首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research has documented two main migratory routes of juvenile sockeye salmon (Oncorhynchus nerka) through the Strait of Georgia, British Columbia, Canada, and large interannual variability in marine survival rates of the Chilko Lake stock. Simulation models were used to explore the influence of surface currents on the migratory route of juvenile sockeye salmon (smolts) through the Strait of Georgia. We used a model of downstream migration to generate daily numbers of Chilko Lake sockeye salmon smolts entering the Strait of Georgia, based on daily counts of smolts leaving the rearing lake. A numerical hydrodynamic model (driven by surface wind, tide, and Fraser River discharge) hindcasted surface currents in the Strait of Georgia on a 2 km × 2 km grid. A smolt migration model simulated fish moving through the Strait with different compass-oriented migratory behaviours (i.e. swimming speed and directional orientation) within the time-varying surface advection field. Results showed that surface currents within the Strait of Georgia can affect the migratory route of sockeye salmon smolts in spite of their large size (8 cm). Wind is the forcing mechanism primarily responsible for determining which migratory route would be used. Under prevailing wind conditions (i.e. toward the north-west), most sockeye salmon smolts would use the eastern migratory route; however, relatively brief south-eastward wind events (lasting about 2 days) would force most smolts into the western migratory route. Given the heterogeneity of food for salmon within the Strait, we hypothesize that wind-driven variability in the annual proportion of smolts that use the western and eastern migratory routes in the Strait of Georgia affects early marine survival rates of Fraser River sockeye salmon.  相似文献   

2.
Computer simulations were used to investigate whether compass orientation is a sufficient guidance mechanism for sockeye salmon migrating to the Fraser River from their ocean foraging grounds in the north-east Pacific Ocean. Daily surface ocean currents, simulated by the ocean surface current simulations (OSCURS) model, were used to test the influence of currents on the return oceanic migration of Fraser River sockeye salmon. High seas tagging and coastal recover data of Fraser River sockeye salmon were used for the migration simulations. Surface currents were shown to increase the speed of the homeward-migrating sockeye salmon, as well as to deflect the fish in a north-eastward direction. In spite of ocean currents, all Fraser River sockeye salmon were able to reach their destination with a fixed direction and bioenergetically efficient swimming speed when migration was delayed until the last month at sea. Compass orientation alone was shown to be a sufficient direction-finding mechanism for Fraser River sockeye salmon.  相似文献   

3.
The reproductive migration of anadromous salmonids through estuarine waters is one of the most challenging stages of their life cycle, yet little is known about the environmental and physiological conditions that influence migratory behaviour. We captured, sampled tissues, tagged and released 365 sockeye salmon (Oncorhynchus nerka) homing through inner coastal waters towards the Fraser River, British Columbia, Canada. Biotelemetry was used to assess the behaviour of individual sockeye salmon approaching estuarine waters and at river entry, which were related to both fish physiological condition at release and to prevailing environmental conditions. Sockeye salmon tended to stay close to the shore, migrated during the day, and movements were related to tide. Sockeye salmon migration rate was linked to wind‐induced currents, salinity and an individual's physiological state, but these factors were specific to location and stock. We propose that wind‐induced currents exposed sockeye salmon entering the estuary to stronger olfactory cues associated with Fraser River water, which in turn resulted in faster migration rates presumably due to either an increased ability for olfactory navigation and/or advanced reproductive schedule through a neuroendocrine response to olfactory cues. However, once the migration had progressed further into more concentrated freshwater of the river plume, sockeye salmon presumably used wind‐induced currents to aid in movements towards the river, which may be associated with energy conservation. Results from this study improve our biological understanding of the movements of Fraser River sockeye salmon and are also broadly relevant to other anadromous salmonids homing in marine environments.  相似文献   

4.
The productivity of Fraser River sockeye salmon has declined in recent years, with 2019 being the lowest return on record. The cause of the decline is still not fully understood; however, bottom‐up drivers and trophic interactions during the early marine migration are considered to be important contributing factors. McKinnell et al. (Fisheries Oceanography, 23, 2014 and 322) developed a “trophic gauntlet hypothesis,” proposing that low biological productivity leads to an energy deficit from poor foraging opportunities in migrating salmon. When combined with poor foraging conditions in typically productive waters elsewhere on the migration, low marine survival may result. Our study examined prey availability and stomach fullness of juvenile sockeye salmon along the 120 km stretch of the coastal migration through the Discovery Islands and Johnstone Strait to determine whether this section of the migration is indeed food limited. We observed low stomach fullness throughout tidally mixed waters, providing empirical support for the trophic gauntlet hypothesis. Zooplankton abundance was high in these regions so it appeared that unfavourably small prey size may have been the cause of low foraging success. We also observed foraging hotspots at both ends of the gauntlet, indicating that such areas may be key feeding grounds for migratory salmon.  相似文献   

5.
Late-spawning Fraser River sockeye salmon, Oncorhynchus nerka , stocks have suffered significant prespawn mortality associated with an unusually early freshwater migration pattern and the myxosporean parasite Parvicapsula minibicornis . Surveys of migrating adult salmon from several spawning populations were conducted in 1999 and 2000 to determine the extent of infection with P. minibicornis , when and where the parasite first becomes detectable during migration, and whether early migrating stocks might be used as sentinels to assess risk of infection in late-spawning stocks. Posterior kidney, preserved in 95% ethanol, was examined for P. minibicornis in stained histological sections and using a polymerase chain reaction (PCR) test. The prevalence of this parasite in all Fraser River sockeye salmon stocks examined was high (range 47–100% infected). In contrast, P. minibicornis was not detected in the fish tested from the two sockeye salmon stocks outside the Fraser River drainage in either 1999 or 2000. The parasite was also not detected histologically or by PCR in the kidney tissue of the fish from the Fraser River that were sampled in salt water or early during their freshwater migration up the river. These findings and the progression in the prevalence and intensity of infection as the fish from three stocks (early Stuart, Weaver Creek and Cultus Lake) were monitored over time, suggest salmon acquired the parasite either in the lower Strait of Georgia or in the lower Fraser River before the confluence of the Harrison River. In both 1999 and 2000 the parasite was present in all Fraser River sockeye salmon stocks sampled, which suggests that early Stuart salmon may be valuable as a sentinel stock for the presence of the parasite in later-spawning stocks.  相似文献   

6.
Trends in coho marine survival in relation to the regime concept   总被引:2,自引:0,他引:2  
There was a synchronous and significant decrease in marine survival of coho salmon in the Strait of Georgia, Puget Sound, and off the coast from California to Washington after 1989. This large-scale, synchronous change indicates that trends in coho marine survivals were linked over the southern area of their distribution in the north-east Pacific, and that these linkages were associated with a common event. Indicators of large-scale climate change (the Aleutian Low Pressure Index) and of recent regional climate change (the April flows from the Fraser River) also changed abruptly about the same time. The synchrony of trends in marine survival of aggregates of coho stocks from three distinct marine areas and trends in climate indices implies that climate/ocean changes can have profound impacts on the population dynamics of coho salmon. The trend towards low marine survival may persist as long as the trends in the climate indicators do not change.  相似文献   

7.
Pacific Northwest Chinook, Oncorhynchus tshawytscha, have exhibited a high degree of variability in smolt‐to‐adult survival over the past three decades. This variability is summarized for 22 Pacific Northwest stocks and analyzed using generalized linear modeling techniques. Results indicate that survival can be grouped into eight distinct regional clusters: (1) Alaska, Northern BC and North Georgia Strait; (2) Georgia Strait; (3) Lower Fraser River and West Coast Vancouver Island; (4) Puget Sound and Hood Canal; (5) Lower Columbia Tules; (6) Columbia Upriver Brights, Willamette and Cowlitz; (7) Oregon and Washington Coastal; and (8) Klamath River and Columbia River Summers. Further analysis for stocks within each of the eight regions indicates that local ocean conditions following the outmigration of smolts from freshwater to marine areas had a significant effect on survival for the majority of the stock groups analyzed. Our analyses of the data indicate that Pacific Northwest Chinook survival covaries on a spatial scale of 350–450 km. Lagged time series models are presented that link large‐scale tropical Pacific conditions, intermediate‐basin scale northeastern Pacific conditions, and local sea surface temperatures to survival of Pacific Northwest stocks.  相似文献   

8.
Horizontal ocean transport can influence the dynamics of higher‐trophic‐level species in coastal ecosystems by altering either physical oceanographic conditions or the advection of food resources into coastal areas. In this study, we investigated whether variability in two North Pacific Current (NPC) indices was associated with changes in productivity of North American Pacific salmon stocks. Specifically, we used Bayesian hierarchical models to estimate the effects of the north‐south location of the NPC bifurcation (BI) and the NPC strength, indexed by the North Pacific Gyre Oscillation (NPGO), on the productivity of 163 pink, chum, and sockeye salmon stocks. We found that for salmon stocks located in Washington (WA) and British Columbia (BC), both the BI and NPGO had significant positive effects on productivity, indicating that a northward‐shifted bifurcation and a stronger NPC are associated with increased salmon productivity. For the WA and BC regions, the estimated NPGO effect was over two times larger than the BI effect for pink and chum salmon, whereas for sockeye salmon the BI effect was 2.4 times higher than the NPGO. In contrast to WA and BC stocks, we found weak effects of both horizontal ocean transport processes on the productivity of salmon stocks in Alaska. Our results indicated that horizontal transport pathways might strongly influence population dynamics of Pacific salmon in the southern part of their North American ranges, but not the northern part, suggesting that different environmental pathways may underlie changes in salmon productivity in northern and southern areas for the species under consideration.  相似文献   

9.
Chinook, Oncurhynchus tshawytscha, catches in the Strait of Georgia increased in the 1970s and reached maximum levels from 1976 to 1978. Catches then declined until they stabilized through regulation at levels approximately one-quarter of the 1976 to 1978 levels. The timing of the decline in catch was synchronous with an increase in the mean temperature of the Strait of Georgia, a decline in annual Fraser River flows, and an abrupt decrease in the marine survival of hatchery-reared chinook released into the Strait of Georgia. Surprisingly, the number of young chinook salmon (smolts) more than doubled over the period of declining catches compared with the number produced during the period of high catches. The increase in smolt abundance was a consequence of the production from hatcheries that was approximately equal to wild production. We conclude that there was a change in the carrying capacity for chinook salmon in the Strait of Georgia in the late 1970s that contributed to the declines in abundance and that rebuilding stocks to the high abundance of the late 1970s is unlikely until the carrying capacity for chinook salmon changes either naturally or through manipulation. Although we did not separate density-dependent and density-independent effects on marine survival, the current total number of chinook smolts produced appears larger than required for the current marine carrying capacity.  相似文献   

10.
We examined somatic energy patterns in two stocks (Chilko and Early Stuart) of adult Fraser River (British Columbia, Canada) sockeye salmon (Oncorhynchus nerka), collected at the end of their ocean residency, spanning years across different climate regimes. Both stocks had high levels of somatic energy in years with high open ocean productivity (1956, 1957, 2001 and 2002), and relatively low levels in years with poor open ocean productivity (1999 and 2000). For Early Stuart sockeye, energy levels in 1999 and 2000 were approximately 15% lower (~1.5 MJ kg?1) than that in the 1950s, an amount of energy equivalent to that necessary for migrating 600 km upriver. In recent years (2001 and 2002), energy levels have increased by about 9% for both stocks. Low energy levels at the onset of upriver migration, particularly in years of energetically demanding in‐river conditions, such as high flows or temperatures, are likely to contribute to prespawning and en route mortality in Fraser sockeye.  相似文献   

11.
Abstract This study examined juvenile salmonid use of a freshwater tidal creek system draining a wetland on the floodplain of the lower Fraser River, British Columbia, Canada. Chum, Oncorhynchus keta (Walbaum), chinook, O. tshawytscha (Walbaum), and sockeye, O. nerka (Walbaum), salmon fry were abundant in the tidal creeks in spring. The fry were found in non-natal habitat up to 1.5 km from the main channel of the river. The salmon fry ate dipteran adults, larvae and pupae, cyclopoid and harpacticoid copepods, and Collembola. Mysids Neomysis mercedis Holmes (Walbaum), and amphipods, Crangonyx richmondensis occidentalis (Hubricht and Harrison), were also consumed. The upper reaches of an undisturbed creek were the winter rearing habitat for presmolt coho salmon, O. kisutch (Walbaum), where this species ate dipteran pupae and larvae as well as a freshwater isopod, Asellus communis Say (Walbaum).  相似文献   

12.
Zooplankton and fish densities in the southern Strait of Georgia were observed to coincide with variations in surface salinities resulting from the outflow of the Fraser River. Vertical net hauls in the euphotic zone revealed that copepods, amphipods, and euphausiids were significantly more abundant per m3 in the brackish estuarine plume (surface salinities - 10–15 ppt) when compared to the area covered by the freshwater of the Fraser River plume (0–10 ppt) and the region of the Strait of Georgia (25–30 ppt) unaffected by the outflow of the Fraser River.
The estuarine and riverine plumes had significantly higher fish densities (adult and juvenile herring, and juvenile salmonids [excluding chinook]) than the Strait of Georgia region, with no significant differences in densities of juvenile chinook salmon observed between regions. The highest catches of juvenile salmonids were at the boundary between the estuarine plume and the Strait of Georgia. Zooplankton found in the stomach contents of both adult and juvenile herring suggested that the herring were filter-feeding on the zooplankton in the estuarine plume. Juvenile salmonids fed primarily on small unidentifiable juvenile fish. The existence of increased densities of prey items in the estuarine plume is proposed to be the primary mechanism resulting in increased residence time in this region by outmigrating juvenile salmonids. Utilization of aggregated zooplankton could lead to increased salmonid growth rates and therefore to enhanced survival of individuals utilizing the Fraser River plume environment.  相似文献   

13.
We examine the oft-quoted relationship between the migration of Fraser River sockeye salmon around the northern end of Vancouver Island and sea surface temperatures. We examine the methods used to estimate the northern diversion and conclude that the estimates have a sufficiently low expected error to form a useful representation of sockeye salmon behaviour. The well-known relationship with Kains Island sea surface temperature is explored and problems are pointed out. In particular, we explore why Kains Island temperatures are good predictors of salmon behaviour in May when the sockeye can be over 1000 km away, but the coastal temperatures are poor predictors in July to September when the salmon are actually close by. We show that a more robust predictor can be developed using open ocean temperature fields and we show why Kains Island fails as a predictor during the summer months. Finally, we show by cross-validation that the northern diversion is predictable with an r.m.s. error of about 0.1.  相似文献   

14.
Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.  相似文献   

15.
In August 2008 the Kasatoshi volcano in the Aleutian archipelago erupted. Prevailing winds carried volcanic ash to the Gulf of Alaska, where its soluble iron dissolved and initiated a widespread phytoplankton bloom. Two years later, the abundance of sockeye salmon (Oncorhynchus nerka) returning to spawn in the Fraser River was larger than any observed since 1913. Kasatoshi's influence on growth and survival has been proposed as the ultimate cause of the abundant return. However, when relevant data are brought to bear on the hypothesis, it shows that: (1) survival of the abundant sockeye salmon cohort was unremarkable when compared with the historical record; (2) without an accompanying volcano, survival of the returns in 2011 was about the same as in 2010; (3) parental abundance that spawned the abundant return in 2010 was the sixth largest since 1948; (4) during their first summer at sea, sockeye salmon are not known to migrate in the offshore region where the anomalous chlorophyll bloom occurred; (5) an older cohort that was likely exposed to the chlorophyll bloom had the second lowest productivity on record when it returned in 2009; (6) immature sockeye salmon do not feed on diatoms, so any trophodynamic benefit derived from excess chlorophyll in mid‐to late August 2008 would have to have found a rapid trophic pathway to sockeye salmon on the continental shelf; and (7) no other populations of sockeye salmon or other species of salmon that are known to rear in the same region had unexpectedly high returns.  相似文献   

16.
We hypothesize that the interannual variability of the Northeast Pacific Ocean circulation affects the latitude of landfall and migration speed of adult sockeye salmon ( Oncorhynchus nerka ) returning to the Fraser River. The Ocean Surface Current Simulations (OSCURS) model was used to simulate the return migration paths of compass-orientated sockeye for two years: 1982, which had a weak Alaska Gyre circulation and low Northern Diversion Rate (defined as the percentage of sockeye returning around the north end of Vancouver Island instead of the south end); and 1983, with a strong circulation and high northern diversion rate. The majority of model sockeye made landfall further north in 1983 than in 1982. The difference in landfall between 1983 and 1982 depended on the migration start position, swim speed, direction of orientation, and migration start date. The currents assisted the shoreward migration of sockeye starting from south of 55o N and impeded the migration of sockeye starting from further north. The simulation results were consistent with our hypothesis and suggest that the effects of the Northeast Pacific currents must be included in sockeye migration models. We propose a conceptual model for the prediction of the Northern Diversion Rate that includes Blackbourn's (1987) temperature-displacement model, enhanced to include the effects of currents during the ocean phase of migration, and the use of two predictive formulas for the coastal phase of migration: the formula of Xie and Hsieh (1989) for sockeye approaching Vancouver Island directly from the ocean, and a yet-to-be-developed formula for sockeye approaching from within the Coastal Downwelling Domain directly to the north of Vancouver Island.  相似文献   

17.
《Fisheries Research》1988,6(2):105-123
The 1983 El Niño event off the Pacific Coast of North America resulted in increased adult mortality and decreased average size for Oregon's coho and chinook salmon. Actual return of adult coho salmon to the Oregon Production Area in 1983 was only 42% of the pre-season prediction. Coho smolts entering the ocean in the spring of 1983 also survived poorly, resulting in low adult returns again in 1984. Abundance of chinook stocks in southern Oregon was also reduced, as was abundance of Columbia River chinook stocks that show localized ocean distribution. Northerly migrating chinook stocks from the Columbia River showed little or no decline in abundance. The average weight of coho and chinook salmon landed in 1983 by Oregon's commercial troll fishery was the lowest recorded since statistics were first recorded in 1952. Comparison of the length-weight relationship for these fish indicated coho and chinook were in poorer condition in 1983 than in non-El Niño years. Because adult coho salmon returned to hatcheries at a smaller size, the fecundity (eggs per female) in 1983 was reduced from the 1978–1982 average by 24% at coastal hatcheries and by 27% at Columbia River hatcheries. The fecundity of chinook salmon was unchanged at most hatcheries.  相似文献   

18.
Year 1995 marked the start of a major shift to earlier river entry of late‐run Fraser River sockeye salmon (Oncorhynchus nerka) en route to the spawning grounds. Earlier entry has typically been accompanied by considerably greater in‐river mortality. We examine this behavioral change using correlation analyses between the entry timing of the Adams River and Weaver Creek stocks and the surface marine conditions encountered by the stocks during their homing migration from the northeast Pacific several months earlier. For Adams stocks, maximum correlation is between entry timing and offshore winds, such that the weaker the wind stress in the direction of the prevailing surface currents in early July, the earlier the river entry in late summer. For Weaver stocks, maximum correlation is with salinity, such that the lower the surface salinity along the coast in August, the earlier the river entry. We hypothesize that oceanic changes lead to changes in late‐run sockeye physiology which then leads to changes in behavior. Physiological changes are postulated to arise from two types of preconditioning: Type‐1 occurs in the offshore region, whereby the weaker the prevailing currents that normally hinder eastward migration, the more endogenous energy available for maturation and the earlier the river entry. Type‐2 occurs in coastal regions, whereby the lower the salinity, the more rapid the osmoregulatory adaptation to freshwater (and possible susceptibility to water‐borne pathogens) and the earlier the entry. Results suggest that the earlier entry that began in the mid‐1990s is linked to weaker ocean currents and lower coastal salinities.  相似文献   

19.
Identifying factors that influence anadromous Pacific salmon (Oncorhynchus spp.) population dynamics is complicated by their diverse life histories and large geographic range. Over the last several decades, Chinook salmon (O. tshawytscha) populations from coastal areas and the Salish Sea have exhibited substantial variability in abundance. In some cases, populations within the Salish Sea have experienced persistent declines that have not rebounded. We analyzed a time series of early marine survival from 36 hatchery Chinook salmon populations spanning ocean entry years 1980–2008 to quantify spatial and temporal coherence in survival. Overall, we observed higher inter‐population variability in survival for Salish Sea populations than non‐Salish Sea populations. Annual survival patterns of Salish Sea populations covaried over smaller spatial scales and exhibited less synchrony among proximate populations relative to non‐Salish Sea populations. These results were supported by multivariate autoregressive state space (MARSS) models which predominantly identified region‐scale differences in survival trends between northern coastal, southern coastal, Strait of Georgia, and Puget Sound population groupings. Furthermore, Dynamic Factor Analysis (DFA) of regional survival trends showed that survival of southern coastal populations was associated with the North Pacific Gyre Oscillation, a large‐scale ocean circulation pattern, whereas survival of Salish Sea populations was not. In summary, this study demonstrates that survival patterns in Chinook salmon are likely determined by a complex hierarchy of processes operating across a broad range in spatial and temporal scales, presenting challenges to the management of mixed‐stock fisheries.  相似文献   

20.
The effect of a widely distributed phytoplankton bloom triggered by volcanic ash from Alaska (Hamme et al., 2010. Geophys. Res. Lett. 37) on juvenile Fraser River sockeye is discussed in terms of the timing of ocean migration and trophic structure of the Gulf of Alaska. Our hypothesis is that the occurrence of a massive diatom bloom in the Gulf greatly enhanced energy ascendancy in the ocean at a time of year when adolescent sockeye migrated from the coast in 2008. We contend this increase in food availability was an important factor for the survival and growth of juvenile sockeye which led to one of the strongest sockeye returns on record in 2010 of 34 million, compared with perhaps the weakest return on record of 1.7 million the previous year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号