麦47(强筋品种)、山农8355(中筋品种)和豫麦50(弱筋品种),设置3个氮肥水平: 施N 0、15和30 g/m2,研究了小麦子粒淀粉的粒度分布、直支链淀粉组成、糊化特性及其对氮素水平的响应。结果表明,优质小麦子粒中淀粉粒的粒径分布范围为1~45 μm,其数目分布呈单峰或双峰曲线变化,体积和表面积分布均呈双峰曲线变化,峰谷位于10 μm处; 据此可将淀粉粒分为两种类型: A型大淀粉粒(10~45 μm)和B型小淀粉粒(1~10 μm)。优质小麦子粒淀粉粒组成存在显著的基因型差异。强筋品种豫麦47子粒中B型淀粉粒的比例较高,弱筋品种豫麦50子粒中A型淀粉粒的比例较高,中筋品种山农8355居中。施氮水平对优质小麦子粒中淀粉的粒度分布存在显著影响。在本试验条件下,随氮素水平的提高,强筋品种豫麦47子粒中A型淀粉粒的比例提高,而B型淀粉粒的比例下降; 增施氮肥后弱筋品种豫麦50和中筋品种山农8355子粒中B型淀粉粒的比例增大,而A型淀粉粒的比例降低,且前者变化的幅度较大。适量增施氮肥提高优质小麦子粒中的淀粉含量,氮肥用量进一步增大后,淀粉含量降低; 增施氮肥后优质小麦子粒中直链淀粉含量降低。增施氮肥对优质小麦子粒淀粉的糊化特性存在较大影响,且此影响的趋势因基因型和施氮量而异。其中强筋品种豫麦47表现为低谷粘度、最终粘度、反弹值、糊化温度和峰值时间提高,而高峰粘度和稀懈值降低; 当氮肥用量增大至30 g/m2时,糊化温度和峰值时间降低,而以粘度为单位的参数均提高。弱筋品种豫麦50表现为增施氮肥后,RVA参数呈下降趋势,与之相对应中筋品种山农8355的呈上升趋势。相关性分析表明,B型淀粉粒的数目、体积和表面积比例与高峰粘度和稀懈值存在显著正相关; 与低谷粘度、最终粘度和反弹值存在显著负相关。子粒中直链淀粉含量、支链淀粉含量和总淀粉含量与高峰粘度和稀懈值呈显著负相关,与低谷粘度、最终粘度、反弹值和峰值时间呈一定程度正相关; 直链淀粉相对含量与RVA特征参数之间的相关趋势与子粒中直链淀粉含量的趋势一致,但均未达显著水平。由此可以认为,氮肥通过调控小麦子粒中淀粉的直、支链组成和粒度分布而影响其糊化特性。  相似文献   

12.
Granule size distribution of wheat starch is an important characteristic that can influence its chemical composition, which in turn may affect its functionality. The granule size distribution and chemical composition of soft wheat starches were characterized and compared and relationships among those properties were identified. Thirty-four starch samples from 12 soft wheat cultivars grown in the eastern half of the United States were examined. Granule size distribution was characterized using a laser light-scattering technique. Amylose and phospholipid contents were determined using colorimetric procedures. A clear trimodal distribution of granule sizes was shown by 26 out of 34 starch samples: small granules with diameters <2.8 μm, midsize granules with diameters of 2.8–9.9 μm, and large granules with diameters >9.9 μm. Volume% distribution of granules within the three size classes had ranges of 9.7–15.2% (small), 13.4–27.9% (medium), and 57.9–76.9% (large). Highly significant differences were seen among the cultivars for volume% of granules within the ranges of 9.9–18.5 μm and 18.5–42.8 μm. Cultivar specific surface area means also differed. The environment affected granule size distribution, with some cultivars exhibiting more variation than others. Pioneer 2555 was the least variable, whereas Pioneer 2550 and Geneva were the most variable cultivars. Mean total amylose (TAM), apparent amylose (AAM), and lysophospholipid (LPL) values varied significantly among cultivars. TAM was positively correlated with the volume% of granules of 9.9–18.5 μm. LPL was negatively correlated with mean starch granule diameter and positively correlated with specific surface area of granules, indicating smaller granules tended to have higher lipid contents. Results suggest that significant differences exist in granule size distribution of soft wheat starches and affect starch chemical composition. Data also suggest it is possible that lipid is preferentially associated with the biosynthesis of small starch granules.  相似文献   

13.
The effects of whole grain wheat (WGW) flour on the quality attributes of instant fried noodles were characterized in terms of mixing and oil‐resisting properties as well as in vitro starch digestibility. Higher water absorption and shorter kneading time were required to obtain the optimally mixed dough from WGW flour, and the presence of nonstarch components in the WGW flour lowered the thermal conductivity of the noodles. The use of WGW flour produced instant fried noodles with oil uptake reduced by 30%, which could be correlated with the less porous structure confirmed by the surface and cross‐sectional scanning electron microscope images. When the instant fried noodles were subjected to in vitro starch digestion, the use of WGW flour was effective in suppressing the hydrolysis of starch in the noodles, and the predicted glycemic index of the WGW noodles (80.6) was significantly lower than that of the white wheat noodles (83.3).  相似文献   

14.
Kernel hardness is not a well‐characterized food quality trait in barley. Unlike wheat, not much is known about the effect of barley kernel hardness on food processing. Ten barley genotypes differing in single kernel characterization system hardness index (SKCS‐HI) (30.1–91.2) of dehulled kernels were used to determine the association of barley HI with other physical grain traits and food processing parameters. Thousand kernel weight (TKW) values of 10 genotypes were 29.7–38.1 g. Values for bulk density of grains were 721.1–758.9 kg/m3. Crease width and depth values were 0.9–1.3 mm and 0.4–0.7 mm, respectively. Barley HI showed no significant association with TKW, bulk density, or kernel crease dimensions. Kernel loss due to pearling after 325 sec of abrasion was 28.8–38.4% and showed significant negative correlation with HI (r = –0.87, P < 0.01). Proportion of barley flour particles >106 μm had values of 34.5–42.0%, and starch damage values were 1.8–4.5% among those 10 barley genotypes. HI showed significant positive correlations with both proportion of barley flour particles >106 μm (r = 0.93, P < 0.01) and starch damage (r = 0.93, P < 0.01). Water imbibition of barley kernels and cooked kernel hardness did not show significant correlation with HI.  相似文献   

15.
The rheological properties of granular materials and dispersions of solid particles in fluids are dependent on the packing characteristics of the particles. Maximum packing fractions (Φm) have been measured for corn, wheat, rice, potato, and amaranth starches, in the dry state and dispersed in either ethanol or hexane, using a tapping method. The observed maximum packing fraction increases with tapping time to a constant value. Values measured for dry starches were lower than those measured in liquids and reflect the effects of granule shape and intergranular friction. Values measured in fluids for potato, corn, and wheat starches were all similar in magnitude, and in the range of values (0.58–0.63) for random loose packing and random close packing of monodisperse spheres. Values for amaranth and rice starches were significantly lower due to agglomeration and clumping of individual granules. Blends of corn and potato starches show a slight enhancement of packing, with some Φm values greater than potato starch, consistent with data for bimodal blends of spheres. Blends of rice and potato starches displayed enhanced packing above ideal mixing but did not exceed the packing fraction of the potato starch. Knowledge of starch packing fractions is required for fundamental understanding of the rheological properties of granular starch‐filled materials and important for predicting processing characteristics.  相似文献   

16.
Laboratory-isolated buckwheat (Fagopyrum esculentum) starch was compared to commercial corn and wheat starches. Buckwheat starch granules (2.9–9.3 μm) were round and polygonal with some holes and pits on the surface. Buckwheat starch had higher amylose content, waterbinding capacity, and peak viscosity, and it had lower intrinsic viscosity when compared with corn and wheat starches. Buckwheat starch also showed restricted swelling power at 85–95°C and lower solubility in water at 55–95°C and was more susceptible to acid and enzymatic attack. Gelatinization temperatures, determined by differential scanning calorimetry, were 61.1–80.1°C for buckwheat starch compared to 64.7–79.2°C and 57.1–73.5°C for corn and wheat starches, respectively. A second endotherm observed at 84.5°C was an amylose-lipid complex attributed to the internal lipids in buckwheat starch, as evidenced by selective extraction. The retrogradation of buckwheat, corn, and wheat starch gels was examined after storage at 25, 4, and -12°C for 1–15 days. In general, buckwheat starch retrogradation was slower than that of corn and wheat starch, but it increased as storage time increased, as did that of the other starch pastes. When the values of the three storage temperatures were averaged for each storage period analyzed, buckwheat starch gels showed a lower percentage of retrogradation than did corn and wheat starch gels. Buckwheat starch also had a lower percentage of water syneresis when stored at 4°C for 3–10 days and had better stability to syneresis after three freeze-thaw cycles at -12 and 25°C.  相似文献   

17.
Small starch particles were prepared by hydrolyzing waxy rice starch using α‐amylase and then ultrasonicating in ethanol. Differential scanning calorimetry (DSC) revealed that a mild hydrolysis for 3 hr increased the melting enthalpy of the starch, which might indicate that the hydrolysis was selective in the amorphous regions. Later, at 6–24 hr, the hydrolysis rate was reduced, with gradual decreases in DSC melting enthalpy, indicating that the crystalline regions were eroded simultaneously. X‐ray diffraction patterns revealed the same trend as the DSC results. Average diameter of starch granules or particles was decreased dramatically in both volume‐ and number‐based measurements (5.94→1.64 μm, and 0.45→0.18 μm, respectively) during the early stage of rapid hydrolysis (up to 3 hr). Native waxy rice starch exhibited a particle size distribution with a major peak at 5.6 μm. After hydrolysis for 3 hr, the volume distribution of starch granules changed to two major size peaks at 0.5 and 3.6 μm. The starch fragment of 0.5 μm was assumed to consist of crystalline blocklets. With excessive hydrolysis (24 hr) or ultrasonication, however, starch particle diameter was increased, indicating that the particles might be swollen or aggregated into clusters.  相似文献   

18.
The inhibition or delay of starch digestion by dietary compounds could help manage postprandial blood glucose levels. The objective of this study was to identify constituents from whole grain blue wheat capable of decreasing α‐amylase‐catalyzed starch digestion. An activity‐guided fractionation approach based on liquid chromatography was used to identify solvent‐ and alkaline‐extractable blue wheat constituents reducing α‐amylase‐mediated starch digestion in vitro. Fatty acids, potentially released from cell wall polymers by alkaline hydrolysis, inhibited the digestion of amylose, probably through the formation of amylose‐lipid complexes. However, the degradation of amylopectin was not affected by fatty acids. In addition, 1‐(3,5‐dihydroxyphenyl)heneicosan‐2‐one, a 5‐(2′‐oxoalkyl)resorcinol, was found to reduce starch digestion. However, because the digestion of both amylopectin and amylose was reduced, the inhibition mechanism was different from that of fatty acids. Further research is needed to evaluate whether this component also reduces starch digestion in vivo. Other phenolic compounds of blue wheat such as anthocyanins or hydroxycinnamates were not identified as major starch digestion inhibitors by using the activity‐guided fractionation approach.  相似文献   

19.
The effect of partial gelatinization with and without lipid addition on the granular structure and on α‐amylolysis of large barley starch granules was studied. The extent of hydrolysis was monitored by measuring the amount of soluble carbohydrates and the amount of total and free amylose and lipids in the insoluble residue. Similarly to the α‐amylolysis of native large barley starch granules, lipid‐complexed amylose (LAM) appeared to be more resistant than free amylose and amylopectin. Partial gelatinization changed the hydrolysis pattern of large barley starch granules; the pinholes typical of α‐amylase‐treated large barley starch granules could not be seen. Lipid addition during partial gelatinization decreased the formation of soluble carbohydrates during α‐amylolysis. Also free amylose remained in the granule residues and mostly amylopectin hydrolyzed into soluble carbohydrates. These findings indicate that lysophospholipid (LPL) complexation with amylose occurred either during pretreatment or after hydrolysis, and free amylose was now part of otherwise complexed molecules instead of being separate molecules. Partial gelatinization caused the granules to swell somewhat less during heating 2% starch‐water suspensions up to 90°C, and lipid addition prevented the swelling completely. α‐Amylolysis changed the microstructure of heated suspensions. No typical twisting of the granules was seen, although the extent of swelling appeared to be similar to the reference starch. The granules with added LPL were partly fragmented after hydrolysis.  相似文献   

20.
Barley grain was divided into eight fractions from the surface layer to the center with a machine used to polish brewers' rice. Small‐, medium‐, and large‐granule starches were isolated from classified barley flour, and their physicochemical properties were investigated. The starch granules were oval to round with a median size of 2 μm for small, 10 μm for medium, and 12–19 μm for large granules. From the surface layer to the center, both the median sizes and the ratio of large granules decreased, and the ratio of medium‐ and small‐granules increased. The starches had A‐type X‐ray diffraction patterns typical of cereal starches. The moisture sorption showed a negative correlation to the granule size. The gelatinization temperatures of starch granules in each layer were approximately the same, but the enthalpies decreased in the order of large, medium, and small granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号