首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
小麦抗纹枯病和赤霉病QTL定位研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为给小麦抗病育种中分子标记的辅助选择提供依据,利用苏麦3号/白免3号重组自交系群体,对小麦赤霉病、纹枯病抗性QTL进行分子定位,证实了苏麦3号3BS染色体上的主效QTL,获得了连锁更紧密的分子标记;在6B、2B、6A、5A、3B染色体上分别检测到抗纹枯病QTL,可分别解释纹枯病抗性表型变异的9%~13%.相关分子标记可进一步用于标记辅助选择育种.  相似文献   

2.
小麦纹枯病是世界性的小麦重要病害之一,培育和使用抗病品种是减轻纹枯病危害最经济和有效的手段。为了挖掘更多的小麦纹枯病抗性QTL用于小麦标记辅助育种,本研究构建了CI12633和扬麦158重组自交系群体,采用二代测序方法开发SNP分子标记,并对群体中的94个家系进行基因型分析,构建遗传连锁图;采用牙签接种和病麦粒接种的方法鉴定重组自交系群体纹枯病抗性,进而对小麦纹枯病抗性QTL进行定位。结果显示,构建的遗传连锁图包含3 355个分子标记,遗传距离为2 510.66 cM,共有31个连锁群,均能分配到相应的染色体;在5A(2)、6A、1B、2B、3B、4B、5B、6B(2)、7B、1D、2D(2)、4D和7D染色体共发现16个与小麦纹枯病抗性相关的QTL,单个QTL可解释9.0%~26.8%的表型变异;除了7B染色体的QTL来源于感病品种扬麦158,其余QTL均来自抗病品种CI12633;3B、7D和5A(Chr5A_564101963)染色体的QTL与已有报道一致,其余均为新发现的QTL。发现的QTL和紧密连锁分子标记为今后小麦抗纹枯病分子标记辅助育种以及抗纹枯病基因的克隆提供帮助。  相似文献   

3.
小麦品种望水白的抗赤霉病性遗传分析   总被引:3,自引:2,他引:3       下载免费PDF全文
为了研究小麦品种抗赤霉病性的遗传规律,以病小穗率为评价指标,运用单花滴注对安农8455/望水白重组自交系(R IL)群体的2001年F6代、2003年F8代、2004年F9代进行了赤霉病抗性评价,采用植物数量性状主基因 多基因混合遗传模型分离分析法,研究了该群体抗赤霉病的遗传规律。结果表明,安农8455/望水白重组自交系群体3年的抗赤霉病性分别符合E-2-6模型(两对主基因 多基因的加性-加性模型)、E-1-8模型(两对主基因 多基因,主基因间为重叠作用)、E-1-8模型(两对主基因 多基因,主基因间为重叠作用)。主基因的遗传率较高,分别为63.8%、69.02%、73.66%,多基因的遗传率分别为21.80%、21.38%、16.80%。说明望水白的抗赤霉病性由2对主基因控制,且符合两对主基因 多基因模型。还对望水白与另一感病品种A londra构成的重组自交系的抗性进行了比较。  相似文献   

4.
为给小麦穗部性状标记辅助选择提供可供选择的分子标记,并进一步对小麦穗部相关性状QTL进行精细定位及相关基因克隆,利用普通小麦Heyne×Lakin杂交F2代单粒传获得的145个F6代重组自交系(recombinant inbred line,RIL)群体,构建了含有2 210个标记(2 068个SNP标记和142个SSR标记)的总长度为2 139.35cM的遗传连锁图谱,并利用该图谱对小麦穗部性状(穗长、小穗数、穗密度)进行了QTL分析。结果表明,共检测出16个加性QTL,其中,与穗长相关的QTL有6个,分布在2A、2D、3B、4D、5A和7D染色体上,可解释表型变异7.58%~15.94%;与小穗数相关的QTL有4个,分布在1A、4A和7D染色体上,可解释表型变异7.28%~14.78%;与穗密度相关的QTL有6个,位于4D、5A和6B染色体上,可解释表型变异5.60%~20.06%。  相似文献   

5.
为了在小麦杂种优势利用和杂交育种亲本选配中更好地利用抗源材料,以抗源材料N95175和铭贤169(高感条锈病茵“条中32号”)杂交的F1和F2代分离群体在田间病圃和盆栽条件下进行了抗条锈性鉴定和DNA的RAPD分析。结果表明,N95175的抗锈性(“条中32”)受一对显性主效基因控制。对F2代分离群体抗、感池DNA的RAPD分析表明,引物S509所获得多态性片段与该抗病基因紧密连锁,它可以应用于小麦抗条锈病茵“条中32”的分子标记辅助选择。  相似文献   

6.
为了解小麦条锈病抗病基因在染色体上的位置,对源自小麦杂交组合宁7840×Clark的重组自交系(RIL)群体进行了抗条锈病QTL分析。结果表明,在染色体1BS上检测到一个主效的QTL即QYr-hwwg-1B。该QTL由抗病亲本宁7840提供,位于SNP标记Xsnp3620和Xsnp5435之间,区间长度为2.5cM,可解释55.8%的表型变异。根据宁7840的小种抗性推测QYr-hwwg-1B可能是由来自1B/1R易位系的抗病基因Yr9引起的。抗性基因Yr9、Yr10、Yr15、Yr24、Yr26、YrH52和YrAlp均位于小麦1B染色体短臂的一端,形成一个抗条锈基因簇,并与SSR标记Xgwm11紧密连锁。另外,有56个SNP标记与该标记区间共分离,可以用于小麦抗条锈基因精细定位图谱的构建及分子标记辅助选择育种。  相似文献   

7.
为了发掘新的抗赤霉病基因,以抗赤霉病新种质N553与扬麦13构建的包含184个家系的重组自交系(RILs)为材料,利用217对在双亲间具有多态性的分子标记构建遗传连锁图谱,利用该图谱对小穗密度、株高及赤霉病抗性进行QTL检测,并分析了小穗密度及株高与赤霉病抗性的相关性。结果表明,本研究共检测到5个赤霉病抗性相关QTL,其中1个效应较大的QTL位于2D染色体上,位于标记wmc18-cfd233之间,可解释8.17%~11.42%的表型变异;在3B染色体短臂上检测到1个QTL,位于标记barc102-gwm533之间,可解释5.33%~42.96%的表型变异。QFhb.jaas-2DS与QFhb.jaas-3BS聚合可显著增强小麦赤霉病抗性。另外3个QTL贡献率小于10%,分别位于染色体2B、3B、4A上。检测到与小穗密度相关的QTL有1个,位于3B染色体上,可解释5.36%~6.08%的表型变异。检测到与株高相关的QTL有5个,分别位于染色体4A、7A、5B、6B上,可解释5.2%~8.93%的表型变异。小穗密度与赤霉病抗性呈正相关,株高与抗扩展抗性无相关性,与抗侵染抗性呈负相关。结合以上QTL检测及相关性分析结果可知,QFhb.jaas-3BL可能不是赤霉病抗性位点。因此,包括QFhb.jaas-3BL在内的贡献率小于10%且仅在单一环境下检测到的3个赤霉病抗性相关QTL需进一步进行多年多点试验。  相似文献   

8.
利用BSA法发掘玉米抗灰斑病主效QTL   总被引:1,自引:0,他引:1  
以玉米高抗灰斑病自交系齐319与高感病自交系Ye478构建的RILS(重组自交系)为试材,通过两年田间表型鉴定,选取极端表型家系高抗16个,高感15个,利用SSR分子标记,并结合群体分离分析方法(BSA)筛选玉米抗灰斑病连锁标记并进行基因定位。结果表明,在玉米第1连锁群上检测到1个主效抗病基因位点(QTL),与两侧的分子标记umc2614和bnlg1803遗传图距分别为4.74 c M和3.78 c M,该抗病基因位点可解释40.9%的表型变异率,抗病基因来源于齐319,加性效应达到了-7.817 5。  相似文献   

9.
为挖掘更多的茎基腐病抗性QTL用于分子标记辅助育种,以中抗茎基腐病品种CI12633和感茎基腐病品种扬麦158的重组自交系群体为材料,采用SSR和SNP等分子标记对群体中的94个家系进行基因型分析,绘制遗传连锁图,并结合3次室内群体的茎基腐病抗性鉴定结果对小麦茎基腐病抗性QTL进行定位。结果表明,与小麦茎基腐病抗性相关的QTL分布在1D、2B、3B(2)、7A和7D染色体上,可解释9.2%~14.6%的表型变异;1D和3B染色体上的抗性QTL来自CI12633,2B、7A和7D染色体上的抗性QTL来自扬麦158;1D、2B和3B(与Chr3B_479785994紧密连锁)染色体上的抗性QTL为茎基腐病抗性主效QTL。发现的QTL及其紧密连锁的分子标记可为今后开展抗茎基腐病小麦分子标记辅助育种提供帮助。  相似文献   

10.
为定位小麦品系XN6426抽穗期相关基因,在可控温室(温度16~25℃,日光照≥16h)和田间分别种植XN6426×京411F2代群体、早抽穗亲本XN6426和晚抽穗亲本京411,分析F2群体抽穗期表型,得出该表型由两对基因控制。构建温室条件下F2群体的极端早抽穗和极端晚抽穗期DNA池(BSA法),采用小麦90KSNP芯片分析得出早晚抽穗期池间差异SNP位点在不同染色体上的分布频率和相应密集区域;在5A染色体上筛选出双亲和早晚抽穗期池间有多态性且分布在差异SNP位点密集区域附近的SSR标记Xbarc151和Xwmc327,这两对标记检测群体的基因型与其抽穗期表型之间极显著负相关。检测Xbarc151、Xwmc327以及亲本间有多态性的标记Xgwm186和Xwmc96在F2群体内的基因型,并结合群体相应抽穗期表型,利用复合区间作图法,在5A染色体标记Xbarc151和Xwmc327之间检测到了1个抽穗期相关QTL位点qHD-5A-1,距离两标记的遗传距离分别为1.00cM和11.49cM,LOD值为3.68,贡献率为8.07%,结合前人结果初步确定该位点与Vrn-A1位点不同,可能为已知抽穗期相关基因的未知等位变异或新基因位点。  相似文献   

11.
三个小麦赤霉病抗源的抗性QTL定位   总被引:7,自引:1,他引:7       下载免费PDF全文
为寻找小麦赤霉病抗性基因及可用于分子标记辅助育种的抗性连锁标记.对中国的三个小麦赤霉病抗源苏麦3号、望水白和宁894037进行了抗性QTL的定位研究。SSR、AFLP分析与QTL分析结果表明,尽管三个抗源的来源和遗传背景并不同,但均在3B染色体短臂上发现抗性主效QTL,不同遗传群体所获得的QTL位点所处的染色体区段略有差异,位于QTL两翼的SSR标记也有所不同。苏麦3号的赤霉病抗性主效QTL位于3B染色体上的标记区间Xgwm533~Xgwm493内;宁894037的抗性位点分布于3B和6B染色体上。分别定位于标记Xgwm493~Xbarcl33和Xgwm644-Xgwm518之间;望水白的抗性主效QTL也位于3B染色体上.定位于标记Xgwm493~Xbarc147之间。微效QTL由于遗传群体的不同,分别住于1B、3B和2A染色体上。研究还表明,寻找抗性QTL在3B染色体以外的新抗源十分必要。  相似文献   

12.
粒重是影响小麦产量的主要因素之一。QGw.nau-5A是一个从我国小麦骨干亲本南大2419中鉴定的粒重主效QTL。为评价该QTL不同等位基因对粒重的效应及在育种中的应用潜力,利用分子标记辅助选择技术,分别将南大2419和早洋麦的QGw.nau-5A区段导入望水白和川麦42,构建了不同背景的近等基因系,并比较了不同背景下粒重QTL的效应。结果表明,QGw.nau-5A能在不同背景下显著提高小麦粒重,与轮回亲本相比,近等基因系的百粒重显著增加0.2~0.6g。QGw.nau-5A等位变异对粒重的贡献存在差异,与川麦42的等位变异相比,南大2419和早洋麦的等位变异均能增加粒重,但后者效应更大。  相似文献   

13.
为加强对小麦赤霉病抗源H35抗赤霉性(简称“抗赤性”)遗传机制的了解,应用植物数量性状主基因 多基因混合遗传模型对抗赤霉病品种H35与感赤霉病品种安农8455杂交组合P1、F1、P2、B1、B2和F2的6家系世代群体抗赤性进行了多世代联合分析。结果表明,H35/安农8455组合抗赤性受两对主基因 多基因的加性-显性-上位性多基因控制(E-1-0模型),该组合的B1、B2和F2群体抗赤性主基因遗传率为79.14%~93.93%,多基因遗传率为0.32%~16.09%,表明该组合抗赤性是由2对主基因 多基因相互配合控制遗传的。  相似文献   

14.
基于实验室前期构建的吉846(高抗)/掖3189(感病)含273个家系的F7重组自交系(RIL)群体的连锁图谱,进一步筛选多态性的SSR标记加密图谱,结合3年抗病鉴定结果对玉米抗丝黑穗病进行QTL定位。结果表明,将亲本间存在差异的66个新SSR标记加密到遗传图谱中,构建含160个SSR标记和49个AFLP标记的遗传连锁图谱,覆盖玉米基因组3302.8 cM,平均图距15.8 cM。应用完备区间作图法共检测到3个抗丝黑穗病相关QTL,分别位于染色体bin2.09、bin3.04和bin9.04区域。利用混合线性模型法检测到7个未报道的抗病相关QTL,分别位于染色体bin2.05、bin6.02、bin8.05、bin9.01、bin10.03和bin10.07区域。  相似文献   

15.
为评价湖北省小麦品种(系)的赤霉病抗性水平,对湖北省2008年以来选育的183份小麦新品系和2000年以来审定的30个小麦品种的赤霉病抗性进行了田间接种鉴定,并通过系谱分析对审定的30个小麦品种的赤霉病抗性来源进行了推测。结果显示,在183个参试品系中,对赤霉病抗性达到中感及以上水平的品系占27.32%,其中2010-2011年度和2011-2012年度中感赤霉病品系所占比例分别为42.31%和30.00%,比前两年有明显的提高。2000年以来湖北省审定的30个小麦品种的赤霉病抗性以中感为主,占56.7%,只有2个品种的赤霉病抗性达到中抗。对审定品种的系谱分析表明,湖北省小麦品种赤霉病抗性主要来源于南大2419及其衍生系、阿夫及其衍生系、太谷核不育抗病材料,部分品种的赤霉病抗性可能有多个来源,如鄂麦24、鄂麦25、鄂麦26和荆麦103等。推测湖北省当前主导品种鄂麦596、鄂麦352、襄麦25和襄麦55抗性来源都为南大2419,赤霉病抗性来源单一的问题仍较为突出。  相似文献   

16.
为了解Lr1基因在小麦育种中的利用情况,通过PCR分子标记技术检测了小麦抗叶锈病基因Lr1在小麦骨干亲本南大2419、阿夫、燕大1817和碧蚂4号及其328个衍生品种中的分布情况。结果显示,Lr1基因在4个骨干亲本衍生品种中的频率为:燕大1817(80.0%)阿夫(78.1%)南大2419(54.3%)碧蚂4号(32.4%);Lr1基因在各个亲本衍生后代的最高频率分别是:阿夫子三代90.0%,燕大1817子三代100.0%,南大2419子五代100.0%,碧蚂4号子三代45.0%。Lr1基因的分布频率呈现出从冬小麦区到春小麦区上升的趋势。研究表明骨干亲本的选用更注重其综合性状而非是否含有Lr1基因,环境条件、亲本和杂交方式的选择及其相互作用影响了Lr1基因在骨干亲本衍生品种中的分布形势,其基因的表现型可能与选择牵连效应有关。  相似文献   

17.
小麦抗赤霉病鉴定及其抗病基因的检测   总被引:1,自引:0,他引:1  
小麦赤霉病是由镰刀菌和禾谷镰孢菌引起的小麦真菌病害,严重影响小麦的产量与品质。为了筛选适合黄淮麦区利用的抗病品种资源,于2017-2018年度利用单花滴注对107份黄淮麦区小麦资源进行田间赤霉病抗性鉴定;同时利用与 Fhb1、 Fhb2、 Fhb4和 Fhb5共4个与抗赤霉病相关QTL紧密连锁的8个分子标记对供试小麦材料进行了检测。经鉴定,扬富麦101表现为抗赤霉病(R),宁麦13、宁麦资119、扬麦16等12个品种表现为中抗赤霉病(MR);分子标记检测发现,这些抗赤霉病品种携带1个或多个抗赤霉病QTL位点,其中 Fhb1基因及其基因组合效应最为明显, Fhb1可以作为主要抗性基因应用于小麦赤霉病抗性育种。  相似文献   

18.
为了明确小麦抗赤霉病主效QTL的抗病效应,基于分子标记辅助选择,将来源于抗病品种苏麦3号的Fhb1、Fhb2和望水白的Fhb4、Fhb5回交导入感病品种矮抗58中,构建出30个不同QTL组合的株系,分别采用单花滴注和喷洒孢子悬浮液接种法,对其开展抗侵入、抗扩展和综合抗性鉴定。结果表明,携带Fhb1和Fhb2的株系表现出显著的抗扩展能力,Fhb1的效应显著高于Fhb2,但二者都没有抗侵入效应;携带Fhb4和Fhb5的株系表现出明显的抗侵入性,二者累加后效应更显著,但均没有明显的抗扩展能力;不同抗性类型的QTL聚合后,其综合抗病性比单个QTL更显著。说明在育种中,将不同抗性类型的QTL聚合后比单个QTL的抗赤霉病效果更佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号