首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volunteer oilseed rape (OSR, Brassica napus L.) causes various agronomic problems in crop rotations and can contribute to gene dispersal by pollen and by seed admixture. A 4-year field experiment (2008–2011) was set up in south-west Germany to investigate the performance of volunteers derived from two OSR cultivars with different levels of seed dormancy. Volunteers of a high-dormancy (HD) and a low-dormancy (LD) OSR cultivar were deliberately generated by spreading 10,000 seeds m−2 on a field in August 2008 and 2009. Four different crops were grown on that area in the first year following the seed rain: winter wheat (Triticum aestivum L.), winter turnip rape (Brassica rapa L.), spring barley (Hordeum vulgare L.) and field pea (Pisum sativum L.). In the second year, maize (Zea mays L.) was sown uniformly across all plots. Numbers of OSR seedlings emerging in early autumn shortly after seed rain were not connected with the size of the soil seed bank in early spring of the following year. The seeds of the HD-cultivar formed a much greater soil seed bank (up to 14% of the initially spread seed number) compared with the LD-cultivar (up to 1.3%) in the soil layer of 0 to 30 cm in early spring 2009 and 2010). Across all crops, considerably more volunteers of the HD-cultivar than of the LD-cultivar were present at several survey dates in the first year following seed rain. The highest number of volunteers originated from the HD-cultivar with up to 11 volunteers m−2 in winter turnip rape compared with a maximum of 0.48 plants m−2 in the other crops. Cultivar-specific differences in volunteer density were observed as well in maize two years after OSR seed rain. Flowering and seed setting volunteers were only present in 2010 and the flowering time was crucially overlapping with that of sown winter OSR. The reproductive ability (seeds produced m−2) of the LD-volunteers was five times lower in winter turnip rape than of the HD-volunteer; a similar trend was observed for the OSR volunteers in the other host crops.Strategies to definitely reduce unwanted effects of OSR volunteers, such as gene flow, should include the use of LD-cultivars with a low potential to form a soil seed bank, particularly if selective herbicides are not available, for instance in broad-leaved crops, or if the volunteers are herbicide-tolerant.  相似文献   

2.
The lack of randomisation in irrigation experiments is usually a disadvantage. The introduction of spatial variable experimental design offers a convenient tool to help solving this problem. In order to understand the variation of some soil physical and chemical properties in an experimental block and its effect on lettuce (Lactuca sativa L.) production, graphical interpretation of those soil properties was done with the use of geostatistics in a geographic information system (GIS). In this work three techniques of geostatistics were used for the creation of several maps of soil properties in an experimental plot cultivated with lettuce. Lettuces were evaluated for individual weight and diameter at the end of the cropping season. The soil properties studied were: total mineral nitrogen, phosphorus, potassium, pH, electric conductivity and saturated soil hydraulic conductivity. The techniques used were: ordinary kriging, inverse distance and Thiessen polygon. Cross validation used to compare the prediction performances of the three geostatistical interpolation algorithms determined that kriging was the best technique for each soil property. Prior to the creation of the maps, semivariograms were produced for each soil property. The maps resulting from the interpolation techniques were introduced in a GIS and their values reclassified. After that, spatial modelling was used to develop a final overlay map from all the information of the analysed soil properties simulating a “lettuce production capability map”. This final map was created with the objective to determine which areas in the plot had optimal conditions for lettuce development. It was concluded that the plot did not had an optimal area for lettuce production. Localized problems with soil properties were found that could be solved with simple geographically restricted amendment treatments. Final lettuce yield had high correlation (r2 = 0.83) with the lettuce capability map derived.  相似文献   

3.
Wounding lettuce (Lactuca sativa L. Longifolia) leaf mid-rib tissue initiates physiological responses that include increased synthesis and accumulation of phenolic compounds. Chlorogenic acid is the predominant wound-induced phenolic compound that accumulates in excised lettuce leaf tissue held at 10 °C for 2 days. The growth of five bacterial isolates associated with lettuce decay (Erwinia carotovora, Erwinia chrisanthemi, Pseudomonas putida, Pseudomonas fluorescens, or Pseudomonas syringae) on TSA (tryptic soy agar) media was not markedly reduced by concentrations of chlorogenic acid identical to those found in wounded lettuce. Growth of E. carotovora and P. fluorescens was stimulated when prepared with TSA media containing homogenized non-wounded lettuce mid-rib tissue, while the increase was much less when the media was prepared with 5 mm thick mid-rib tissue segments that were held for 2 days at 10 °C after excision. Inhibiting the wound-induced increase in phenolic content with a 1-hexanol or heat-shock treatment allowed E. carotovora to grow on media prepared with excised tissue that had been held at 10 °C for 2 days at significantly higher rates than on media prepared with non-treated excised tissue. Hexanol is thought to interfere with the synthesis and/or propagation of the wound signal, so delaying its application to excised mid-rib tissue reduces its effectiveness. Delaying application of the inhibitor for 4 h, allowed increased accumulation of wound-induced phenolic compounds in 2 day old lettuce tissue that resulted in a concomitant reduction in the growth of E. carotovora on media prepared with this tissue. Neither the hexanol nor the heat-shock treatment themselves made the excised lettuce tissue a better substrate for microbial growth. It appears that treatments that suppress wound-induced increases in antimicrobial phenolic compounds reduce the ability of excised lettuce tissue to suppress the growth of bacteria associated with lettuce decay by limiting the production and accumulation of these antimicrobial compounds. A critical distinction is made between whether a treatment renders the tissue more susceptible to microbial growth, or whether a treatment prevents the wound-induced increase in disease resistance that limits microbial growth. If all treatments that reduce tissue browning by interfering with the wound-induced accumulation of phenolic compounds also inadvertently make the tissue more susceptible to microbial growth, then research should be directed to prevent the production of brown pigments from the wound-induced accumulated phenolic compounds, rather than devising treatments that reduce their accumulation.  相似文献   

4.
Rapeseed yields in Argentina are low (averaging 1400 kg/ha nationwide) with a high inter-annual variability. One of the limiting factors for improving yields is the lack of information on the adaptability of the cultivars, especially in the main rapeseed-producing area, the southeastern Pampas. The objectives of this study were to (i) quantify and analyze the yield variability of winter and spring rapeseed hybrids introduced in Argentina, (ii) identify the main environmental factors that affect the yields of the spring and winter genotypes in the southeastern Pampas, and (iii) model and validate rapeseed yields from environmental variables in the pre- and post-flowering periods. Principal component analysis (PCA) and linear regression methods were used to analyze 129 data points from 16 comparative yield trials in eight sites of southeastern Pampas. The rainfed crops were sown between April and July and from 2007 to 2009. Pre- and post-flowering phases were recorded in each experiment; temperature, frost occurrences, rainfall and radiation were measured during each phase. Yield variability (600–3700 kg ha−1) was slightly lower in spring than in winter genotypes (CV 0.25 versus 0.38). Sixty percent of the winter genotype variability was explained by the first axis which was associated to the pre- and post-flowering durations, while 25% of the variability was explained by the second axis associated to yield. Almost 50% of the spring genotype variability was explained by the first axis associated to pre-flowering and total durations, while 27% of the variability was explained by the second axis in which post-flowering duration was associated to yield. Winter genotypes evidenced vernalization requirements that were either partially or not fulfilled, so, the longer the photoperiod, the longer the pre-flowering phase duration. In the critical period of 30 d post-flowering, yield was not associated to the photothermal quotient. In winter genotypes, yield was associated to a linear model which included rainfall during the crop cycle, radiation and pre-flowering temperatures (R2 = 0.50). The model was adequately validated with independent data (n = 116) from official trials. For spring genotypes, only the frost occurrences during the critical period were relevant (R2 = 0.26) and placing the flowering time after October decreased the risk of late frost damage. Water use efficiency (WUE) values ranged from 1.6 to 6.7 kg ha−1 per mm of rain without a clear trend between spring and winter genotypes for this trait. In conclusion, winter genotypes did not necessarily yield more than the spring materials. In addition, rainfall during the crop cycle and frost occurrences during flowering were the main limiting factors of the winter and spring genotype yields, respectively, in the southeastern Pampas.  相似文献   

5.
Modified atmosphere packaging (MAP) has the potential to extend the shelf-life of fresh-cut lettuce mainly by limiting the oxidation processes. However, exposure to light conditions has been described as causing browning and quality loss. The influence of O2 partial pressures (pO2) and light exposure during storage on the shelf-life of fresh-cut Romaine lettuce was studied. Fresh-cut lettuce was exposed daily during storage to different light conditions: light (24 h), darkness (24 h) and photoperiod (12 h light + 12 h darkness). Changes in respiration rate, headspace gas composition, sensory quality, colour, electrolyte leakage, stomatal opening, water loss, texture and compositional constituents related to browning such as vitamin C and individual and total phenolic compounds were evaluated. Different weight samples (75–275 g), packaged with an initial pO2 of 0.5–2.0 kPa balanced with N2, reached pO2 from 0.1 to 1.5 at the steady-state. Atmospheres with low pO2 (0.2–0.5) at the steady-state preserved lettuce quality by the control of browning and the prevention of off-odours and off-flavours. Light exposure during storage positively influenced the number of open stomata (74% in light vs 24% in darkness) which contributed slightly to weight loss. Consumption of O2 in samples exposed to light differed significantly from those stored in photoperiod or darkness (10.6 ± 7.0, 18.3 ± 3.5 and 25.8 ± 8.6 nmol O2 kg?1 s?1, respectively). Packages exposed to light showed higher pO2 compared with packages stored in darkness while those exposed to photoperiod had intermediate values. Moreover, location of the packages in the shelves affected package headspace gas composition and thus, packages near the front of the shelves showed higher pO2 than those at the back. The different light conditions did not influence the content of vitamin C or the individual and total phenolic compounds. This study shows that under light conditions respiration activity was compensated by photosynthesis resulting in a higher pO2. Thus, browning of fresh-cut Romaine lettuce can be promoted by light exposure during storage as it increases headspace pO2.  相似文献   

6.
Quality, microbiological and enzymatic characteristics of fresh-cut lettuce (Lactuca sativa var. longifolia, ‘Duende’), grown in floating system with three electrical conductivities of nutrient solutions (2.8, 3.8 and 4.8 mS cm?1), were investigated in order to evaluate the effect of salinity on product shelf-life during cold storage (9 d at 4 °C). Pre-harvest salinity of 3.8 and 4.8 mS cm?1 improved the properties of fresh-cut lettuce, since CO2 production was reduced with a subsequent control of the decay process. Fresh-cut processing caused an activation of polyphenol oxidase and peroxidase; in all cases the product obtained by salinity treatments was less subject to oxidase activity and browning phenomena during storage. Increased salinity reduced the number of mesophilic bacteria and of moulds and yeasts, assessed by plate counts on different culture media; in contrast, Enterobacteriaceae levels were unaffected by pre-harvest treatments. The research demonstrated that an increase in nutrient solution electrical conductivity, through the use of floating system, affects fresh-cut lettuce characteristics, improving shelf-life of the product.  相似文献   

7.
The effects of radiation and temperature during the seed set period (SSP) on pod number per square metre (PN m−2) and seed number per square metre (SN m−2) and those of temperature during grain filling on unit seed weight (USW, milligram per seed) of field pea (Pisum sativum L.) were examined in experiments involving irrigated crops of three or more cultivars of contrasting maturity sown on two or more dates per year from 1996 to 1998 at Buenos Aires, Argentina. The duration of the seed-setting phase was estimated from records of the progress of flowering on the main stem and an estimate (obtained using an optimisation procedure) of the thermal time from flowering at which the uppermost reproductive node reached the final stage of seed abortion (FSSA). The FSSA at a particular node was assumed to be achieved 200 °C day (Tb=4 °C) after flowering at the same node. The grain-filling phase was assumed to run from the achievement of FSSA at the first reproductive node through to 200 °C day (Tb=0 °C) after the date of achievement of the FSSA by the second flowering node.The treatments (cultivar, sowing date, year) produced important ranges of above-ground biomass (AGB) at maturity (271–782 g m−2), seed yield (SY, 119–331 g m−2), SN (1062–3698 seeds m−2) and USW (67–150 mg seed−1). Seed yield was strongly correlated with SN, and there was full compensation between SN and USW in large-seeded cultivars in the high SN range, but not at lower values of SN or in small-seeded cultivars. Both PN (r=0.83) and SN (r=0.87, P<0.0005) were strongly correlated with the mean daily value of the photothermal quotient (PQ=incident radiation/(mean temperature − base temperature)) for the seed-setting phase. Large- and small-seeded cultivars had PN/PQ and SN/PQ relationships with slopes which did not differ among categories but with significantly different intercepts. When the effects of low temperatures during flowering and early grain growth were allowed for, outliers on the PN/PQ and SN/PQ relationships for unstressed crops fell within the confidence limits of the respective linear regressions. Unit seed weight showed a negative response to mean temperature during the grain-filling phase in large- and small-seeded cultivars. We conclude that the relationships established in these experiments, taken together with previous work by other authors, constitute a robust basis for modelling the yield of unstressed field pea crops.  相似文献   

8.
Three-year field trials were set up on eutric brown soil in northwestern Croatia (Zagreb) with the objective to determine the effect of plant density and nitrogen rates on the formation and size of leaf area of seed sugar beet, and on the yield and seed quality in seed production without transplanting. Investigations should also reveal how much the yield and quality of sugar beet seed depend on the leaf area index (LAI). Four plant densities of seed sugar beet were investigated after crop wintering (40 000, 80 000, 120 000, and 160 000 plants/ha) as well as three nitrogen rates (60, 120, and 180 kg/ha) applied in two identical topdressings: at the beginning of the spring growing period and immediately before shooting of inflorescence stalks. Leaf area formation was strongly influenced by weather conditions. An increase of plant density from 40 000 to 160 000 plants/ha led to a decrease of leaf area per plant. Raised nitrogen rates in topdressing caused an increase of leaf area, depending on the precipitation and soil fertility. Maximum LAI, achieved in the flowering stage, grew almost linearly with increasing plant density (LAI: 1.77–4.85 m2/m2), but was statistically significant only up to 120 000 plants/ha. Raised nitrogen rates in topdressing led to a significant increase of the LAI in the stage of inflorescence stalk shooting, though not in full flowering. On the basis of this research, seed yield and germination of seed sugar beet could not be predicted regarding LAI in the flowering stage.  相似文献   

9.
The objectives of this study were to estimate the plastochron in pigeonpea (Cajanus cajan (L.) Millsp.) during the period between emergence and flowering using three methods of calculating the average daily air temperature and to determine the sample size (number of plants) needed to estimate the plastochron. A uniformity test (blank experiment) was conducted in an area of 1440 m2 containing a pigeonpea crop. The area was divided into 360 plots of 2 m × 2 m, and 1 plant per plot was marked at random. In each of these 360 plants, the number of nodes on the main stem was counted at 37, 43, 50, 57, 64, 71, 78, 85, 93, 99, 106, 114 and 120 days after emergence (DAE). The average daily air temperature (Taverage) was calculated using three methods: method 1: Taverage = (Tminimum + Tmaximum)/2; method 2: Taverage = (T0 h + T1 h + T2 h +  + T23 h)/24; and method 3: Taverage = (Tminimum + Tmaximum + T9 h + 2T21 h)/5. For the three methods, the daily and cumulative thermal times were calculated from the date of emergence to early flowering and fitted to a linear regression of the average number of nodes on the main stem as a function of the accumulated thermal time. The plastochron was then calculated under each method as the inverse of the slope of the linear regression, and the required sample size (number of plants) to estimate the plastochron was determined by resampling with replacement. Plastochron values determined from the average daily air temperature calculated based on the three methods are different, and the use of the arithmetic mean of the hourly temperatures (method 2) should be favoured. Under method 2, the plastochron for pigeonpea was determined to be 21.34 °C day node−1. To estimate the plastochron with 95% confidence interval amplitudes equal to 1, 2 and 3 °C day node−1, it was necessary to count the number of nodes in 194, 50 and 24 pigeonpea plants, respectively.  相似文献   

10.
The effects of distilled, ozonated (12 mg L−1) and chlorinated (100 mg L−1) water treatments on inactivation of Escherichia coli and Listeria innocua inoculated on lettuce, spinach, and parsley and on some chemical characteristics (chlorophyll a, chlorophyll b, ascorbic acid, and total phenolic contents and antioxidant activity) of these vegetables were investigated. Chlorine and ozone washes resulted in average log reductions (±standard error) of 2.9 ± 0.1 and 2.0 ± 0.3 for E. coli in the vegetables tested, respectively, while the efficiency of ozone (2.2 ± 0.1 log) was very close to that of chlorine (2.3 ± 0.1 log) on L. innocua. Aqueous ozone did not cause any detrimental effects on the chemical characteristics of the vegetables. The effect of gaseous ozone treatment (950 μL L−1, 20 min) on microbial inactivation and the chemical characteristics of parsley were also determined. This treatment resulted in 1.0–1.5 log reductions in the numbers of both microorganisms but caused significant losses in important bioactive compounds of parsley. Ascorbic acid and total phenolic contents and antioxidant activity in ozone-treated samples were 40.1, 14.4, and 41.0%, respectively, less than the control samples.  相似文献   

11.
Soil nitrogen (N) dynamics can be modified by cover crops in rotations with cereals. Although, roots are a major source of N, little is known about the dynamics of root decomposition of cash and cover crops. The objective of this study was to assess the effects that cover crop species have on i) the decomposition of spring wheat roots during the growth of cover crops, and ii) the decomposition of cover crop roots during the growing season of spring wheat. The experiment aimed also at comparing three non-winter hardy cover crops of varying shoot C/N ratios under low and high N input levels of 6 and 12 g N m−2 y−1, respectively. The experiment included spring wheat (Triticum aestivum L.) as the main crop and non-winter hardy cover crops (yellow mustard (Sinapis alba L.), phacelia (Phacelia tanacetifolia Benth), and sunflower (Helianthus annuus L.) as well as bare soil fallow treatment. Minirhizotrons were used to non-destructively assess the spatial and temporal patterns of root growth and decomposition from 0.10 to 1.00 m. Simultaneously, we grew all crops in soil columns to measure destructively C and N content in the roots. We concluded that wheat root decomposition was not affected by cover crop species. In contrast, during the growing season of wheat root decomposition of yellow mustard was on average twice as high for phacelia and sunflower as a consequence of a higher production of roots with a significantly higher C/N ratio compared to the other cover crops.  相似文献   

12.
Inorganic nitrogen fertilisers are commonly applied to crops and pastures to increase or maintain productivity. The benefits of N application must be balanced with the potential for environmental damage. At Lincoln University, Canterbury, New Zealand a split plot experiment with two irrigation levels (irrigated and dryland) and two N fertiliser application rates (0 and 800 kg N/ha/y (2003/2004) or 1600 kg N/ha/y (2004/2005) was established on a 9-year-old cocksfoot (Dactylis glomerata L.) dominant pasture to validate the N dilution curve for temperate grass species. The extent of N deficiency of pastures which had suboptimal N was quantified by calculation of a ratio between measured N% of herbage and optimum N% from the N dilution curve. The N dilution curve had the form N% = 4.8 DM?0.35 (R2 = 0.65) and the NNI ranged from a maximum of 1.2, which indicated luxury uptake, to a minimum of 0.2, which has been proposed as the minimum NNI required to result in net growth. When moisture was adequate for growth, the main cause of yield differences between +N and ?N pastures was radiation use efficiency with ?N pastures producing 0.54 g DM/MJ PAR in spring or less than half that of +N pastures (1.16 g DM/MJ PAR). The intrinsic link between water availability and N uptake in dryland and irrigated pastures was explained (R2 = 0.88) by the relationship between the water use efficiency and N uptake ratio. Periods of low N uptake (N deficiency) were associated with low water use efficiency.  相似文献   

13.
Pallet-scale ultralow oxygen (ULO) treatment was applied to iceberg lettuce after various lengths of postharvest storage to determine the effects of pre-treatment storage on lettuce tolerance to ULO treatment for control of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Lettuce from seven cultivars was vacuum cooled and stored at 2 °C after harvest for 0, 2, 3, and 5 d before being subjected to 2-d ULO treatment with 0.003% oxygen at 10 °C ambient temperature. Complete control of thrips was achieved in all three tests. Temperature of lettuce increased from about 5 °C at the start of ULO treatment to 9.6 °C at the end of the treatment. Fresh vacuum-cooled lettuce from three of seven cultivars sustained injury to heartleaves by the ULO treatment. Lettuce that had been stored at the low temperature for 2, 3, or 5 d before the ULO treatment tolerated the ULO treatment and there was no significant quality reduction compared with untreated controls. Heavier heads were significantly more susceptible to heartleaf injury than lighter heads. This study demonstrated that 2-d postharvest refrigerated storage followed by 2-d ULO treatment was effective in controlling western flower thrips with minimal adverse effects on lettuce quality. The ULO treatment protocols developed in this study also have potential to be scaled-up for commercial ULO treatment applications.  相似文献   

14.
The effect of different O2 levels from 0 to 100 kPa in combination with 0, 10 and 20 kPa CO2 on the respiration metabolism of greenhouse grown fresh-cut butter lettuce was studied. Controlled atmospheres of 20 or 75 kPa O2 with 0 or 10 kPa CO2 showed a constant respiration rate during the first 2–4 days at different temperatures (1, 5 and 9 °C). Therefore, constant respiration rates during a short period of 2–4 days could be considered as valid for a large part of the commercial life of, for instance, a modified atmosphere package development. The fresh-cut lettuce exposed to low O2 levels (2–10 kPa) combined with moderate to high CO2 levels (10 and 20 kPa) had a higher respiration rate than when 20–100 kPa O2 were used. Moderate CO2 levels (10 kPa) reduced the respiration rates of fresh-cut lettuce 20–40% at 9 °C. This effect was less noticed at lower temperatures. Gas composition with high CO2 levels (20 kPa) probably caused a metabolic disorder increasing the respiration rate of fresh-cut butter lettuce. It was concluded that 80 kPa O2 must be used in modified atmosphere packaging (MAP) to avoid fermentation of fresh-cut butter lettuce in combination with 10–20 kPa CO2 for reducing their respiration rate.  相似文献   

15.
According to climate change projections, winter cereal production will likely be exposed to increasing air temperatures and prolonged summer droughts. During the 2009/10 and 2010/11 growing seasons at Braunschweig, Germany, four cultivars each of barley (Hordeum vulgare L.), rye (Secale cereale L.), triticale (Triticosecale Wittmack), and wheat (Triticum aestivum L.) were grown in a mobile rain-out shelter with a nearby irrigated control to determine the maximal impact of water shortage on phenology, physiology, and yield. The rain-out shelter plots were subjected to severe drought stress by withholding rain during tillering to harvest. Permanent prevention of water supply caused an average 2 day earlier heading and flowering and a 19 day earlier loss of green leaves. Midday thermal images revealed consistently higher canopy temperatures under drought stress than under well-watered conditions. The drought related temperature increase was 3.7 K across crops and years. Contrary to canopy temperature, the spectral moisture stress index and the normalized difference water index did not clearly separate the dry from the wet environment. The drought-induced yield loss averaged 5.9 t ha−1 (63%) for grain dry matter and 9.2 t ha−1 (51%) for above-ground dry matter. Among the four cereal species, rye produced the highest grain and above-ground dry matter under both dry and wet conditions, and also had the coolest canopy. Based on the results of the present study, it is expected that rye will cope best, and barley second-best with the drier conditions of the changing climate.  相似文献   

16.
Regions in north-western Europe characterized by high density of livestock/biogas plants and extensive silage maize production are facing major environmental challenges due to excessive residual soil mineral nitrogen (N) in autumn and hence nitrate leaching. Winter catch crops (CC) have potential to accumulate residual N; however, the N uptake potential after maize harvest in autumn and spring remains unclear. Therefore, a two-year field trial (April 2012–April 2014) was conducted at three sites, to quantify the combined effects of four consecutive CC sowing dates (10 Sep; 20 Sep; 30 Sep and 15 Oct) and two CC species (rye, Secale cereale. L. and Italian ryegrass, Lolium multiflorum Lam.) on DM accumulation and N uptake of CC above- and belowground in autumn and spring, and to derive functional relationships. The results clearly showed that rye was more effective in accumulating biomass and nitrogen than Italian ryegrass. The better performance of rye was related to increased growth intensity of roots and shoot, a different allocation pattern and higher N uptake efficiency. An exponential function of temperature sum (Tsum) produced a reliable prediction of above- and belowground biomass and N. To achieve an agronomically relevant N uptake of 20 kg N ha−1, rye required 278 °Cd Tsum, which corresponds to a sowing date latest in the second decade of September. Under favourable growing conditions, a biomass accumulation of up to 5 Mg DM ha−1, corresponding to 83 kg N ha−1 above- and belowground, seems achievable under the given environmental conditions. In continuous maize grown under the environmental conditions of Northern Germany, however, catch crops will not reach a relevant N uptake on the long-term average.  相似文献   

17.
Phosphine (PH3) fumigation with different concentrations and exposure durations at low temperature was studied to determine its effects on Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae) on carnations, and on postharvest quality. Laboratory tests showed that tolerance of L. huidobrensis to phosphine fumigation at 5 °C varied with different life stages. 1 d-old eggs and adults showed the highest susceptibility, and 3 d-old eggs was the most tolerant stage. In the fumigation tests of 3 d-old eggs with a range of phosphine concentrations from 0.46 to 2.73 mg L−1 and exposure durations from 6 to 144 h at 5 °C, 85.96–282.08 h fumigation durations were required to achieve 99% mortality with different phosphine concentrations. The expression of C0.77T = k was obtained, which indicated that exposure duration other than phosphine concentration was the critical factor in the toxicity of phosphine against the 3 d-old eggs of L. huidobrensis. Controlled atmosphere (CA) treatment with increased CO2 and reduced O2 had synergistic effects on phosphine toxicity. Phosphine fumigation could achieve 100% mortality for insects of L. huidobrensis on carnation, and had no significant adverse effects on vase life and damage indices of carnation at 1.92 mg L−1 PH3 and 8% CO2 for 32 h, and at 3.44 mg L−1 for 3 d at 5 °C. All results suggested that phosphine fumigation at low temperature could be used as an alternative for postharvest control of L. huidobrensis on carnations.  相似文献   

18.
Postharvest diseases limit the storage period and market life of fresh figs (Ficus carica L.). The objective of this work was to determine the effect of sulfur dioxide (SO2) applied by fumigation and/or by dual release SO2 generating pads on postharvest decay and quality retention of ‘Black Mission’ and ‘Brown Turkey’ (dark skin), and ‘Kadota’ and ‘Sierra’ (green skin) figs. A protocol for the computer-controlled application of gaseous SO2 has been developed which allows the application of very low specific concentration × time products of SO2 and simultaneous monitoring of the application progress. In vitro tests with important fungal, yeast and bacterial postharvest pathogens plated on Petri dishes and exposed to a SO2 concentration × time product (C × t) of 100 (μL/L) h at different temperatures showed fewer survived at 20 °C than at 0 °C. Therefore, fumigations were carried out at 20 °C in the rest of the experiments. The evaluation of different SO2 concentration × time products showed that a product of 25 (μL/L) h provided the best compromise between decay control and fruit injury. The performance of SO2 fumigations on warm or cold fruit, its combination with SO2 generating pads, and the use of repeated fumigations during cold storage were also evaluated. All the SO2 treatments tested reduced the percentage of decay, extending the market life of fresh figs. However, in some cases, the use of SO2 generating pads increased the incidence of skin bleaching. Fumigation of warm fruit at 25 (μL/L) h of SO2 reduced populations of Alternaria and Rhizopus spp. growing on the fig surface. The treatment was more effective against Rhizopus spp. than against Alternaria spp. Contamination of fruit by Botrytis spp. and Penicillium spp. was also reduced by SO2. In conclusion, results showed that SO2 can be a potential tool to control postharvest rots and therefore increase the market life of fresh figs.  相似文献   

19.
The effectiveness of short hyperbaric treatments to control postharvest decay of sweet cherries (Prunus avium L., cv Ferrovia) and table grapes (Vitis vinifera L., cv Italia) was investigated. Sweet cherries and table grape berries were exposed to the pressure of 1140 mmHg (1.5 atm) for 4 and 24 h, respectively, in 64 L gas-proof tanks. Fruit kept at ambient pressure (near 760 mmHg, 1.0 atm) served as a control. Postharvest rots of sweet cherries arose from naturally occurring infections, whereas table grape berries were artificially wounded, exposed to the hyperbaric treatment, then the wounds inoculated with 20 μL of a Botrytis cinerea conidial suspension (5 × 104 spores mL−1). Sweet cherries were stored at 0 ± 1 °C for 14 d, followed by 7 d at 20 ± 1 °C. Table grapes berries were kept at 20 ± 1 °C for 3 d. On sweet cherries, hyperbaric treatment reduced the incidence of brown rot, grey mould, and blue mould, with respect to the control. Similarly, on treated table grapes a significant reduction of lesion diameter and percentage of B. cinerea infected berries was observed. Induced resistance was likely to be responsible for the observed decay reduction. To our knowledge, this is the first report on the effectiveness of short hyperbaric treatments in controlling postharvest decay of sweet cherries and table grapes.  相似文献   

20.
The capacity of various types of fresh produce to absorb gaseous 1-methylcyclopropene (1-MCP) was compared. The produce, which included potato, parsnip, ginger, green bean, asparagus, tangerine, key lime, melon, apple, plantain, leaf lettuce, and mango, was placed in 1, 2, and 10 L glass jars, depending on the size of produce. 1-MCP gas was added to the headspace at an initial concentration of approximately 10 μl l−1. Gas concentrations were measured after 2, 4, 6, 8, 10 and 24 h. The concentration of 1-MCP in empty jars was stable for the 24 h holding period. All produce absorbed 1-MCP, but the rate of sorption differed markedly. The 1-MCP loss data was fitted with an exponential decay curve to determine the initial rate of sorption and the time to 50% decline in concentration (t1/2). Under the conditions of the experiment, the initial rate of loss (% h−1) and the t1/2 varied by as much as 30-fold between commodities. The initial rate of 1-MCP sorption (μl h−1) for each commodity was found to correlate with the fresh weight, dry matter, insoluble dry matter (IDM), and water weight, but not soluble dry matter. The strongest correlation (r2 = 0.44) was with insoluble dry matter; this relationship was improved if insoluble dry matter was divided by the shortest radius of the organ (r2 = 0.63) to adjust for the length of the diffusion path. The correlation between the rate of sorption and insoluble dry matter content is consistent with previously published data suggesting that cellulosic materials possess a high affinity for 1-MCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号