首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study evaluated the impact of High, Moderate and Low grazing intensities throughout the grazing season, within a rotational stocking system, on the performance of high‐yielding dairy cows receiving a high level of concentrates. Sixty‐three Holstein‐Friesian dairy cows, 21 at each grazing intensity, were rotationally grazed. Average paddock size, post‐grazing sward heights and seasonal grazing stocking rates within the High, Moderate and Low grazing intensities were 0.143, 0.167 and 0.200 hectares, 5.2, 6.1 and 6.8 cm and 7.8, 6.7 and 5.6 cows ha?1 respectively. Grazing intensity had no effect on milk fat and protein content, end‐of‐study body condition score or end‐of‐study live weight although the latter tended towards significance (p = .057). Average daily milk yield per cow was higher within the Low grazing intensity (33.2 kg day?1) than High grazing intensity (30.5 kg day?1), and average daily fat‐plus‐protein yield was higher for Low and Moderate than High. Milk output per hectare was higher for the High grazing intensity than Low grazing intensity (33,544 and 26,215 kg ha?1 respectively). Grazing intensity had no effect on grazing bite number, blood metabolites or concentrations of milk fatty acids or on sward morphological components, although dead matter increased with time across all grazing intensities. Herbage utilization efficiency (above 1,600 kg DM ha?1) was 52%, 74% and 87% for Low, Moderate and High respectively. It is concluded that high‐producing dairy cows can graze at high levels of utilization when they are receiving high rates of concentrates. Although cow performance will be reduced, milk yield per ha will increase.  相似文献   

2.
The common forage grass Lolium perenne has evolved with the systemic fungal endophyte Epichloë festucae var. lolii. The endophyte provides herbivore resistance to the grass due to defensive alkaloids, some of which are toxic to grazing livestock. In this field study, we determine whether distribution of the endophyte‐grass association changes along a land‐use intensity gradient on 87 managed grasslands in three German regions. Endophyte infections were detected in 66% of the studied sites and infection rates within infected sites ranged from 1% to 95%. Alkaloid concentrations of lolitrem B (vertebrate toxin) exceeded the toxicity thresholds in 50 (14%) of 351 infected plants and of peramine (invertebrate deterrent/toxin) in 12 (3%) of 351 plants. Infection rates and alkaloid concentrations were not significantly affected by land‐use intensity and region, but alkaloid concentrations were higher in summer compared to spring. We conclude that risks for livestock intoxication are currently low, as (i) average alkaloid concentrations per grassland were always below toxicity thresholds and as (ii) none of the grasslands was dominated by L. perenne. We suggest avoidance of grass monocultures in Europe to keep intoxication risks for livestock low; we also recommend regular examination of seeds and grasslands, as seed producers might accidentally distribute infected seeds, and as climate warming might further enhance the distribution of Epichloë endophytes in European grasslands.  相似文献   

3.
An experiment was undertaken to examine the effect of supplement type on herbage intake, total dry matter (DM) intake, animal performance and nitrogen utilization with grazing dairy cows. Twenty‐four spring‐calving dairy cows were allocated to one of six treatments in a partially balanced changeover design with five periods of four weeks. The six treatments were no supplement (NONE), or supplementation with either grass silage (GS), whole‐crop wheat silage (WS), maize silage (MS), rapidly degradable concentrate (RC) or slowly degradable concentrate (SC). Cows were rotationally grazed with a mean herbage allowance of 20·5 kg DM per cow per day, measured above 4 cm. Forage supplements were offered for approximately 2 h immediately after each morning milking, with cows on NONE, RC and SC treatments returning to the grazing paddock immediately after milking. Cows on treatment MS had a significantly higher supplement DM intake than the other treatments but a significantly lower grass DM intake than the other treatments, resulting in no significant difference in total DM intake when compared with cows on treatments WS, RC and SC. Concentrate type had no significant effect on herbage intake, milk yield, milk composition or yield of milk components. The yield of milk fat and milk protein was significantly higher on treatments MS, RC and SC compared with treatments NONE, GS and WS. The results indicate that despite a relatively high substitution rate, maize silage can be a useful supplement for the grazing dairy cow.  相似文献   

4.
5.
In arid, semi‐arid and dry subhumid regions, which represent ~ 41% of the Earth's land surface, desertification and soil degradation are very frequent, leading to low soil fertility and productivity. In these regions, revegetation with locally adapted native species may aid in ameliorating desertification processes. Trichloris crinita is a C4 perennial grass native to arid and semi‐arid regions of the American continent. Its good forage quality, drought tolerance, resistance to trampling and grazing, and rapid growth and competing aggressiveness among other native species warrant its use as forage and for revegetation purposes. In the last decades, many studies have revealed broad intraspecific genetic variation for ecophysiological, morphological, biomass production, nutritional quality (as forage) and adaptive stress response‐related traits. Also, results from field trials evaluating T. crinita genotypes as forage and for restoration of degraded areas suggest great potential for—and have encouraged—its utilization under different habitats and environmental conditions. In this integrative review, we compiled and discussed the most relevant research data regarding T. crinita, focusing on aspects and traits that influence its utilization both as forage and in rehabilitation of degraded lands. Challenges and prospects towards the improvement of this species in breeding programmes with specific goals are discussed.  相似文献   

6.
This experiment examined the effects of grazing severity and degree of silage restriction during early turnout of dairy cows to pasture in spring on animal performance. Forty late‐winter‐calving Holstein Friesian dairy cows were allocated to one of five treatments between 7 March and 17 April 1997. The treatments involved early turnout of cows to grass for 2 h per day at two residual sward heights and two silage allowances, plus a control treatment, in a randomized block design. Dairy cows on the control treatment remained indoors throughout the experiment and were offered grass silage ad libitum. Dairy cows on all treatments were also offered 6 kg d–1 of a concentrate on a flat‐rate basis, split equally between the morning and afternoon milkings. Offering cows access to pasture in early spring for 2 h per day resulted in increases in both milk (P < 0·001) and protein yield (P < 0·01). On average, over all grazing treatments, cows produced an additional 2·6 kg milk per day compared with the control treatment (28·5 vs. 25·9 kg d–1, s.e.m. 0·43). Furthermore, these increases in milk yield were obtained even when silage was restricted indoors (28·4 vs. 25·9 kg d–1) and cows grazed down to a residual sward height of 40 mm (28·1 vs. 25·9 kg d–1). Protein yield was higher (P < 0·01) with dairy cows grazing pasture compared with cows indoors (848 vs. 707 g d–1, s.e.m. 28·9). Silage intake was significantly (P < 0·001) reduced when cows were turned out to pasture. In conclusion, early turnout of dairy cows to pasture in spring for 2 h per day reduced silage intake and increased milk yield and protein yield relative to those fully housed and offered grass silage with a low level of concentrates.  相似文献   

7.
The objective of this study was to examine the performance of grazing Holstein–Friesian dairy cows when equal quantities of concentrates were offered using either a flat‐rate or a feed‐to‐yield allocation strategy. The study involved fifty‐six cows (twenty primiparous and thirty‐six multiparous) and continued for 122 d, with concentrate feed levels adjusted on five occasions during the study (every four weeks approximately). Total concentrate intake over the duration of the study was 463 and 525 kg cow?1 (3·8 and 4·3 kg cow?1 d?1) for multiparous and primiparous animals respectively. Concentrate allocation strategy had no effect on average daily milk yield, milk fat or protein content, milk‐fat‐plus‐protein yield or end‐of‐study live weight and body condition score (P > 0·05). In conclusion, concentrate allocation strategy had minimal impact on the overall performance of these mid/late lactation cows when concentrate feed levels were modest and grass availability was high.  相似文献   

8.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

9.
Spring‐sown oat (Avena sativa L.) is well adapted for forage production in Central Europe; however, environmental conditions make this crop susceptible to crown rust disease (Puccinia coronata) when grown in summer. The objective of this study was to assess oat cultivars sown in late summer, when conditions for crown rust are less favourable, and harvest in autumn for forage with potential use for feeding lactating dairy cows. Three oat cultivars: Berdysz, Zuch and ForagePlus, the first two from Poland and the latter from United States, were sown 1 and 15 August, and 1 September, over three consecutive years, and harvested for forage in late October. The two Polish cultivars had 61% leaf area affected by rust with 1 August sowing, but ForagePlus was not affected by rust with any sowing date. Sowing 15 August significantly reduced crown rust incidence and increased DM yield of the Polish cultivars 21% relative to the 1 August sowing date, but decreased ForagePlus DM yield by 35%. Sowing 1 September resulted in best forage nutritive value, but the lowest DM yields for all cultivars. Calculated milk production per ton of forage for all cultivars was lowest with the 1 August sowing date. Calculated milk production per hectare was greatest for Berdysz sown in mid‐August. Oat can be sown 15 August and harvested in autumn for forage production, avoiding crown rust disease during summer in Poland. Nutritive value of autumn oat forage is adequate to meet forage requirements of lactating dairy cows.  相似文献   

10.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

11.
Three grazing experiments were carried out in late spring (early lactation), summer (mid‐lactation) and autumn (late lactation) to compare the effects of perennial ryegrass cultivar or grass species, sown in binary or multispecies mixtures, on milk yield and nitrogen excretion of dairy cows. Replicated groups of multiparous Holstein Friesian × Jersey cows were offered either a control or high‐sugar perennial ryegrass (Lolium perenne) or tall fescue (Festuca arundinacea) base grass in a binary mixture with white clover (Trifolium repens) or in a multispecies mixture with additional legumes, bromegrass (Bromus willdenowii) and forbs. During each 9‐day experiment, botanical composition, milk production and faecal and urine composition were measured. Milk solid (MS) yield for the control ryegrass, high‐sugar ryegrass and tall fescue grass types averaged, respectively, 1.53, 1.64 and 1.70 kg MS cow?1 day?1 for a binary mixture sward, compared with 1.65, 1.54 and 1.53 kg MS cow?1 day?1 for a multispecies sward. Legume content influenced milk production more than the number of species present in a mixture. There was lower urine N concentration from a multispecies sward compared with a binary mixture. Urine N concentration of cows grazing the control ryegrass, high‐sugar ryegrass and tall fescue grass types averaged, respectively, 4.6, 5.3 and 6.8 g N L?1 for a binary mixture, compared with 4.1, 3.9 and 3.9 g N L?1 for a multispecies mixture. Feeding dairy cows on multispecies swards containing forbs presents an opportunity to reduce N losses without compromising milk yield.  相似文献   

12.
Ruminant livestock depends primarily on forage and grazing resources from both natural pastures and from cultivated land. Low‐input large‐scale grazing systems constitute a substantial part of what is termed High Nature Value farmland in Europe. Developing a typology of categories of livestock systems within a region is an important step in understanding land uses that involve ruminant livestock systems and their use of feed resources, and in appraising policy options. This study developed a typology based on the municipalities of the region of Aragon in the north‐east of Spain on the basis of the feed resources for ruminant livestock. A clustering analysis was applied to the following three types of criteria: (i) crop types; (ii) vegetation types of uncultivated land and (iii) stocking rate of dairy cattle, beef cattle, sheep and goats. A total of thirty‐nine variables were used. The cluster methodology allowed relatively homogeneous groups of municipalities, termed territories, with differentiating characteristics to be obtained. A Geographic Information System was applied to locate spatially the territories. From the twelve territories identified, it was concluded that there was a low use of natural pastures and high use of resources of cultivated origin in livestock systems in Aragon.  相似文献   

13.
Although the process of reforestation of grassland has been widely studied in Europe, little is known about the effect of deforestation on grassland development. Thus, the specific objective of this study was to evaluate early changes in plant species composition, functional group, yield and biomass quality after deforestation of long‐term abandoned pastures. The experiment was established immediately after deforestation on sparse herbaceous vegetation (mean initial cover 27%) with the following treatments: grazing management only (G0), cutting and grazing aftermath (CG), grazing after seeding of grassland mixture (GS), grazing after a burning treatment in which branches were burned after deforestation (GB) and unmanaged control (U). Very rapid recovery of bare ground by germination and/or sprouting of grassland species was similar under all types of grazing management. Total plant species richness increased in all managed treatments except GB. Similarities according to redundancy analyses in plant species composition were found among G0, CG and GB treatments, especially for forbs with correlated rosette or creeping growth. The woody species, tall grasses and tall forbs had higher abundance in the U treatment. The restoration of grassland following deforestation of formerly reforested grassland area by grazing management was a relatively fast process, and swards were created after 3 years. The highest biomass yield was observed under treatments GS and GB. Forage quality of all managed treatments was sufficient for the demands of beef cattle grazing. However, for subsequent grassland preservation, some type of grazing management is necessary to prevent reforestation, which can occur immediately after deforestation in unmanaged places.  相似文献   

14.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

15.
Dandelion (Taraxacum officinale agg.) is a common forb species in grasslands in Europe. Although sometimes regarded as a valuable forage herb, it may become a weed, especially in arable land. There is limited information on the response of Taraxacum to long‐term grassland management practices. Therefore, we analysed cover and dry‐matter standing biomass of Taraxacum in a long‐term (1998–2012) grazing experiment on an Agrostis capillaris grassland. The following treatments were laid out on formerly abandoned grassland: (i) intensive grazing (IG); (ii) extensive grazing (EG); (iii) first cut followed by intensive grazing (ICG); (iv) first cut followed by extensive grazing (ECG); and (v) unmanaged grassland (U). During the first 10 years, all defoliation treatments (i–iv) supported the presence of Taraxacum, and the lowest proportion was recorded in the unmanaged treatment (U). During the final 7 years of the study, combined cutting and grazing promoted Taraxacum cover more than that of grazing only (ICG > IG > ECG > EG). Cover of Taraxacum was negatively affected by increasing sward height where Taraxacum plants had lower fitness. Due to the relatively strong relationship between percentage cover of Taraxacum and its dry‐matter biomass, percentage cover could be used as a simple method for the assessment of biomass of Taraxacum in a sward. Results are discussed in the context of adapting the management of A. capillaris grassland as a simple method for control of Taraxacum abundance, particularly in situations of extensification or abandonment.  相似文献   

16.
The objective of this experiment was to use diurnal and temporal changes in herbage composition to create two pasture diets with contrasting ratios of water‐soluble carbohydrate (WSC) and crude protein (CP) and compare milk production and nitrogen‐use efficiency (NUE) of dairy cows. A grazing experiment using thirty‐six mid‐lactation Friesian x Jersey cows was conducted in late spring in Canterbury, New Zealand. Cows were offered mixed perennial ryegrass and white clover pastures either in the morning after a short 19‐day regrowth interval (SR AM) or in the afternoon after a long 35‐day regrowth interval (LR PM). Pasture treatments resulted in lower pasture mass and greater herbage CP concentration (187 vs. 171 g kg?1 DM) in the SR AM compared with the LR PM but did not affect WSC (169 g kg?1 DM) or the ratio of WSC/CP (1·0 g g?1). Cows had similar apparent DM (17·5 kg DM cow?1 d?1) and N (501 g N cow?1 d?1) intake for both treatments. Compared with SR AM cows, LR PM cows had lower milk (18·5 vs. 21·2 kg cow?1 d?1), milk protein (0·69 vs. 0·81 kg cow?1 d?1) and milk solids (1·72 and 1·89 kg cow?1 d?1) yield. Urinary N concentration was increased in SR AM, but estimated N excretion and NUE for milk were similar for both treatments. Further studies are required to determine the effect of feeding times on diurnal variation in urine volume and N concentration under grazing to predict urination events with highest leaching risk.  相似文献   

17.
In the UK, dairy cows are increasingly housed at night throughout the grazing season. However, there is limited information on cow performance and the impact on labour requirements when a forage supplement is offered during housing at night throughout the entire grazing season. The effects of housing at night were studied in two experiments, in which two treatments were compared. On treatment part‐grazing (PG), dairy cows were given access to grazing by day and were offered grass silage while housed at night, and, on treatment continuous grazing (CG), dairy cows were given access to grazing both by day and by night. Experiments 1 (138‐d duration) and 2 (127‐d duration) involved sixty (primiparous) and seventy‐six (primiparous and multiparous) Holstein‐Friesian dairy cows respectively. Concentrates were offered during milking at 4·0 and 3·0 kg per cow per day in Experiments 1 and 2 respectively. In Experiment 1, total milk output was significantly higher with treatment PG than treatment CG (P < 0·01) while the reverse occurred in Experiment 2 (P < 0·001). Milk protein concentration was significantly higher with treatment CG in Experiments 1 and 2 (P < 0·001). Cows on treatment CG in Experiment 2 had significantly higher body condition scores and live weights at the end of experiment than those on treatment PG (P < 0·05). Weekly labour requirements were calculated to be proportionally 0·04 lower on treatment PG than on treatment CG. When offered silage during housing at night, the response of grazing dairy cows was largely determined by the grazing conditions encountered and the quality of the forage offered.  相似文献   

18.
The effect of offering a total mixed ration of silage and concentrate (proportionately 0·44 silage) system [indoor feeding system (IF)] was compared with grazing at a high daily herbage allowance with a low level of concentrate supplementation [early grazing system (EG)] in early spring on the performance of spring‐calving dairy cows in Ireland. Sixty‐four spring‐calving Holstein–Friesian dairy cows (mean calving date, 2 February) were allocated to one of two systems between 16 February and 4 April 2004. An equal number of primiparous and multiparous cows were assigned to each system. The dairy cows on the IF system were housed for a 7‐week period and offered a diet of 10·9 kg DM cow?1 d?1 (s.d. 2·3) of concentrate, the remainder of the diet was 8·6 kg DM cow?1 d?1 (s.d. 1·9) of grass silage. The dairy cows on the EG system were offered a mean daily herbage allowance of 15·1 kg DM cow?1 d?1 (s.d. 3·7) and were supplemented with 3·0 kg DM cow?1 d?1 (s.d. 1·0) of concentrate. There was no difference in milk yield between the two systems but the cows in the EG system had a higher milk protein concentration (2·9 g kg?1) and a higher milk protein yield than in the IF system. Milk fat concentration was higher for cows in the IF than EG system (3·0 g kg?1). There was no difference in total daily dry‐matter intake between the systems, measured in week 6 of the study. Mean live weight of the cows in the IF system was greater than in the EG system. The results of the study suggest that a slightly greater performance can be achieved by a system offering a high daily herbage allowance to spring‐calving dairy cows in early lactation compared with a system offering a total mixed ration containing a high proportion of concentrate with grass silage.  相似文献   

19.
The short life span, irregular forage production and susceptibility to weed colonization of cool‐season grass–legume pastures are serious problems in grazing dairy systems in warm‐temperate regions. The inclusion of warm‐season species has the potential to mitigate these problems. In this study, we evaluated the effect of the inclusion of two warm‐season grasses with different growth habits on seasonal forage biomass, soil cover and weed colonization. Three different pasture mixtures were evaluated under grazing: conventional pasture (CP) [tall fescue (Festuca arundinacea), white clover (Trifolium repens) and birdsfoot trefoil (Lotus corniculatus)], CP with Paspalum dilatatum and CP with Paspalum notatum (CP + Pn). Forage biomass and soil cover were sampled thirteen times during a 3‐year trial, and sampling times were grouped by season for the analyses. The mixtures with Paspalum showed higher soil cover in the autumn, while in the winter CP had higher soil cover than CP + Pn. Competition with tall fescue was similar between mixtures with Paspalum, when considering biomass, but it was higher in CP + Pn when considering soil cover. The inclusion of P. notatum increased biomass during the autumn but decreased the mixture performance during winter by reducing tall fescue soil cover. The addition of a warm‐season grass species with a moderate competing ability like P. dilatatum is likely to avoid a negative impact on the cool‐season component of the pasture.  相似文献   

20.
A dairy system simulator, Dairy_sim, was designed to assess the interactions between climate and management in spring‐calving milk production systems based on the grazing of grass pastures. The simulator comprises three main components: a grass herbage growth model, an intake and grazing behaviour model, and a nutrient demand model. The simulator was initially parameterized using the Irish National Dairy Blueprint. Sensitivity analysis indicated that the simulator was most sensitive to stocking rate, milk output per cow and nitrogen fertilizer inputs, but less sensitive to other variables. Field data from four grazing systems were used to test the simulator and it was concluded that Dairy_sim was suitable for evaluating the interaction of climate and management for rotational grazing dairy systems based on perennial ryegrass pastures with Friesian cows. The simulator, Dairy_sim, was then used to evaluate the effects of the regional climates of Ireland on system management. The results indicated that, between regions, herbage production at the same input of nitrogen may vary proportionally by 0·10 and that the length of the grazing season may vary by 0·25. It was concluded that the simulator could be a useful tool for developing region‐specific dairy production blueprints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号