首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic spikes and their inhibition in alligator Purkinje cells   总被引:3,自引:0,他引:3  
Alligator Purkinje cells generate action potentials in the peripheral dendritic tree, after synaptic depolarization via superficial parallel fibers. These action potentials are inhibited at the dendrite level by preceding parallel-fiber volleys at close intervals. We conclude that this inhibition is produced by the activation of the inhibitory interneurons of the molecular layer, the stellate cells, which establish synaptic contacts with the dendrites of the Purkinje cells.  相似文献   

2.
Mammalian target of rapamycin (mTOR) is implicated in synaptic plasticity and local translation in dendrites. We found that the mTOR inhibitor, rapamycin, increased the Kv1.1 voltage-gated potassium channel protein in hippocampal neurons and promoted Kv1.1 surface expression on dendrites without altering its axonal expression. Moreover, endogenous Kv1.1 mRNA was detected in dendrites. Using Kv1.1 fused to the photoconvertible fluorescence protein Kaede as a reporter for local synthesis, we observed Kv1.1 synthesis in dendrites upon inhibition of mTOR or the N-methyl-d-aspartate (NMDA) glutamate receptor. Thus, synaptic excitation may cause local suppression of dendritic Kv1 channels by reducing their local synthesis.  相似文献   

3.
Caffeine was shown to induce mitotic events in mammalian cells before DNA replication (S phase) was completed. Synchronized BHK cells that were arrested in early S phase underwent premature chromosome condensation, nuclear envelope breakdown, morphological "rounding up," and mitosis-specific phosphoprotein synthesis when they were exposed to caffeine. These mitotic responses occurred only after the cells had entered S phase and only while DNA synthesis was inhibited by more than 70 percent. Inhibitors of protein synthesis blocked these caffeine-induced events, while inhibitors of RNA synthesis had little effect. These results suggest that caffeine induces the translation or stabilizes the protein product (or products) of mitosis-related RNA that accumulates in S-phase cells when DNA replication is suppressed. The ability to chemically manipulate the onset of mitosis should be useful for studying the regulation of this event in mammalian cells.  相似文献   

4.
Long-term potentiation (LTP) at glutamatergic synapses is considered to underlie learning and memory and is associated with the enlargement of dendritic spines. Because the consolidation of memory and LTP require protein synthesis, it is important to clarify how protein synthesis affects spine enlargement. In rat brain slices, the repetitive pairing of postsynaptic spikes and two-photon uncaging of glutamate at single spines (a spike-timing protocol) produced both immediate and gradual phases of spine enlargement in CA1 pyramidal neurons. The gradual enlargement was strongly dependent on protein synthesis and brain-derived neurotrophic factor (BDNF) action, often associated with spine twitching, and was induced specifically at the spines that were immediately enlarged by the synaptic stimulation. Thus, this spike-timing protocol is an efficient trigger for BDNF secretion and induces protein synthesis-dependent long-term enlargement at the level of single spines.  相似文献   

5.
Neurons encode information and communicate via action potentials, which are generated following the summation of synaptic events. It is commonly assumed that action potentials reset the membrane potential completely, allowing another round of synaptic integration to begin. We show here that the conductances underlying the action potential act instead as a variable reset of synaptic integration. The strength of this reset is cell type-specific and depends on the kinetics, location, and timing of the synaptic input. As a consequence, distal synapses, as well as inputs mediated by N-methyl-d-aspartate receptor activation, can contribute disproportionately to synaptic integration during action potential firing.  相似文献   

6.
Alle H  Geiger JR 《Science (New York, N.Y.)》2006,311(5765):1290-1293
In the mammalian cortex, it is generally assumed that the output information of neurons is encoded in the number and the timing of action potentials. Here, we show, by using direct patchclamp recordings from presynaptic hippocampal mossy fiber boutons, that axons transmit analog signals in addition to action potentials. Excitatory presynaptic potentials result from subthreshold dendritic synaptic inputs, which propagate several hundreds of micrometers along the axon and modulate action potential-evoked transmitter release at the mossy fiber-CA3 synapse. This combined analog and action potential coding represents an additional mechanism for information transmission in a major hippocampal pathway.  相似文献   

7.
Activity shapes the structure of neurons and their circuits. Two-photon imaging of CA1 neurons expressing enhanced green fluorescent protein in developing hippocampal slices from rat brains was used to characterize dendritic morphogenesis in response to synaptic activity. High-frequency focal synaptic stimulation induced a period (longer than 30 minutes) of enhanced growth of small filopodia-like protrusions (typically less than 5 micrometers long). Synaptically evoked growth was long-lasting and localized to dendritic regions close (less than 50 micrometers) to the stimulating electrode and was prevented by blockade of N-methyl-D-aspartate receptors. Thus, synaptic activation can produce rapid input-specific changes in dendritic structure. Such persistent structural changes could contribute to the development of neural circuitry.  相似文献   

8.
Long-term potentiation (LTP) of synaptic transmission is a widely studied cellular example of synaptic plasticity. However, the identity, localization, and interplay among the biochemical signals underlying LTP remain unclear. Intracellular microelectrodes have been used to record synaptic potentials and deliver protein kinase inhibitors to postsynaptic CA1 pyramidal cells. Induction of LTP is blocked by intracellular delivery of H-7, a general protein kinase inhibitor, or PKC(19-31), a selective protein kinase C (PKC) inhibitor, or CaMKII(273-302), a selective inhibitor of the multifunctional Ca2+-calmodulin-dependent protein kinase (CaMKII). After its establishment, LTP appears unresponsive to postsynaptic H-7, although it remains sensitive to externally applied H-7. Thus both postsynaptic PKC and CaMKII are required for the induction of LTP and a presynaptic protein kinase appears to be necessary for the expression of LTP.  相似文献   

9.
Pentobarbital: selective depression of excitatory postsynaptic potentials   总被引:4,自引:0,他引:4  
The effects of pentobarbital (Nembutal) on synaptic transmission and postsynaptic potentials were studied by the use of several invertebrate preparations. Pentobarbital selectively and reversibly depressed both excitatory postsynaptic potentials and sodium-dependent postsynaptic responses to putative excitatory transmitters without affecting either inhibitory postsynaptic potentials or chloride- and potassium-dependent postsynaptic responses to putative transmitters. A selective depression of postsynaptic excitatory events was also observed with other central nervous system depressants (ethanol, chloroform, chloralose, diphenylhydantoin, and urethane). The results suggest that central and peripheral depression observed during general anesthesia is due to a selective depression of excitatory synaptic events.  相似文献   

10.
Voltage-dependent calcium channels in glial cells   总被引:16,自引:0,他引:16  
The electrophysiological properties of glial cells were examined in primary culture in the presence of tetraethylammonium and Ba2+, a treatment that reduces K+ permeability of the membrane and enhances currents through voltage-dependent Ca2+ channels. Under these conditions, glial cells showed both spontaneous action potentials and action potentials evoked by the injections of current. These responses appear to represent entry of Ba2+ through Ca2+ channels because they were resistant to tetrodotoxin but were blocked by Mn2+ or Cd2+.  相似文献   

11.
Synaptic activation of an electrogenic sodium pump   总被引:5,自引:0,他引:5  
An identified molluscan interneuron mediates different cholinergic synaptic actions by increasing the conductance of its follower cells to different ions. We have now found that this interneuron also mediates a new class of synaptic actions which does not involve a conductance change but the activation of an electrogenic sodium pump. This synaptic action results in a prolonged inhibitory synaptic potential which is dependent on metabolism and is selectively blocked by cooling and ouabain. In cells which have this synaptic potential, part of the resting membrane potential is also maintained by an electrogenic sodium pump. The same transmitter, acetylcholine, can independently stimulate both a chloride ion conductance and a sodium pump mechanism in the same follower cell by acting on two different postsynaptic receptors.  相似文献   

12.
Synaptic transmission at single glomeruli in the turtle cerebellum   总被引:1,自引:0,他引:1  
We have recorded from the granular layer of the turtle cerebellum extracellular unitary potentials that appear to reflect pre- and postsynaptic events at the synapse between a single swelling of a mossy fiber and the dendritic tips of several granule cells. The presynaptic component is an all-or-none potential. It can be directly activated by spinal stimulation and is unaltered by repetitive activity or by high concentrations of magnesium. The postsynaptic component is a graded potential. It follows the presynaptic component by approximately 1 millisecond and is depressed by repetitive activity and by high concentrations of magnesium. The recording of large potentials produced by the flow of postsynaptic current within a single glomerulus suggests powerful transmission. Electron micrographs demonstrate large cerebellar glomeruli in the turtle and a substantial accumulation of mitochondria in the dendritic tips of granule cells.  相似文献   

13.
Extracellular potassium ions mediate specific neuronal interaction   总被引:1,自引:0,他引:1  
The giant interneurons from the nerve system of the cockroach Periplaneta americana exhibit a peculiar reciprocal synaptic interaction. The synaptic potentials are not blocked by addition of 5 millimolar cobalt chloride and have an extrapolated reversal potential close to 0 millivolt. Hyperpolarizing current injected into one cell does not spread to the other. Intracellular injection of tetraethylammonium ions into one giant interneuron increases the duration of the action potential of the injected cell to 30 milliseconds and reduces the rise time and amplitude of the postsynaptic response recorded in the other giant interneuron. These results indicate that the interaction between the interneurons is not mediated by conventional chemical or electrotonic synapses.. All evidence points to generation of the potentials by localized increases in extracellular potassium concentrations as a consequence of firing of one neuron.  相似文献   

14.
Long-term facilitation in Aplysia involves increase in transmitter release   总被引:6,自引:0,他引:6  
In a variety of vertebrates and invertebrates, long-lasting enhancement of synaptic transmission contributes to the storage of memory lasting one or more days. However, it has not been demonstrated directly whether this increase in synaptic transmission is caused by an enhancement of transmitter release or an increase in the sensitivity of the postsynaptic receptors. These possibilities can be distinguished by a quantal analysis in which the size of the miniature excitatory postsynaptic potential released spontaneously from the presynaptic terminal is used as a reference. By means of microcultures, in which single sensory and motor neurons of Aplysia were plated together, miniature excitatory postsynaptic potentials attributable to the spontaneous release of single transmitter quanta from individual presynaptic neurons were recorded and used to analyze long-term facilitation induced by repeated applications of 5-hydroxytryptamine. The results indicate that the facilitation is caused by an increase in the number of transmitter quanta released by the presynaptic neuron.  相似文献   

15.
Neurons receive thousands of synaptic inputs throughout elaborate dendritic trees. Here we determine the somatic impact of excitatory postsynaptic potentials (EPSPs) generated at known dendritic sites in neocortical pyramidal neurons. As inputs became more distal, somatic EPSP amplitude decreased, whereas use-dependent depression increased. Despite marked attenuation (>40-fold), when coactivated within a narrow time window (approximately 10 milliseconds), distal EPSPs could directly influence action potential output following dendritic spike generation. These findings reveal that distal EPSPs are ineffective sources of background somatic excitation, but through coincidence detection have a powerful transient signaling role.  相似文献   

16.
The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.  相似文献   

17.
Previous studies have suggested that the retinotectal system of the goldfish contains a nicotinic acetylcholine receptor (nAChR) that is sensitive to alpha-bungarotoxin. Extracellularly recorded field potentials elicited in response to visual stimulation can be blocked by alpha-bungarotoxin, and alpha-bungarotoxin can interfere with the maintenance of retinotectal synaptic connections. Whether the transmission between the retinal ganglion cells and the tectal cells is mediated by acetylcholine and whether nAChR's exist on the dendrites of tectal cells are questions that remain. The experiments described in this report were designed to determine the site of synthesis of the nAChR's associated with the goldfish retinotectal projection. Radioactive (35S-labeled) methionine was injected into either the eye or the tectal ventricle, and the incorporation of radioactivity into the nAChR was measured by immunoprecipitation. The use of this technique provides evidence that an nAChR associated with the goldfish retinotectal projection is synthesized in the retina and transported to the optic tectum, which suggests a presynaptic site of acetylcholine action on retinal terminals.  相似文献   

18.
Behavioral sensitization leads to both short- and long-term enhancement of synaptic transmission between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia. Serotonin (5-HT), a transmitter important for short-term sensitization, can evoke long-term enhancement of synaptic strength detected 1 day later. Because 5-HT mediates short-term facilitation through adenosine 3',5'-monophosphate (cAMP)-dependent protein phosphorylation, the role of cAMP in the long-term modulation of this identified synapse was examined. Like 5-HT, cAMP can also evoke long-term facilitation lasting 24 hours. Unlike the short-term change, the long-lasting change is blocked by anisomycin, a reversible inhibitor of protein synthesis, and therefore must involve the synthesis of gene products not required for the short-term change.  相似文献   

19.
Functional imaging methods monitor neural activity by measuring hemodynamic signals. These are more closely related to local field potentials (LFPs) than to action potentials. We simultaneously recorded electrical and hemodynamic responses in the cat visual cortex. Increasing stimulus strength enhanced spiking activity, high-frequency LFP oscillations, and hemodynamic responses. With constant stimulus intensity, the hemodynamic response fluctuated; these fluctuations were only loosely related to action potential frequency but tightly correlated to the power of LFP oscillations in the gamma range. These oscillations increase with the synchrony of synaptic events, which suggests a close correlation between hemodynamic responses and neuronal synchronization.  相似文献   

20.
In mammalian excitatory neurons, dendritic spines are separated from dendrites by thin necks. Diffusion across the neck limits the chemical and electrical isolation of each spine. We found that spine/dendrite diffusional coupling is heterogeneous and uncovered a class of diffusionally isolated spines. The barrier to diffusion posed by the neck and the number of diffusionally isolated spines is bidirectionally regulated by neuronal activity. Furthermore, coincident synaptic activation and postsynaptic action potentials rapidly restrict diffusion across the neck. The regulation of diffusional coupling provides a possible mechanism for determining the amplitude of postsynaptic potentials and the accumulation of plasticity-inducing molecules within the spine head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号