首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Petrosky CE, Schaller HA. Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook salmon and steelhead.
Ecology of Freshwater Fish 2010: 19: 520–536. © 2010 John Wiley & Sons A/S Abstract – Improved understanding of the relative influence of ocean and freshwater factors on survival of at‐risk anadromous fish populations is critical to success of conservation and recovery efforts. Abundance and smolt to adult survival rates of Snake River Chinook salmon and steelhead decreased dramatically coincident with construction of hydropower dams in the 1970s. However, separating the influence of ocean and freshwater conditions is difficult because of possible confounding factors. We used long time‐series of smolt to adult survival rates for Chinook salmon and steelhead to estimate first year ocean survival rates. We constructed multiple regression models that explained the survival rate patterns using environmental indices for ocean conditions and in‐river conditions experienced during seaward migration. Survival rates during the smolt to adult and first year ocean life stages for both species were associated with both ocean and river conditions. Best‐fit, simplest models indicate that lower survival rates for Chinook salmon are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity during the smolt migration or multiple passages through powerhouses at dams. Similarly, lower survival rates for steelhead are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity and warmer river temperatures. Given projections for warming ocean conditions, a precautionary management approach should focus on improving in‐river migration conditions by increasing water velocity, relying on increased spill, or other actions that reduce delay of smolts through the river corridor during their seaward migration.  相似文献   

2.
To better understand and predict Oregon coho (Oncorhynchus kisutch) marine survival, we developed a conceptual model of processes occurring during four sequential periods: (1) winter climate prior to smolt migration from freshwater to ocean, (2) spring transition from winter downwelling to spring/summer upwelling, (3) the spring upwelling season and (4) winter ocean conditions near the end of the maturing coho's first year at sea. We then parameterized a General Additive Model (GAM) with Oregon Production Index (OPI) coho smolt‐to‐adult survival estimates from 1970 to 2001 and environmental data representing processes occurring during each period (presmolt winter SST, spring transition date, spring sea level, and post‐smolt winter SST). The model explained a high and significant proportion of the variation in coho survival (R2 = 0.75). The model forecast of 2002 adult survival rate ranged from 4 to 8%. Our forecast was higher than predictions based on the return of precocious males (‘jacks’), and it won't be known until fall 2002 which forecast is most accurate. An advantage to our environmentally based predictive model is the potential for linkages with predictive climate models, which might allow for forecasts more than 1 year in advance. Relationships between the environmental variables in the GAM and others (such as the North Pacific Index and water column stratification) provided insight into the processes driving production in the Pacific Northwest coastal ocean. Thus, coho may be a bellwether for the coastal environment and models such as ours may apply to populations of other species in this habitat.  相似文献   

3.
The downstream movement of coho salmon fry and parr in the fall, as distinct from the spring migration of smolts, has been well documented across the range of the species. In many cases, these fish overwinter in freshwater, but they sometimes enter marine waters. It has long been assumed that these latter fish did not survive to return as adults and were ‘surplus’ to the stream's carrying capacity. From 2004 to 2010, we passive integrated transponder tagged 25,981 juvenile coho salmon in three streams in Washington State to determine their movement, survival and the contribution of various juvenile life histories to the adult escapement. We detected 86 returning adults, of which 32 originated from fall/winter migrants. Half of these fall/winter migrants spent ~1 year in the marine environment, while the other half spent ~2 years. In addition, the median return date for fall/winter migrants was 16 days later than spring migrants. Our results indicated that traditional methods of spring‐only smolt enumeration may underestimate juvenile survival and total smolt production, and also overestimate spring smolt‐to‐adult return (SAR). These are important considerations for coho salmon life cycle models that assume juvenile coho salmon have a fixed life history or use traditional parr‐to‐smolt and SAR rates.  相似文献   

4.
In this analysis, an atypical northward shift in the distribution of age‐1 ocean shrimp (Pandalus jordani) recruits off Oregon in 2000 and 2002–2004 was linked to anomolously strong coastal upwelling winds off southern Oregon (42°N latitude) in April–July of the year of larval release (t?1). This is the first clear evidence that strong upwelling winds can depress local recruitment of ocean shrimp. Regression analysis confirmed a long‐term negative correlation between loge of ocean shrimp recruitment and April sea level height (SLH) at Crescent City, California, in the year of larval release, for both northern and southern Oregon waters. The regional pattern of ocean shrimp catches and seasonal upwelling winds showed that, although the timing of the spring transition as reflected in April SLH drives ocean shrimp recruitment success off Oregon generally, the strength and consistency of spring upwelling limits the distribution of large concentrations of ocean shrimp at the southern end of the northern California/Oregon/Washington area. A northward shift in 1999 and 2001–03 in the northern edge of this ‘zone of maximum upwelling’ is the likely cause of the weak southern Oregon recruitment and resulting atypical distribution of ocean shrimp observed off Oregon in 2000 and 2002–04, with a return to a more typical catch distribution as spring upwelling moderated in subsequent years. It is noted that a northward shift in the conditions that produce strong and steady spring upwelling winds is consistent with many predictions of global climate models under conditions of global warming.  相似文献   

5.
In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex‐biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.  相似文献   

6.
Obtaining reliable estimates of marine survival is essential for understanding anadromous salmon population dynamics. Two common approaches to estimating marine survival are (a) dividing abundance of returning adult salmon abundance by abundance of smolts from the same cohort, or (b) tagging a portion of the migrating smolts and estimating the return rate of tagged adults. This study compared these two approaches to estimating marine survival for coho salmon, Oncorhynchus kisutch (Walbaum), across multiple years in three California streams. Abundance‐based survival estimates were higher than tag‐based estimates; average estimates for the two techniques differed from 1.5‐fold to 7.4‐fold across streams. One likely cause for these divergent estimates is migration of juveniles from natal habitat before smolt trapping begins, resulting in an underestimate of smolt abundance and an overestimate of marine survival rate for the abundance‐based method. Estimates of marine survival obtained from abundance estimates and tag returns are not directly comparable.  相似文献   

7.
The effect of a widely distributed phytoplankton bloom triggered by volcanic ash from Alaska (Hamme et al., 2010. Geophys. Res. Lett. 37) on juvenile Fraser River sockeye is discussed in terms of the timing of ocean migration and trophic structure of the Gulf of Alaska. Our hypothesis is that the occurrence of a massive diatom bloom in the Gulf greatly enhanced energy ascendancy in the ocean at a time of year when adolescent sockeye migrated from the coast in 2008. We contend this increase in food availability was an important factor for the survival and growth of juvenile sockeye which led to one of the strongest sockeye returns on record in 2010 of 34 million, compared with perhaps the weakest return on record of 1.7 million the previous year.  相似文献   

8.
The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd‐numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd‐year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977–97 indicated that smolts entering the ocean during even‐numbered years and interacting with abundant odd‐year pink salmon during the following year experienced 26% (age‐2 smolt) to 45% (age‐1 smolt) lower survival compared with smolts migrating during odd‐numbered years. Adult sockeye salmon returning to Bristol Bay from even‐year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd‐year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.  相似文献   

9.
We used retrospective scale growth chronologies and return size and age of female Chinook salmon (Oncorhynchus tshawytscha) from a northern California, USA, population collected over 22 run years and encompassing 18 complete cohorts to model the effects of oceanographic conditions on growth during ocean residence. Using path analyses and partial least squares regressive approaches, we related growth rate and maturation to seven environmental variables (sea level height, sea surface temperature, upwelling, curl, scalar wind, northerly pseudo‐wind stress and easterly pseudo‐wind stress). During the first year of life, growth was negatively related to summer sea surface temperature, curl and scalar winds, and was positively related to summer upwelling. During the second, third and fourth growth years growth rate was negatively related to sea level height and sea surface temperature, and was positively related to upwelling and curl. The age at maturation and the fork length at which three ocean‐winter fish returned were related to the environment experienced during the spring before the third winter at sea (the year prior return). Faster growth during the year before return led to earlier maturation and larger return size.  相似文献   

10.
We collated smolt‐to‐adult return rate (SAR) data for Chinook salmon from all available regions of the Pacific coast of North America to examine the large‐scale patterns of salmon survival. For consistency, our analyses primarily used coded wire tag‐based (CWT) SAR estimates. Survival collapsed over the past half century by roughly a factor of three to ca. 1% for many regions. Within the Columbia River, the SARs of Snake River populations, often singled out as exemplars of poor survival, are unexceptional and in fact higher than estimates reported from many other regions of the west coast lacking dams. Given the seemingly congruent decline in SARs to similar levels, the notion that contemporary survival is driven primarily by broader oceanic factors rather than local factors should be considered. Ambitious Columbia River rebuilding targets may be unachievable because other regions with nearly pristine freshwater conditions, such as SE Alaska and northern BC, also largely fail to reach these levels. Passive integrated transponder (PIT) tag‐based SAR estimates available for Columbia River Basin populations are generally consistent with CWT findings; however, PIT tag‐based SARs are not adjusted for harvest which compromises their intended use because harvest rates are large and variable. More attention is needed on how SARs should be quantified and how rebuilding targets are defined. We call for a systematic review by funding agencies to assess consistency and comparability of the SAR data generated and to further assess the implications of survival falling to similar levels in most regions of the west coast.  相似文献   

11.
Unusually large returns of several stocks of fall Chinook salmon (Oncorhynchus tshawytscha) from the U.S. Northwest commonly occurred during the late 1980s. These synchronous events seem to have been due to ocean rather than freshwater conditions because natal rivers of these stocks were geographically disconnected. We examined year‐to‐year variability in cohort strength of one of these stocks, Upriver Bright (URB) fall Chinook salmon from the Columbia River Hanford Reach for brood years 1976–99 (recovery years 1979–2002). We used the ocean recovery rate of coded‐wire‐tag (CWT) fish as an index of cohort strength. To analyse year‐to‐year variability in the ocean recovery rate, we applied a log‐linear model whose candidate explanatory variables were ocean condition variables, fishing effort, age of recovered fish, and fish rearing type (hatchery versus wild). Explanatory variables in the best model included fishing effort, and the quadratic term of winter sea surface temperature (SST) measured from coastal waters of British Columbia, Canada during the fish's first ocean year. The coefficient of the quadratic term of SST was significantly negative, so the model shape was convex. Our findings can be used to infer year‐to‐year variability in cohort strength of other fall Chinook salmon whose life history and ocean distributions are similar to the URB fish.  相似文献   

12.
We tested whether variations in stock characteristics (spawner and smolt abundance) and biotic conditions (prey variability, predation, competition) during the early marine period explained variations in the return of sockeye salmon (Oncorhynchus nerka) to Great Central and Sproat lakes, adjacent lakes on the west coast of Vancouver Island. There are two freshwater age groups in each lake; fish spend 1 or 2 yrs in freshwater after hatching. We tested the influences of stock and biotic factors on the return of each of the two age groups from each of the two lakes. Results of regression analyses showed that prey biomass variability best explained the variation in return for all lake‐age groups. Euphausiid (Thysanoessa spinifera) and cladoceran (Evadne) prey biomass variability explained between 0.75 and 0.95 (adjusted R2) of the variation in return. There appear to be instances of a mismatch between the seasonality of prey productivity and the apparent critical period of feeding for juvenile sockeye.  相似文献   

13.
Recruitment variability in many fish populations is postulated to be influenced by climatic and oceanographic variability. However, a mechanistic understanding of the influence of specific variables on recruitment is generally lacking. Feeding ecology is one possible mechanism that more directly links ocean conditions and recruitment. We test this mechanism using juvenile Chinook Salmon (Oncorhynchus tshawytscha) collected off the west coast of Vancouver Island, British Columbia, Canada, in 2000–2009. Stable isotopes of carbon (δ13C), an indicator of temperature or primary productivity, and nitrogen (δ15N), an indicator of trophic position, were taken from muscle tissues of genetically stock‐identified salmon. We also collated large‐scale climate indices (e.g., Pacific Decadal Oscillation, North Pacific Gyre Oscillation), local climate variables (e.g., sea surface temperature) and copepod community composition across these years. We used a Bayesian network to determine how ocean conditions influenced feeding ecology, and subsequent survival rates. We found that smolt survival of Chinook Salmon is predicted by their δ13C value, but not their δ15N. In turn, large‐scale climate variability determined the δ13C values of salmon, thus linking climate to survival through feeding ecology, likely through qualities propagated from the base of the food chain.  相似文献   

14.
The ocean survival of coho salmon (Oncorhynchus kisutch) off the Pacific Northwest coast has been related to oceanographic conditions regulating lower trophic level production during their first year at sea. Coastal upwelling is recognized as the primary driver of seasonal plankton production but as a single index upwelling intensity has been an inconsistent predictor of coho salmon survival. Our goal was to develop a model of upwelling‐driven meso‐zooplankton production for the Oregon shelf ecosystem that was more immediately linked to the feeding conditions experienced by juvenile salmon than a purely physical index. The model consisted of a medium‐complexity plankton model linked to a simple one‐dimensional, cross‐shelf upwelling model. The plankton model described the dynamics of nitrate, ammonium, small and large phytoplankton, meso‐zooplankton (copepods), and detritus. The model was run from 1996 to 2007 and evaluated on an interannual scale against time‐series observations of copepod biomass. The model’s ability to capture observed interannual variability improved substantially when the copepod community size distribution was taken into account each season. The meso‐zooplankton production index was significantly correlated with the ocean survival of hatchery coho salmon from the Oregon production area, although the coastal upwelling index that drove the model was not itself correlated with survival. Meso‐zooplankton production within the summer quarter (July–September) was more strongly correlated with coho survival than was meso‐zooplankton production in the spring quarter (April–June).  相似文献   

15.
16.
To examine the efficacy of juvenile salmon research as a tool for forecasting adult returns, the results from a study on the early marine life stage of juvenile chum salmon, conducted in the Nemuro Strait during 1999–2002 (i.e., 1998–2001 brood years), were compared with the return rates of adult salmon. Among the four brood years, the 2000 brood year (i.e., salmon migrating to the sea in 2001) was previously reported as showing higher abundance, higher growth rate and better somatic condition during the coastal residency period. Consequently, we expected it to have the highest return rate, under a hypothesis that juvenile survival in coastal residency regulates brood-year strength. Contrary to this expectation, the 2000 brood year had almost the lowest return rate. Alternatively, a statistical model in which sea surface temperature during the first year of marine life and size at release were utilized as explanatory variables reconstructed the actual variability in return rates more accurately than that based on the early marine life stage. Possible reasons for the discrepancy between the results of the juvenile salmon research and adult returns are discussed, and we suggest improvements for future research on juvenile salmon.  相似文献   

17.
An animal's performance during its early life stage can greatly influence its survival to adulthood. Therefore, understanding aspects of early life history can be informative, particularly when designing management plans to rebuild a population. For a threatened population of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River of Idaho, we reconstructed the early life history for 124 returning wild and hatchery adults using information recorded in their otoliths. Of our sampled wild adults (n = 61), 43% and 49% reared within the Snake River and Clearwater/Salmon rivers. We also found that only 21% of our sampled wild adults exhibited the historically common subyearling out‐migration strategy, in which juveniles exit freshwater shortly after hatching, while the remaining wild adults exhibited the yearling out‐migration strategy (i.e., individuals delay their freshwater exit). As expected, yearlings had, on average, a significantly larger body size than subyearlings at ocean entry. However, 35% of wild yearlings overlapped in size with wild subyearlings suggesting that spending more time in freshwater might not necessarily result in a larger body size. Lastly, we observed that variability in fork length at Snake River egress and ocean entry were best explained by migration strategy and where it reared, followed by hatch year and sex. Results from this study highlight the utility of adult otoliths in providing details about early life history, an understanding of which is critical to the conservation of Snake River fall Chinook salmon.  相似文献   

18.
Understanding how oceanographic factors independently and interactively influence fish behavior, physiology, and survival is essential for predicting the impact of climate change on fish. Such predictions are especially challenging for highly migratory species such as salmon that experience a broad range of conditions. We applied a novel modeling approach that combines an individual‐based particle model with a bioenergetics model to evaluate the effects of oceanographic variability on migration of post‐smolt Atlantic salmon (Salmo salar). Interannual variability in the surface current velocity and sea surface temperature differentially influenced post‐smolt salmon migration. The magnitude, duration, and direction of the currents relative to a fish's intended swimming direction had the strongest influence on migration. Changes in ocean circulation led to changes in currents at a regional scale that have a similar, relative effect across multiple populations during out‐migration. Results of this study suggest that the Nova Scotia Coastal Current has a strong influence on the migration pathways of migrating salmon through the Gulf of Maine. The influx of cool fresh water from the Arctic, observed in the early 1990s, changed the Nova Scotia Coastal Current and, as suggested by model results, could have dramatically influenced post‐smolt salmon migration success. There was a trade‐off between arriving at the destination quickly but at a small size and not arriving at the destination at all. Fish that took a long time to migrate had more opportunities to feed and encountered warmer summer waters, increasing their overall growth.  相似文献   

19.
Early ocean survival of Chinook salmon, Oncorhynchus tshawytscha, varies greatly inter‐annually and may be the period during which later spawning abundance and fishery recruitment are set. Therefore, identifying environmental drivers related to early survival may inform better models for management and sustainability of salmon in a variable environment. With this in mind, our main objectives were to (a) identify regions of high temporal variability in growth potential over a 23‐year time series, (b) determine whether the spatial distribution of growth potential was correlated with observed oceanographic conditions, and (c) determine whether these spatial patterns in growth potential could be used to estimate juvenile salmon survival. We applied this method to the fall run of the Central Valley Chinook salmon population, focusing on the spring and summer period after emigration into central California coastal waters. For the period from 1988 to 2010, juvenile salmon growth potential on the central California continental shelf was described by three spatial patterns. These three patterns were most correlated with upwelling, detrended sea level anomalies, and the strength of onshore/offshore currents, respectively. Using the annual strength of these three patterns, as well as the overall growth potential throughout central California coastal waters, in a generalized linear model we explained 82% of the variation in juvenile salmon survival estimates. We attributed the relationship between growth potential and survival to variability in environmental conditions experienced by juvenile salmon during their first year at sea, as well as potential shifts in predation pressure following out‐migration into coastal waters.  相似文献   

20.
Variation in life history traits within and across species is known to reflect adaptations to different environmental drivers through a diversity of mechanisms. Trait variation can also help buffer species and populations against extinction in fluctuating environments and against anthropogenic disturbances. Here, we examine the distribution and drivers of Ocean‐type Chinook salmon (Oncorhynchus tschawytscha) juvenile migratory life histories. We defined alternative migratory strategies according to whether individuals reared in the stream (natal rearing) or left shortly after hatching to rear elsewhere (non‐natal rearing). We then evaluated the frequency of migratory strategies across 16 populations with time series extending up to 25 years and evaluated the environmental variables that influenced variation in migration strategy. We found bimodal migration patterns and abrupt transitions in migrant sizes across all populations, supporting the widespread nature of alternative migratory strategies. Additionally, we found that the amount of freshwater rearing habitat available to juveniles, relative juvenile density and spring flow patterns significantly influenced the overall migration pattern for populations. Smaller streams and higher conspecific densities generally produced more non‐natal rearing migrants and larger streams and lower conspecific densities producing more natal rearing migrants. Our results shed light on previously unexplored patterns of juvenile migratory strategies and encourage broader consideration for how current conservation actions perform at protecting juvenile migratory diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号