首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
双差速驱动移动机器人路径跟踪混合控制律研究   总被引:1,自引:0,他引:1  
针对双差速驱动移动机器人的路径跟踪问题,建立了双输入-双输出的非线性运动学模型并进行了输入-输出线性化,分析了冗余运动约束的速度协同条件,提出了一种融合偏差智能转化评价函数法和指数稳定控制的混合控制律。评价函数法可针对不同的偏差状态智能选择合适的控制量以将其转化到指数稳定控制的适用范围,再通过指数稳定控制实现姿态角偏差和距离偏差向零的同步收敛。数字仿真和实验测试结果表明,该混合控制律可平滑转化偏差状态、同步消除位姿偏差,使移动机器人精确、稳定地跟踪直线和圆弧导引路径。  相似文献   

2.
为提高温室内智能农机自动导航的路径跟踪精度,提出一种基于粒子群算法的纯追踪模型动态前视距离确定方法及其路径跟踪控制方法。利用超宽带(UWB)模块和电子陀螺获取温室内智能农机的位置偏差和航向偏差;为提高纯追踪模型的自适应能力,对农机位姿偏差进行定量分析并根据位姿偏差程度构建适应度函数,通过粒子群优化(PSO)算法实时确定纯追踪模型中的最优前视距离,为提升算法求解效率对惯性权重系数进行改进;根据农机位姿偏差程度构建速度控制函数对农机进行变速控制。样机试验结果表明:在3种初始状态下的直线路径跟踪时,平均偏差均值为24.4 cm,稳态偏差平均值为4.3 cm,导航时间平均值为13.2 s,稳定距离平均值为318.1 cm。路径跟踪的各项指标均优于同等条件下的恒速固定视距试验。  相似文献   

3.
现有的自动泊车系统研究,由于忽略实际车辆转向约束和初始位姿条件而影响实际车辆跟踪参考路径效果,本文提出基于B样条曲线的路径规划算法和基于趋近律的非时间参考终端滑模路径跟踪控制算法。首先,对车辆的运动过程进行研究,建立车辆的运动学模型。其次,基于B样条曲线理论建立非线性约束平行泊车路径优化函数,并分析车辆运动学约束条件。然后,结合非时间参考路径跟踪控制和终端滑模控制方法,提出基于趋近律的非时间参考终端滑模路径跟踪控制方法。最后,通过Simulink和Car Sim联合仿真,验证了规划路径的合理性以及路径跟踪控制器的效果。  相似文献   

4.
基于非线性模型的农用车路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用车辆路径跟踪性能,提出一种基于非线性模型预测的路径跟踪控制方法。该方法将路径跟踪问题转换为求解满足速度、转角约束的最优值问题。首先将农用车的非线性运动学模型进行离散化推出递推模型,作为控制器的预测方程;然后建立以农用车运动学模型控制量为状态量的目标函数,设计各个变量的约束条件,把预测方程代入目标函数将其转化为基于递推序列的二次规划法响应问题,在此基础上进行梯度计算解决非线性的约束优化;最后,利用实时反馈与滚动优化实现控制器的闭环校正;重复以上过程,完成预测控制。Matlab仿真结果表明:非线性模型预测控制器能够实现对所设计路径的有效跟踪。相对应的场地试验结果表明:试验小车以2 m/s的速度跟踪参考路径时,最大横向偏差为-4.28 cm;3 m/s跟踪参考路径时,最大纵向偏差为-6.61 cm,可以满足农用车辆对于路径跟踪的精度要求。与线性模型预测控制器的对比试验表明:以3 m/s的速度跟踪圆形路径时,设计的控制器跟踪横向偏差降低了36.8%,纵向偏差降低了32.98%。  相似文献   

5.
针对国内自动驾驶插秧机路径跟踪精度不高的现象,提出一种基于线性时变模型预测控制的路径跟踪方法。将建立的非线性插秧机运动学模型进行线性化和离散化处理,并基于此模型进行模型预测路径跟踪控制;建立以控制增量为状态量的目标函数;考虑系统控制量和控制增量的约束条件,将目标函数求解转为带约束的二次规划问题;采用内点法进行求解,将所得控制序列第一个元素作用于系统,并且不断重复以上过程实现最优控制。在MATLAB/Simulink环境下,搭建上述模型预测控制器系统仿真,并与路径跟踪效果良好的Stanley控制算法对比,结果表明,上述模型预测控制器优于Stanley控制算法。采用卫星信号接收机、电动方向盘和转角传感器,改造井关PZ60型插秧机,搭建插秧机自动驾驶试验平台,进行田间试验,试验结果表明,基于线性时变模型预测控制器能够使自动驾驶插秧机车速1 m/s时,有效进行路径跟踪,直线段跟踪误差最大2.02 cm,满足插秧机自动驾驶路径跟踪精度要求。  相似文献   

6.
农用轮式移动机器人视觉导航系统   总被引:12,自引:10,他引:12  
从整体组成、农田环境中跟踪路径识别、机器人相对于跟踪路径位姿计算、系统实时性和鲁棒性改善、横向控制等几个方面对农用轮式移动机器人视觉导航系统进行了比较全面的研究。基于通用小型四轮拖拉机研制了农用轮式机器人实验原型样机,用人工绿篱模拟农作物行开展了初步实验,结果显示,原型样机在纵向速度为0.27m/s和0.94m/s时都能较好地跟踪绿篱边缘。  相似文献   

7.
以农业车辆或者采矿装备等移动目标为对象,以实现移动目标在未知环境中自主运动为目的,进行了基于三轴加速度和陀螺仪的移动目标位姿同步跟踪研究。首先建立移动目标运动学模型,探寻姿态角与位置解算的耦合规律,利用加速度和角加速度进行位姿导航参数计算,并在搭建的定位原型系统上对所提定位定姿算法进行验证。实验结果表明,静态测试时横滚角φ、俯仰角β及偏航角θ的误差分别为0.33°、0.26°和0.38°,动态测试时姿态角跟踪误差分别为1.01°、0.64°和0.83°;静态测试时三维加速度下的平均位置误差分别为0.76、0.52和0.56 m,利用零速校正消除了运行时的累计误差,能够对移动目标运动轨迹进行有效跟踪。  相似文献   

8.
顾万里  胡云峰  宫洵  蔡硕  陈虹 《农业机械学报》2017,48(10):25-31,75
针对轮式移动机器人给定速度需求的非连续路径跟踪控制问题,将其转换为满足速度约束的轨迹规划和轨迹跟踪控制。首先,针对给定速度需求的路径跟踪问题,以运行时间和能量为优化目标,给定的路径和速度为约束条件,采用五次Bezier样条方法优化得到了满足需求的连续光滑轨迹。其次,利用轮式移动人系统的微分平坦特性,采用微分平坦方法设计前馈控制器;然后,将轮式移动机器人运动学模型在前馈控制的平衡点处进行一阶泰勒展开,得到了线性时变的误差模型,并通过定义新的状态变量,设计了具有Lyapunov稳定性的误差反馈控制器。结合前馈控制和反馈控制得到了二自由度轨迹跟踪控制器。同时将泰勒展开的高阶项考虑为有界的扰动输入,在输入到状态稳定性框架下证明了控制系统的鲁棒稳定性;最后,通过Pioneer 3-dx轮式移动机器人进行了实验验证,实验结果表明,提出的算法能够满足给定速度需求的非连续路径的跟踪控制需求。  相似文献   

9.
智能车辆换道与超车轨迹跟踪控制   总被引:3,自引:0,他引:3  
智能车辆换道过程中须同时考虑车辆的横向控制和纵向控制,为实现智能车辆对预定轨迹的稳定跟踪,根据智能车辆的车辆运动学简化模型,建立基于刚体的车辆模型.选取车辆当前位姿和参考位姿构造动态的位姿误差.建立智能车辆轨迹跟踪闭环控制系统的状态空间数学模型.基于Backstepping控制算法选取Lyapunov函数设计智能车辆换道及超车轨迹跟踪控制器.仿真和试验结果表明,所设计的控制器能够快速跟踪参考轨迹.控制器在智能车辆换道及超车控制过程中平稳、可靠.  相似文献   

10.
为降低履带式联合收获机导航路径跟踪转向控制频率和提高控制系统的稳定性,提出了一种预瞄-切线局部跟踪路径动态规划算法。规划的局部跟踪路径由平滑连接的两段弧线组成,第1段圆弧由收获机当前位姿与1/2横向偏差线上的预瞄点确定,第2段圆弧由收获机在1/2横向偏差线的实际位姿与期望路径的几何关系确定;基于收获机实际转向运动特性建立了相适应的转向控制模型,左转、右转控制模型拟合的决定系数R2分别为0.978、0.980。田间直线导航跟踪对比试验表明:当前进速度为0.4、0.8m/s时,横向偏差的标准差分别为0.0489、0.0507m,航向偏差的标准差分别为3.94°、4.66°,转向控制次数分别为19、12次;与传统纯追踪算法相比,横向偏差的标准差分别减小19.04%、31.30%,航向偏差的标准差分别减小25.94%、9.16%,转向控制次数分别减少47.22%、42.86%。本研究可为履带式农机车辆导航控制器设计提供参考。  相似文献   

11.
为满足轮式收获机地头收获路径跟踪精度要求,本研究提出了一种基于粒子群改进的带有预测特性的纯追踪路径跟踪算法。建立了轮式收获机运动学模型,推导了基于轮式收获机运动学模型的纯追踪路径跟踪算法。以收获机航向误差和横向误差为基础,构建了带有预测特性的隶属度函数,采用权重系数自适应方法,通过粒子群优化(PSO)算法,实现了实时动态确定最优前视距离。以玉米收获机为试验平台,开展了直线路径跟踪路面试验与“8”字曲线路径跟踪路面实验,试验结果表明:在1.5m/s速度时,直线路径跟踪的最大横向误差为4.39cm,最大航向误差为2.31°。在1m/s时,曲线路径跟踪的最大横向误差为5.24cm,最大航向误差为2.41°。试验结果表明本文设计改进的路径跟踪算法对直线路径及曲线路径都具有良好的路径跟踪效果,满足轮式收获机田间作业要求。  相似文献   

12.
针对高地隙喷雾机在自主导航作业中因侧滑影响而导致轨迹跟踪精度降低的问题,提出一种基于四轮独立驱动(4WID)高地隙无人喷雾机的自适应控制方法。首先,建立4WID高地隙喷雾机的运动学模型;然后基于运动学几何约束和速度约束,引入两个表征侧滑效应的参数构建改进位姿误差模型;最后将参数自适应与反步控制方法结合,设计自适应控制律实时估计并补偿侧滑效应。以典型的U形作业路径为例,在考虑和不考虑侧滑的情况下分别进行了仿真和试验验证。仿真结果表明:本文提出的控制算法在喷雾机出现侧滑的情况下可以保证较高的轨迹跟踪精度;水田试验表明,当喷雾机在常规作业速度3.6km/h时,与不考虑侧滑的轨迹跟踪控制算法相比,喷雾机轨迹跟踪的横向平均绝对误差减小至0.041m,标准差减小至0.059m;纵向平均绝对误差减小至0.018m,标准差减小至0.015m;航向平均绝对误差减小至2.56°,标准差减小至3.57°。  相似文献   

13.
为实现农业机械全田块高效自主作业,提出一种增益系数自适应的Stanley模型路径跟踪算法。以横向偏差和航向偏差为输入变量构建隶属度函数,设计模糊推理和解模糊化过程实时确定控制模型增益系数,提高Stanley模型对不同曲率路径的自适应能力。为验证所提算法有效性,以移动小车为平台开展联合收获机回字形全田块自主作业路径跟踪试验,结果表明所提算法显著改善Stanley模型路径跟踪精度,直线作业速度2.5m/s、转弯速度1m/s时,直线段和曲线段最大跟踪误差均小于3cm。大初始横向偏差路径跟踪试验表明,模糊Stanley模型较Stanley模型大幅度减小路径跟踪上线距离,满足农业机械全田块高效自动导航作业要求。  相似文献   

14.
基于模糊自适应纯追踪模型的农业机械路径跟踪方法   总被引:20,自引:0,他引:20  
为了提高农业机械自动导航控制系统的精度,提出了一种基于模糊自适应纯追踪模型的农业机械路径跟踪方法.该方法基于纯追踪模型进行农业机械路径跟踪控制,结合农业机械运动学模型来确定车轮期望转向角;采用模糊自适应控制在线自适应地确定纯追踪模型中的前视距离,提高了路径跟踪的精度.农业机械的路径跟踪实验结果表明,路径跟踪的最大误差不超过10 cm,平均误差小于5 cm,完全满足农业机械的作业要求,验证了提出方法的可行性和有效性.  相似文献   

15.
扰动下农用运输车辆路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用运输车辆路径跟踪的鲁棒稳定性,基于线性模型预测控制结合农用运输车辆特点设计了路径跟踪控制器。该方法首先将农用运输车辆的运动学模型进行离散化求解,推出误差模型作为控制器预测方程,为使农用运输车能够克服在田间行驶时的各种干扰,通过构建李雅普诺夫函数重点分析了该模型的鲁棒稳定性,得到控制周期约束条件,然后建立目标函数并引入松弛因子,最后把预测模型代入目标函数进行优化求解,重复以上过程,实现优化控制。Matlab仿真表明:当前轮转角扰动不大于15°及横向扰动不大于1.5m时,控制器可以迅速起到调节作用,使车辆快速回到参考轨迹上行驶。对应的场地试验结果表明:试验小车以2m/s的速度跟踪参考路径时,直线路段跟踪效果良好,最大横向偏差为10.57cm,均值为8.49cm;添加扰动路段的跟踪偏差较大,最大横向偏差为23.89cm,最大纵向偏差为62.53cm,但在控制器的控制作用下可以实现对路径的有效跟踪。由此可见,该控制器在速度小于等于2m/s的情况下,可以满足农用运输车辆对路径跟踪的精度与鲁棒稳定性要求。  相似文献   

16.
与驱动单元和车体刚性连接的传统结构及拖车结构不同,潜入牵引式自动导引车的驱动单元置于车体底部与车体柔性连接。针对车体的运动轨迹问题,建立了车体与所跟踪路径的位姿关系模型,根据车体的几何尺寸及所跟踪圆弧路径的圆心角和半径,推导出车体在世界坐标系中的位姿状态及保证纯滚动运动的最小转弯半径。针对车体负载运行的行驶性能问题,建立车体的动力学模型,求出忽略侧向力影响的条件,推导出车体的角加速度。车体位姿实验证明了所建车体运动学模型的正确性。动力特性实验表明,该种结构的自动导引车行驶稳定性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号