首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
崩岗土体的渗透性能机理研究   总被引:8,自引:2,他引:6  
采用改进的马利奥特(Mariotte)双环渗透仪,结合土壤常规理化分析,采用DPS 5.02等数理统计方法,探讨崩岗土体不同层次的入渗特性机理.结果表明:(1)红土层、砂土层和碎屑层累积入渗量与入渗时间呈v=at-n幂函数关系,符合考斯加柯夫(Kostiakov)模型.(2)从初渗率、稳渗率、平均入渗率、入渗量角度分析可知,各土层的入渗性能为红土层>砂土层>碎屑层.(3)对影响入渗的因子进行分析可知,土壤的有机质含量、土壤团聚状况及土壤结构与崩岗各土层的渗透性能关系密切.  相似文献   

2.
鄂东南崩岗剖面土壤水分特征曲线及模拟   总被引:3,自引:1,他引:2  
崩岗是我国南方花岗岩地区破坏性极强的水土流失类型。以鄂东南地区两个典型的崩岗剖面为对象,探讨崩岗剖面包括表土层、红土层、斑纹层和碎屑层的土壤水分特征及方程拟合过程,明确崩岗发生的水分运动机理。结果表明:崩岗土壤释水量伴随吸力呈规律性变化,其中斑纹层和砂土层低吸力时脱水能力大于表土层和红土层,高吸力时各个层次土壤水分特征曲线趋于平缓。利用当量孔隙的计算发现不同土层的孔隙变化也存在变化规律,均体现为由表土层至碎屑层土壤大孔隙比例增加而毛管孔隙减少。选取van Genuchten方程和Gardner方程对崩岗剖面土壤实测数据进行了曲线拟合,同时进行了两个方程的拟合评价,R2基本在0.9以上,同时残差平方和的数量级在10-3和10-5之间。研究表明,van Genuchten方程参数能够较好地拟合崩岗表土层和红土层土壤水分特征曲线的实测数据,误差相对较小,而Gardner方程适用于斑纹层和碎屑层土壤。  相似文献   

3.
花岗岩崩岗区不同土层的侵蚀水动力学特征   总被引:9,自引:1,他引:8  
土壤剥蚀率是单位时间单位面积水流剥蚀土壤的质量,定量研究崩岗不同土层土壤剥蚀率对预测土壤剥蚀过程及建立崩岗侵蚀物理模型具有重要的理论和实践意义。针对湖北通城花岗岩崩岗区发育的表土层、红土层、砂土层、碎屑层,采用不同坡度(8.8%、17.6%、26.8%、36.4%、46.6%)和不同流量(0.2 Ls~(-1)、0.4 Ls~(-1)、0.6 Ls~(-1)、0.8 Ls~(-1)、1.0 Ls~(-1))相结合的室内放水冲刷试验,分析表土层、红土层、砂土层、碎屑层土体土壤剥蚀率与水动力学参数之间的关系,初步探讨花岗岩崩岗侵蚀的水动力学机制。结果表明:在一定坡度条件下,土壤剥蚀率随径流流量的增大而增大,且各土层土壤剥蚀率存在很大差异,碎屑层土壤剥蚀率最大,砂土层次之,表土层最小;在相同流量条件下,各土层土壤剥蚀率均随冲刷时间的延长逐渐降低并趋于稳定;径流剪切力、水流功率对崩岗各土层土壤剥蚀率的影响均可采用线性方程很好地描述(R~20.926),相比用单位水流功率拟合的多项式方程的相关性(R0.830)要高,径流剪切力和水流功率均可作为描述崩岗各土层土壤侵蚀的水动力学参数。表土层、红土层、砂土层、碎屑层的临界径流剪切力依次减小,分别为0.28Pa、0.13Pa、0.10Pa、0.07Pa,各土层土壤细沟可蚀性参数差异明显,碎屑层的最大,砂土层次之,表土层最小。因此,在崩岗垂直结构上,随着土层深度的增加,土体抵抗径流剥蚀的能力逐渐减弱。  相似文献   

4.
花岗岩红壤丘陵区崩岗土体界限含水量的温度效应研究   总被引:2,自引:1,他引:1  
水分和温度会显著影响花岗岩红壤的力学状态,是崩岗发生和发展的两大驱动因素.以崩壁三个土层土壤:红土层、砂土层和碎屑层为研究对象,在15、25、40和60℃温度条件下对三个土层土壤的液塑限和结合水含量开展研究.结果表明:红土层的液限、塑限和塑性指数均高于砂土层和碎屑层,碎屑层土壤的液塑限最小.崩岗土壤的液塑限与细黏粒、有...  相似文献   

5.
【目的】探究水土化学作用对花岗岩崩岗区崩壁土体抗剪特性的影响,为阐明花岗岩崩岗侵蚀的成因机理提供理论依据。【方法】以福建省长汀县典型崩岗区崩壁土体(红土层、砂土层和碎屑层)为研究对象,分析了经不同离子浓度(0.005、0.01和0.1 mol L-1)和离子类型(Na+和K+)的盐溶液交换处理后崩岗3个土层的土体抗剪特性(偏应力、黏聚力和内摩擦角)。【结果】红土层的偏应力、黏聚力和内摩擦角均显著高于砂土层和碎屑层。随着溶液浓度的增加,K+体系下崩岗3个土层的黏聚力显著增加,其中红土层增幅最大,增加了17.39%,Na+体系则表现出相反趋势;2种离子体系下土体的内摩擦角总体差异不显著。K+体系下崩岗3个土层的偏应力和黏聚力均显著大于Na+体系,其中,K+处理的红土层、砂土层和碎屑层的黏聚力比Na+处理的分别高9.99%、3.37%和9.65%,但2种离子对内摩擦角的影响总体并不显著。水土化学作...  相似文献   

6.
华南活动型崩岗崩壁土体的崩解特性及其影响因素   总被引:4,自引:0,他引:4  
崩岗的侵蚀过程主要是通过崩壁的坍塌作用来完成,崩壁土体的坍塌必然有水的参与,土体遇水将发生崩解现象,因此,研究崩壁土体坍塌需先研究其崩解特性。通过分层采集崩壁土体4个层次的土样,进行不同层次崩壁土体的理化性质和崩解特性测试分析。结果表明:(1)崩壁土体的4个层次(红土层、砂土层、碎屑层、碎石角砾残积层)的理化性质与风化壳的风化程度有密切联系,随风化程度的高低而有规律的变化。(2)在崩壁土体垂直剖面上,碎石角砾残积层的崩解速度最快,红土层最慢,崩解速度快慢表现为红土层砂土层碎屑层碎石角砾残积层;初始含水量对红土层、砂土层的崩解速度影响较大,对碎屑层、碎石角砾残积层的影响较少。(3)影响崩壁土体崩解特性的理化因子众多。其中对崩解速度有显著正相关影响的理化因子按相关系数大小排序为砂粒含量、MgO、自然含水量、K_2O、CaO、交换性钠、pH、Na_2O、孔隙度、阳离子交换量;有显著负相关影响的理化因子按相关系数大小排序为粘粒、Fe_2O_3、Al_2O_3、TiO_2、SiO_2、粉粒、有机质、游离氧化铁、游离氧化铝;只有交换性钙、饱和含水量、土粒比重、土粒干密度这4个因子与崩解速度的相关性不显著。崩壁不同层次土体的理化性质的分异性是崩解产生显著差异的基础,而崩壁土体崩解速度的层次分异性是崩壁坍塌的重要因素之一。  相似文献   

7.
南方花岗岩区典型崩岗侵蚀产沙来源分析   总被引:8,自引:2,他引:6  
研究分析了典型崩岗泥沙源地的31种土壤理化性质,利用Kruska-Wall无参检验结合多元回归分析筛选指纹因子体系,通过多元混合模型得出侵蚀泥沙来源。结果表明:该典型崩岗筛选出的8种指纹因子累积正确判别率达到96.87%,可以组成指纹因子体系。多元混合模型结果表明崩积堆泥沙样品超过60%来源于红土层,但在冲积扇中的沉积泥沙仅有10%左右来源于红土层,其余90%的泥沙都来源于砂土层和碎屑层。这表明红土层有较强抗侵蚀能力,崩塌后会残留在崩积堆上。但由于红土层细颗粒含量较多,在二次侵蚀作用下红土层泥沙大都被径流带出崩岗。组合指纹法在崩岗中的成功应用,为高效、定量研究崩岗侵蚀泥沙来源提供可能。  相似文献   

8.
崩岗侵蚀区崩壁土体湿化机理及影响因素分析   总被引:5,自引:1,他引:4  
以广东五华县莲塘岗崩岗崩壁土体为研究对象,结合土体物理特性,采用野外湿化试验测定土体浸水后的完全崩解时间,初步阐明其湿化机理,并分析其影响因素。结果表明:(1)崩壁不同层位土体的成份、结构、粒度等存在差异,使其物理性质受水力作用影响显著,抗冲抗蚀能力从强到弱分别为表土层、红土层、砂土层。(2)崩壁不同层位土体浸水后,水呈非均衡态进入土体孔隙,粒间斥力超过吸力,产生应力集中现象,使土体结构受到破坏,导致崩解现象发生;砂土层崩解速度明显高于表土层和红土层,遇水软化性极强。(3)土体结构的粒度成分及孔隙性影响崩壁土体的崩解性。相比红土层和表土层,砂土层粗颗粒含量较高,湿化崩解时间较短。孔隙发育程度较低的红土层,其湿化崩解所需时间比砂土层长;从红土层到砂土层,随着初始含水率增大,崩解速度不断加快,意味着红土层受到水力侵蚀后,下部砂土层受到的侵蚀将更加严重。一旦水分下渗至砂土层,将导致崩岗侵蚀进一步快速发展。  相似文献   

9.
崩壁土壤水分变化是导致崩岗发生和发展的主要因素之一。降雨可以导致崩岗崩壁失稳发生崩塌,降雨过程中土体在不同含水率下的胀缩特性是决定崩壁失稳的关键因素之一。本研究以安溪县典型崩岗崩壁土体为对象,通过室内无荷膨胀率和线性收缩率试验,研究不同梯度含水率对崩壁不同土层胀缩特性的影响。结果表明:不同土层的无荷膨胀率均随初始含水率增大而减小,线性收缩率则相反。初始含水率与崩壁不同层次土壤无荷膨胀率之间存在着明显的指数递减关系,各土层拟合所得到的回归方程均可表达为:δ_e=ae~((–ω/b))+c,R~20.96;初始含水率与崩壁不同层次土壤线性收缩率之间则存在着明显的指数递增关系,各土层拟合所得到的回归方程均可表达为:δ_(sl)=ae~((ω/b))+c,R~20.96。对于同一土层,膨胀的变化幅度大于收缩的变化幅度。比较不同土层的膨胀和收缩变化幅度发现,红土层变化幅度最大,分别较砂土层高2.58%和3.33%,较碎屑层高3.61%和4.67%。这种不可逆的干湿胀缩现象可能是造成土体产生裂隙进而引起崩壁坍塌的原因,这对于认识崩壁失稳崩塌原因和崩岗发生机理具有重要意义。  相似文献   

10.
崩岗不同土层土壤水力学特性差异性分析   总被引:1,自引:0,他引:1  
为研究崩岗不同土层土壤水力学特性的差异性,采用离心法测定不同土层土壤水分特征曲线,筛选出适合的土壤水分特征曲线拟合模型,结合统计模型,推求土壤的当量孔径分布、比水容量、非饱和导水率和扩散率,分析崩岗不同土层土壤水力学参数的变化规律。结果表明,崩岗土层从红土层到砂土层的变化过程中,土壤质地由黏土向砂土变化;Fredlund&Xing模型对崩岗土壤土水特征曲线拟合效果最好;参数θs、α、n随着质地变黏重逐渐减小;随着土层深度的增加,土壤的持水性能降低;土壤比水容量、非饱和导水率和扩散率受土壤质地和基质吸力的共同影响。在低吸力阶段,3个指标随基质吸力变化比较平缓,砂土层土壤比水容量和非饱和导水率最大,扩散率最小;而在高吸力阶段,砂土层土壤的这些指标降低较快,且低于其他土层,各层土壤间导水率和扩散率差异随着基质吸力的增加而增大。  相似文献   

11.
干湿循环下崩岗土体裂隙发育对其渗透性能的影响   总被引:5,自引:2,他引:3  
渗透是崩壁降雨重分布的关键且直接影响其重力侵蚀过程。试验设计6次干湿循环,通过进行崩壁4层土壤的饱和渗透试验并结合数字图像处理技术,研究了干湿循环效应下崩壁4层土的裂隙演化规律及其对各层土饱和渗透性能的影响。结果表明:(1)随干湿循环次数的增加,表土层和红土层裂隙发育明显,裂隙率逐渐增加后趋于稳定,过渡层和砂土层几乎没有产生裂隙;表土层在第3次循环后裂隙几乎发育完全,裂隙率达到3.50%,形态纤细且破碎,而红土层在第1次循环后裂隙骨架基本定型,随着干湿循环的进行,裂隙宽度不断增大至一定程度时不再发生变化;(2)4层土壤渗透系数大小为砂土层>过渡层>红土层>表土层,表土层和红土层渗透系数随干湿循环的进行逐渐增加后趋于稳定,过渡层一直比较稳定,砂土层逐渐减小后趋于稳定;(3)土壤裂隙率与渗透系数之间存在二次函数关系,裂隙发育对土壤渗透性能的影响先增大后减小。研究结果可为降雨入渗-重分布下崩壁失稳机理研究提供科学依据。  相似文献   

12.
黄土丘陵区退耕地土壤水分入渗特征及影响因素   总被引:3,自引:0,他引:3       下载免费PDF全文
为评价退耕还林(草)工程的成效及认识下垫面改变对土壤水文过程的影响,采用圆盘入渗仪以4.6、8年退耕地为对象,长芒草草地为对照在黄土丘陵区分层(表层、20cm、40cm)研究退耕地土壤水分入渗特征,并探讨其影响因素。结果表明:1)较短年限退耕地表层土壤入渗能力较天然草地差,而下层入渗能力较天然草地强;2)退耕地下层的初始入渗速率是表层的1.2—1.4倍,稳定入渗率是表层的1.9—2.8倍,饱和导水率是表层的1.9—3.0倍;3)随着退耕年限增加,表层土壤入渗能力下降,而下层入渗能力增强;4)土壤结皮阻碍退耕地表层土壤的入渗。  相似文献   

13.
喀斯特浅层裂隙土壤垂向渗透性及影响因素   总被引:2,自引:1,他引:1  
为探究喀斯特浅层裂隙所赋存土壤各土层渗透性特征及影响因素,测定了喀斯特典型的浅层裂隙中赋存土壤0—10,10—20,20—30,30—50,50—70,70—100 cm土层的饱和导水率、机械组成、容重、非毛管孔隙度、毛管孔隙度、总孔隙度和有机碳含量等土壤属性。结果表明:(1)喀斯特浅层裂隙中各土壤属性均随着土层深度变化呈现出递增或递减的趋势,其中容重、黏粒含量、毛管孔隙度均随着土层深度而增长,饱和导水率、有机碳、非毛管孔隙度等土壤属性随土层深度的变化规律相反,呈递减趋势。(2)喀斯特浅层裂隙中土壤饱和导水率变异系数高于非喀斯特地区,且随土层深度变化呈波动增长趋势;其随土层深度变深而减小的趋势可用对数函数进行模拟(R^2=0.9462)。(3)通过Pearson相关性分析,裂隙中所赋存土壤的饱和导水率除了与机械组成中黏粒含量、粉粒含量为显著性相关(P<0.05),与砂粒含量相关性不显著以外(P>0.05),与其余各土壤属性均呈极显著性相关(P<0.01),且非毛管孔隙度相关性最高(P=0.898)。浅层裂隙土壤非毛管孔隙是影响其渗透性的主要因子,而裂隙中深层土壤拥有较多善于贮存植物所需水分的毛管孔隙。因此,对于土地资源匮乏的喀斯特地区,充分合理利用裂隙中深层土壤的水分成为今后研究的重点。研究结果可为喀斯特地区水分运移、石漠化治理及植被恢复提供科学依据。  相似文献   

14.
对渭北黄土高原刺槐林—草地景观界面土壤水分影响域及其时空动态变化规律进行了研究。采用移动窗口法分析得出刺槐林—草地景观界面土壤水分影响域为林内4 m到林外12 m之间,宽度16 m,为渐变型界面,由此可将刺槐林—草地景观划分为3个区域:草地区、界面区和刺槐林区。经典统计分析表明,历经3个区域,不同层次的土壤水分在水平方向上随着水平距离梯度的变化表现出不同的上升或下降的趋势,在界面区域土壤含水量变化最为显著。基于标准差和变异系数两个指标,可将草地和林地区域土壤剖面水分垂直变化划分为4层,界面区域划分为3层。3个区域土壤含水量的季节变化表现为基本一致的“高-低-高”规律,可以划分为3个时期,4~5月中旬为土壤水分贮存期,6~7月中旬为土壤水分消耗期,8~10月中旬土壤水分恢复期。水分在时间和空间上的这种变化主要受植被类型、根系分布、降水资源再分配的影响。  相似文献   

15.
保水剂对风沙土水分垂直入渗和含水量的影响   总被引:1,自引:0,他引:1  
使用保水剂是有效利用和改良风沙土的重要途径。通过研究垂直入渗率、累积入渗量、渗吸持续时间、渗透系数4项入渗特征量以说明在5-7cm深度处层施保水剂对于风沙土水分垂直入渗的影响,测定入渗结束后土壤各层含水量以研究受试体系的水分垂直分布。结果表明,试验处理可使垂直入渗率在各时间点有不同程度减小,有3种保水剂处理累积入渗量均增加了42%左右(1%处理),渗吸持续时间增长了134%~390%,渗透系数减小了65%~85%,且4种变化趋势均随保水剂用量的增加而加剧。入渗结束后土壤水分垂直分布也发生明显变化:保水剂-土壤混合层含水量上升52%~178%,上层土壤含水量明显增加但下层土壤略微降低。研究表明,保水剂对风沙土水分垂直入渗和含水量影响十分明显。  相似文献   

16.
土壤水分是黄土高原水蚀风蚀交错带生态环境恢复的关键因子,具有明显的时空异质性。以水蚀风蚀交错带的代表性流域—老爷满渠小流域为对象,采用网格法(50 m×50 m)共布设了73个样点,原位观测0—5 m土壤含水率,共测定23次(2013年6月至2019年10月),通过获取每个样点的环境因子,结合经典统计、地统计、随机森林等方法,分析了小流域尺度不同土层深度(每层1 m,共5层)土壤含水率的季节变化特征与影响因素。结果表明:不同土层土壤含水率的空间分布特征和季节性变化规律不同;对于0—1 m土层,土壤含水率在夏季和冬季之间存在显著性差异(p0.05),而对于1 m以下土层,春季平均土壤含水率高于其他季节,但不显著;无论在何种季节,不同土地利用方式、壤土与砂土间的土壤含水率在3 m以上土层均存在显著差异(p0.05),而阴、阳坡的土壤含水率在所有土层均存在显著差异(p0.05);在不同季节,土壤含水率与容重和砂粒呈负相关,与其他环境因子(有机碳含量、黏粒、粉粒、有机碳密度、土地利用、坡向、土壤质地和pH)呈正相关;除有机碳密度和黏粒较为稳定外,土壤含水率与环境因子的相关性均随土层深度增加呈减少趋势;环境因子对土壤含水率空间变异的整体相对贡献表现为土壤性质地形土地利用。研究结果可为研究区深层土壤水资源管理、土壤水文观测与模拟、植被优化布局等提供参考。  相似文献   

17.
西南山区采煤塌陷对水田土壤物理性质的影响   总被引:4,自引:1,他引:3  
为探讨西南山区采煤塌陷对水田土壤物理性质的影响及受损水田复垦途径,通过野外试验与室内测定方法分析了水田受损前后土壤物理性质的变化,结果表明:1)0~40 cm受损水田土壤容重显著增加,含水率、孔隙度(0~20 cm旱地1、2除外)显著下降;0~60 cm土壤垂直剖面除含水量干化趋同外,构型及演替规律未发生变化;2)水田受损后黏粒含量与成土母质密切相关:0~20 cm土层中0.005 mm黏粒含量高低呈现旱地3(泥页岩风化物)旱地1(泥页岩+灰岩风化物)旱地2(泥页岩+灰岩+砂岩风化物)变化,水耕历史较长、受损漏失严重的水田土壤黏粒(0.005 mm)质量分数均值分布自上而下累积增加;3)试验点土壤剖面构型、成土母质是造成渗透流量和渗透速度随累计时间增加呈减小趋势和波动与趋稳现象的主要原因,采煤塌陷并未对土壤包气带层渗水性产生严重影响;4)根据试验数据分析结果,研究区受损水田复垦可优先选择泥页岩、灰岩风化物沉积区、水耕历史较长、渗透系数小于3 m/d的沟谷区进行。该研究可为研究区采煤塌陷对水田土壤物理性质的影响提供系统诊断依据,并为受损水田复垦提供有效途径。  相似文献   

18.
根系对土壤机械压力影响的模拟试验   总被引:1,自引:0,他引:1  
为了研究根系对土壤机械压力的大小、分布和影响因素以及各个因素与其相互关系,该研究采用自制的压力测量装置,测定并分析了不同模拟根系对不同体积质量土壤产生的机械压力及其影响因素。试验结果表明:模拟根系对土壤机械压力与根系直径呈极显著(p<0.01)幂函数关系,随着直径增加,根系对土壤的机械压力增加;随着土壤体积质量增加和土层深度增加,根系对土壤机械压力增加;当植株受到风力作用时,随着风力变大,根系对土壤机械压力呈递增变化。模拟研究表明,根系生长可以对土壤产生机械压力,地表风力等扰动力量也可以传递到根系并引起这种机械压力的变化,这种压力可能会对土壤结构和物理行为产生影响,需要进一步深入研究。尽管该文是通过模拟根系进行模拟生长试验,仍然对研究根系生物力学有指导意义。  相似文献   

19.
添加砾石对崩岗岩土无侧限抗压强度的影响   总被引:1,自引:0,他引:1  
崩岗是中国南方红壤地区常见的一种土壤侵蚀类型,该研究借鉴砾石影响降雨入渗、产流产沙和力学性质的研究成果,对砾石质量分数、形状和直径三因素进行正交设计,研究不同组合砾石对崩岗岩土无侧限抗压强度的影响。崩岗4层土体较好的处理分别为:淋溶层A:A3B1C1,质量分数15%,直径2~4 mm,圆砾;黏化层Bt:A3B2C1,质量分数15%,直径5~7 mm,圆砾;淀积层B:A3B2C1,质量分数15%,直径5~7 mm,圆砾;母质层C:A3B2C1,质量分数15%,直径5~7 mm,圆砾。4层土体的轴向应力随轴向应变均呈急剧上升、急剧下降、减速衰减和衰减稳定4个阶段,但砾石复合土高于未加砾石土。4层土体在较好处理下的无侧限抗压强度分别比未加砾石土提高59.56%、71.70%、49.51%和83.64%,且二者呈线性递增函数关系(R2=0.99),添加砾石的土柱在受压时破坏程度较小。本研究将为崩岗侵蚀预防和分层治理提供一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号