首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This study investigated the effects of brief hot water and thiabendazole (TBZ) postharvest dip treatments on ultrastructural changes of fruit epicuticular wax (ECW), TBZ residues, decay development and quality traits of ‘Tarocco’ oranges [Citrus sinensis (L.) Osbek] subjected to cold quarantine, subsequent simulated transport and shelf-life. Commercially mature fruit were submerged in water at 20 °C (control fruit) or TBZ at 1000 mg/L and 20 °C for 60 s, or in hot water without or with TBZ at 300 mg/L and 53, 56, or 59 °C for 60, 30, and 15 s respectively. Following treatments, fruit were stored for 3 weeks at 1 °C (simulated quarantine conditions for fruit disinfestations against Mediterranean fruit fly, Medfly), followed by 4 days at 3 °C (simulated long distance transport), and finally kept at 20 °C for 3 days (shelf-life, SL). Scanning electron microscopy (SEM) analysis of ‘Tarocco’ orange surface showed that the typical wax platelets, lifting around edges of wax plates and areas free of epicuticular wax (ECW), that disappeared after hot water dips at 53–59 °C for 60–15 s, become visible again after storage for 21 days at 1 °C (quarantine conditions), and changes involving the appearance of rough ultrastructure, presence large curled plates, fissured wax crusts, and areas with ECW deficiencies, became much more pronounced after shelf-life. These occurrences were related to the transient effect of hot water treatment in decay control. Conversely, treatments with 300 mg/L TBZ 53 °C for 60 s or 56 °C for 30 s effectively reduced decay after quarantine. These treatments were as effective as standard treatment with 1000 mg/L TBZ at 20 °C and produced similar TBZ residue levels in fruit, without impairing fruit quality traits such as visual appearance, weight loss, compression test, sensory attributes, juice color parameters (a*, b*, h, L*, and Chroma), and juice chemical characteristics (soluble solids content, titratable acidity, ascorbic acid, glucose, sucrose, citric acid, total phenols, total anthocyanins, and total antioxidant activity).  相似文献   

2.
The curative antifungal activity of postharvest sodium methylparaben (SMP) treatments against citrus green (GM) and blue (BM) molds was characterized on different citrus species and cultivars artificially inoculated with Penicillium digitatum or Penicillium italicum and incubated at 20 °C and 90% RH for 7 d or stored at 5 °C and 90% RH for 8 weeks plus 7 d of shelf-life at 20 °C. Effective concentrations were selected in in vivo primary screenings with ‘Valencia’ oranges. SMP at 200 mM was tested at 20, 50 or 62 °C for 30, 60 or 150 s in small-scale trials to determine the best dip treatment conditions. Dips of 200 mM SMP at 20 °C for 60 s were selected and applied alone or in combination with 25 μL L−1 of the conventional fungicide imazalil (SMP + IMZ 25). Imazalil at the very low concentrations of 25 (IMZ 25) or 50 μL L−1 (IMZ 50) were also tested. Effectiveness of SMP alone at 20 °C for 60 s was significantly higher on oranges (cvs. ‘Valencia’ and ‘Lanelate’) than on mandarins (cvs. ‘Clemenules’, ‘Nadorcott’ and ‘Ortanique’), with GM and BM incidence reductions of up to 88% after 7 d at 20 °C. SMP was compatible with IMZ 25 and consistently improved its performance, irrespective of citrus cultivars and storage conditions. All treatments were less effective on ‘Clemenules’ mandarins. On ‘Valencia’ oranges stored for 8 weeks at 5 °C and 7 d at 20 °C, the combined treatment was significantly more effective than the single treatments (reductions of GM and BM incidence of about 50–60% and 90–95%, respectively). In additional tests, 200 mM SMP dips at 20 °C for 60 s did not prevent GM on ‘Valencia’ oranges wounded, treated, inoculated with P. digitatum 24 h later, and incubated at 20 °C for 7 d. In contrast, the treatments IMZ 25 and SMP + IMZ 25 showed significant preventive activity. It can be concluded from these results that SMP aqueous solutions, especially applied at room temperature, might be an interesting nonpolluting control alternative to be included in citrus postharvest disease control programs in the future.  相似文献   

3.
The influence of dipping in ascorbic acid, citric acid and calcium chloride (AA + CA + CaCl2) solution and storage time on color, bioactive compounds content and antioxidant activity of fresh-cut mango ‘Kent’ stored at 5 °C was evaluated. The treated mangoes showed better color retention during storage than control mangoes. The dipping treatments with AA + CA + CaCl2 significantly increased the vitamin C values compared with untreated mango cubes. β-Carotene was not affected by dipping treatments and vitamin E showed a significant decline over storage time for both treated and untreated mango cubes. However, higher vitamin E values were found in treated mangoes. Dipped cubes had higher antioxidant activity measured as TEAC and %RSA than controls. In general, addition of ascorbic acid as an anti-browning agent not only retarded quality loss of fresh-cut mango cubes but also promoted significant increases in antioxidant activity in comparison with control samples.  相似文献   

4.
The objectives of this study were to determine the dose tolerance of ‘Lane Late’ navel oranges (Citrus sinensis L. Osbeck) to irradiation for phytosanitary purposes, identify the sensory attributes that may be affected by the treatment, and determine which changes, if any, influence consumer liking. ‘Lane Late’ navel oranges on Carrizo citrange (C. sinensis Poncirus trifoliate) rootstock were irradiated at target dose levels of 200, 400 and 600 Gy (actual absorbed doses were in the range of 100–300, 300–500, and 500–700 Gy, respectively) then stored for 1 d at 5 °C, 3 weeks at 5 °C (to simulate sea shipment to Asia) or 4 weeks (3 weeks at 5 °C and 1 week at 20 °C to simulate distribution to retail following sea shipment). Trained sensory panelists found increased pitting and visual damage in oranges treated at doses of 400 and 600 Gy. Consumer liking scores for appearance were significantly lower for oranges treated at 400 Gy, however, their overall liking scores for those same oranges were not significantly different than control. Color, total phenolic content, vitamin C and ORAC (oxygen radical absorbance capacity) values were not affected by irradiation. Dose effects were seen in terms of visual damage, increased weight loss and increased concentration of certain volatiles and as well as decreased SSC (soluble solids concentration) at doses 400 and 600 Gy. The primary effect of irradiation on fruit quality was external damage and pitting at doses of 400 and 600 Gy. Further research should consider pack configuration and/or combination treatments to possibly mitigate negative irradiation effects on appearance of the fruit.  相似文献   

5.
Blueberries are highly perishable and therefore it is necessary to develop strategies to increase their storage life. Two rabbiteye cultivars (‘Centurion’ and ‘Maru’) were stored at 1.5 °C in either regular air or controlled atmosphere (2.5 kPa O2 + 15 kPa CO2) for up to 6 weeks. Measurements of firmness, soluble solids content, titratable acidity, weight loss, shrivel and blemishes were combined with determinations of antioxidant activities and total phenolic content. Weight loss and shrivel were not affected by storage atmosphere or storage duration. After 28 days, controlled atmosphere storage resulted in only half as much blemished fruit compared with storage in regular air. Additionally, fungal development in ‘Maru’ fruit was minimised by controlled atmosphere storage.Water-soluble extracts from ‘Centurion’ fruit had higher antioxidant activities and total phenolic content than those from ‘Maru’ fruit at harvest and after storage in regular air and controlled atmosphere. The highest increases in antioxidant activity and total phenolic content occurred during the additional 6 days of shelf-life at 20 °C.  相似文献   

6.
Penicillium digitatum is the most devastating postharvest pathogen of citrus. In addition, Penicillium expansum is the main pathogen of pome fruit, although recent studies have demonstrated its ability to infect oranges under some conditions. In this study, we evaluated wound response in ‘Valencia’ oranges harvested at three different maturity stages and the effect of wound response on the establishment of both pathogens when fruit were stored at two different temperatures (20 and 4 °C). The effect of wounding and pathogen inoculation on lignin content, was also quantified. Lastly, the expression of several phenylpropanoid pathway-related genes was also analyzed by semi-quantitative RT-PCR. Results indicated that, in general, P. digitatum exhibited lower decay incidence and severity as time between wounding and inoculation increased. Decay incidence and severity were higher in fruit from the over-mature harvest than in fruit from immature and commercial harvests. P. expansum was able to infect fruit at 20 °C but lesions were small compared to lesion size of fruit stored at 4 °C. Lignin content in wounded fruit (control) and in samples wounded and inoculated with P. expansum was highest in fruit from the immature harvest at 7 d post-wounding and inoculation. Wounded fruit had higher expression of pal1, comt1 and pox1 genes at 48 h than at 24 h. However, samples inoculated with P. digitatum showed lower expression at 48 h than at 24 h. Our results indicated that maturity and storage temperature play an important role in orange wound response.  相似文献   

7.
Mandarins are very prone to losing flavor quality during storage and, as a result, often have a short shelf life. To better understand the basis of this flavor loss, two mandarin varieties (‘W. Murcott’ and ‘Owari’) were stored for 0, 3 and 6 weeks at either 0 °C, 4 °C, or 8 °C plus 1 week at 20 °C, and then evaluated for sensory attributes as well as quality parameters and aroma volatile profile. The experiment was conducted multiple times for each variety over two seasons, using three separate grower lots per experiment. Flavor quality was reduced in ‘Owari’ following 4 weeks of storage as off-flavor increased, while for ‘W. Murcott’ the hedonic score decreased after the fruit were stored for 7 weeks. Sensory panelists also noted a decline in tartness during storage for both varieties that was associated with an increase in the ratio of soluble solids concentration (SSC) to titratable acidity (TA). Large increases in alcohols and esters occurred during storage in both varieties, a number of which were present in concentrations in excess of their odor threshold values and are likely contributing to the loss in flavor quality. Thirteen aroma volatiles, consisting mainly of terpenes and aldehydes, declined during storage by up to 73% in ‘Owari’, only one of which significantly changed in ‘W. Murcott’. Although many of these volatiles had aromas characteristic of citrus, their involvement in flavor loss during storage is unclear. ‘W. Murcott’ stored at 8 °C had slightly superior flavor to fruit stored at either 0 °C or 4 °C, and the better flavor was associated with higher SSC/TA and lesser tartness. Aroma volatiles did not play a role in the temperature effect on flavor as there were no significant differences in volatile concentrations among the three temperatures. There was no effect of storage temperature on the flavor of ‘Owari’.  相似文献   

8.
Preventive and curative activities of postharvest treatments with selected chemical resistance inducers to control postharvest green (GM) and blue (BM) molds on oranges (cvs. ‘Valencia’ or ‘Lanelate’) artificially inoculated with Penicillium digitatum and Penicillium italicum, respectively, were evaluated. In vivo primary screenings to select the most effective chemicals and concentrations were performed with benzothiadiazole (BTH), β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA), sodium silicate (SSi), salicylic acid (SA), acetylsalicylic acid (ASA) and harpin. INA at 0.03 mM, SA at 0.25 mM, BABA at 0.3 mM and BTH at 0.9 mM were selected and tested afterwards as dips at 20 °C for 60 or 150 s with oranges artificially inoculated before or after the treatment and incubated for 7 d at 20 °C. Although it was an effective treatment, SSi at 1000 mM was discarded because of potential phytotoxicity to the fruit rind. Preventive or curative postharvest dips at room temperature had no effect or only reduced the development of GM and BM very slightly. Therefore, these treatments cannot be recommended for inclusion in postharvest decay management programs for citrus packinghouses.  相似文献   

9.
In this study, the influence of sustained deficit irrigation (SDI; 32% of reference evapotranspiration (ET0)) on physicochemical and sensory quality and bioactive compounds of pomegranates stored for 30, 60 and 90 days in air at 5 °C + 4 days at 15 °C, at each storage period, was studied and compared to a control (100% ET0). Fruit from SDI had higher peel redness and greater firmness, soluble solids contents, vitamin C (27%), phloretin (98%) and protocatechuic acid (10%) levels, and total antioxidant capacity (TAC) (46%) than the control. Cold storage and shelf-life did not induce significant changes in soluble solids, pH, titratable acidity, and chroma and Hue. SDI fruit had retarded development of chilling injury (CI) symptoms, which appeared after 60 days of storage in comparison to 30 days in the controls. Anthocyanins, catechin, phloretin and protocatechuic, caffeic, p-coumaric and caffeic acids contents had greater increases in SDI fruit than in controls throughout the postharvest life. TAC was significantly (P < 0.05) correlated to anthocyanins, gallic acid and total vitamin C contents. Generally, after long term storage, the fruit grown under SDI showed higher sensory and nutritional quality, more health attributes and a longer shelf-life (up to 90 days at 5 °C + 4 at 15 °C) than fruit irrigated at 100% ET0.  相似文献   

10.
The effects of different modified atmosphere packaging (MAP) on antioxidant compounds and storage quality of ‘Hicrannar’ sweet pomegranates were investigated during long term storage. Pomegranates were harvested at the commercial harvest stage and packed in two different types of MAP (MAP1 and MAP2). After packaging, all fruit were stored at 6 °C and 90–95% RH for 120 days, then removed from storage for different quality analyses. Some fruit were kept at 20 °C for 3 days to simulate a period of shelf-life. Fruit weight loss, decay index, skin color, total titratable acidity, total soluble solids content, total phenolics, total anthocyanins and antioxidant activity were determined. Internal atmospheres created by the MAP were periodically assessed during cold storage, and CO2 concentrations increased and O2 concentrations decreased inside the MAP. MAP significantly reduced weight loss after both 120 days of cold storage and shelf-life. MAP2 was the most effective packaging in reducing weight loss. Storage of pomegranates in MAP also reduced decay and the decay index, and maintained visual appearance compared to control fruit. During storage, a decrease in L* and C* values and an increase in h° values were observed in all treatments. However, fruit stored in MAP2 had higher L*, C* and lower h° values than in other treatments. Titratable acidity and total soluble solids decreased after cold storage and shelf-life, and no significant differences among treatments were found. Total phenolics, total anthocyanin contents and antioxidant activity increased during the storage period in control fruit.  相似文献   

11.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

12.
‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) plums were treated preharvest with methyl jasmonate (MeJA) at three concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). Both control and treated fruit were harvested at the commercial ripening stage and stored in two temperature conditions: 9 days at 20 °C or at 2 °C + 1 day at 20 °C for 50 days. Preharvest MeJA at 2.0 mM significantly accelerated whereas 0.5 mM delayed the postharvest ripening process for both cultivars, since ethylene production, respiration rate and softening were reduced significantly at the two storage conditions for 0.5 mM. In these fruit, total phenolics, total antioxidant activity (hydrophilic fraction, HTAA) and the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were found at higher levels in treated than control plums during postharvest storage, which could account for the delay of the postharvest ripening process and the extension of shelf-life.  相似文献   

13.
The effect of pre-processing storage time and temperature on post-cutting quality of two artichoke cultivars (‘Catanese’ and ‘Violetto Foggiano’) was studied. Artichoke heads were harvested in January 2010 for ‘Catanese’ and in March 2011 for ‘Violetto Foggiano’ from commercial plantations. Freshly harvested artichoke heads were stored at 0, 5, and 12 °C in a humidified flow of air. Initially, and after 3 and 7 days of storage, respiration rate, weight loss, and electrolytic leakage were monitored. Moreover, at each sampling, artichokes were cut in quarters and stored for additional 3 days at 5 °C. On cut artichokes, soon after cutting and after post-cutting storage, visual appearance, color attributes (on outer bract surface, on cut bracts, and on cut receptacle surface) and phenol content were determined. Time and temperature of storage influenced quality attributes of cut artichokes, but to a different extent depending on the cultivar, whereas temperature did not affect the phenol content. ‘Violetto Foggiano’ artichokes benefited from pre-cutting low storage temperature (0 °C), whereas ‘Catanese’ showed physiological injuries on outer bract surfaces, where brown spots occurred. In both cases low temperatures during pre-cutting storage (5 and 0 °C) reduced the browning rate of the cut surface which maintained a higher L* value, compared to artichokes stored at 12 °C. Moreover, pre-cutting storage at 12 °C resulted in a reduction of quality of artichokes due to growth of floral primordia in the form of reddish tissues at the base of the receptacle for both cultivars. Management of storage conditions before cutting is therefore critical in fresh-cut processing operations of artichokes.  相似文献   

14.
The potential of 1-MCP for controlling ripening in ‘Angeleno’ plum fruit under air and controlled atmosphere (CA) storage was explored, and the possibility that 1-MCP can inhibit development of brown rot caused by Monilinia laxa and internal breakdown in ‘Fortune’ and ‘Angeleno’ plums tested. After harvest, fruit were exposed to 300 and 500 nl l−1 (in 2003) and 500 nl l−1 1-MCP (in 2004) at low temperatures (0–3 °C) for 24 h. After treatment the plums were stored in air at 0 °C and ‘Angeleno’ fruit were also stored in CA storage (1.8% O2 + 2.5% CO2). Following storage, fruit were kept at 20 °C. In ‘Angeleno’ fruit, 1-MCP was effective in delaying the loss of firmness and colour changes during holding at 20 °C. 1-MCP reduced brown rot in fruit stored in CA but no significant reduction was found in air storage. Internal breakdown, a major physiological storage disorder in plums, was inhibited by 1-MCP treatment. Furthermore, since 1-MCP applied in air storage showed better results than the control in CA conditions, an application of 1-MCP before air storage could be the best way to reduce the ripening process for short or medium storage periods (40 and 60 days). CA storage plus 1-MCP treatment could be used for long periods (80 days).  相似文献   

15.
Freshly cut slices of apple (Malus x domestica Borkh cv. Granny Smith) were fumigated with nitric oxide (NO) gas at concentrations between 1 and 500 μl l−1 in air at 20 °C for up to 6 h followed by storage at 0, 5, 10 and 20 °C in air. Exposure to nitric oxide delayed the onset of browning on the apple surface with the most effective treatment being fumigation with 10 μl l−1 NO for 1 h. While nitric oxide inhibited browning in slices held at all temperatures, it was relatively more effective as the storage temperature was reduced with the extension in postharvest life over the respective untreated slices increasing from about 40% at 20 °C to about 70% at 0 °C. In a smaller study on ‘Royal Gala’, ‘Golden Delicious’, ‘Sundowner’, ‘Fuji’ and ‘Red Delicious’ slices stored at 10 °C, 10 μl l−1 NO for 1 h was found to be effective in inhibiting surface browning in all cultivars.  相似文献   

16.
The effect of γ-irradiation doses (0.3, 0.5, 0.7, 1.0, 6.0, 10.0 kGy) on different physico-chemical and visual properties of two Indian cultivars of mango, cv. ‘Dushehri’ and ‘Fazli’ was observed during storage at 20 °C for the evaluation of delayed ripening and extension of shelf-life. Visually all the irradiated fruit showed greener peel and lighter pulp throughout the storage, however, radiation injuries were present in ‘Dushehri’ treated with 6–10 kGy and in ‘Fazli’ with 1–10 kGy. Loss of fruit due to rotting was less in the irradiated samples, treated up to 1 kGy of both the cultivars. Irradiated fruit of both the cultivars at high doses (6–10 kGy) showed increased sugar content from 0 d, however, all the treated fruit registered a slower rate of increase of sugars with storage compared to the respective controls and those treated with the lower doses of 0.5 and 0.7 kGy attained peak sugar concentration later. Significant (p  0.05) textural deterioration could be detected immediately after irradiation, in ‘Dushehri’ at doses ≥1 kGy and in ‘Fazli’ at doses ≥0.7 kGy. However, low dose treated fruit (0.3–1 kGy) of both the cultivars softened at a considerably slower rate during storage and registered significantly greater fruit firmness (compression strength) throughout the storage period. Similarly, ‘Dushehri’ treated with 0.3–0.7 kGy and Fazli treated with 0.7 kGy registered significantly greater flesh firmness (shear strength). ‘Dushehri’ treated with 0.3–1 kGy and ‘Fazli’ with 0.5–1 kGy also registered significantly harder and tougher peel, as determined by puncture test, throughout the storage. Scanning electron microscopy (SEM) performed on 3rd and 2nd d of storage of ‘Dushehri’ and ‘Fazli’ respectively, revealed microstructural breakdown at and above 1 kGy in both cultivars. Cell separation could be observed in ‘Fazli’ even at 0.7 kGy. SEM also revealed that the control fruit were in a more advanced stage of ripening than the low dose treated fruit. The study showed the feasibility of low dose γ-irradiation on ‘Dushehri’ (0.3–0.7 kGy) and ‘Fazli’ (0.5 and 0.7 kGy) that induced useful delay in ripening and extension of shelf-life by a minimum of 3 and 4 d, respectively.  相似文献   

17.
‘Big Top’ and ‘Venus’ nectarines and ‘Early Rich’ and ‘Sweet Dream’ peaches were picked at commercial maturity and stored for 20 and 40 d at −0.5 °C and 92% RH under either air or one of the three different controlled atmosphere regimes (2 kPa O2/5 kPa CO2, 3 kPa O2/10 kPa CO2 and 6 kPa O2/17 kPa CO2). Physicochemical parameters and volatile compounds emission were instrumentally measured after cold storage plus 0 or 3 d at 20 °C. Eight sensory attributes were assessed after cold storage plus 3 d at 20 °C by a panel of 9 trained judges, in order to determine the relationship between sensory and instrumental parameters and the influence of storage period and cold storage atmosphere composition on this relationship.A principal component analysis (PCA) was undertaken to characterize the samples according to their sensory attributes. PCA results reflected the main characteristics of the cultivars: ‘Big Top’ was the nectarine cultivar with the highest values for sweetness, juiciness and flavor; ‘Sweet Dream’ was the sweetest peach and was characterized by high values for crispness and firmness, while ‘Venus’ and ‘Early Rich’ were characterized by their sourness. To assess the influence of storage period and CA composition on sensory properties, a PLS model of the flavor of the different samples was constructed using standard quality attributes and volatile concentrations as the X-variables. The model with 2 factors accounted for more than 80% of flavor variance. PLS results indicated that the main influence on flavor perception was storage period. Atmosphere composition also had an influence on flavor perception: flavor perception decreased from samples stored in a 2/5 O2/CO2 atmosphere composition to those of 3/10 and 6/17. These results can be qualitatively extended to juiciness and sweetness since all these sensory properties were strongly correlated.  相似文献   

18.
Fresh blueberries have become a popular new functional food because of their remarkably high levels of antioxidant phytonutrients and health benefits. However, the potential prevalence of human pathogens on blueberries has become an increased concern because they are consumed fresh. Procedures effective in decontamination and extending shelf life without affecting fruit quality are needed. Electron-beam irradiation was applied to fresh blueberries at the doses ranging from 0.5 to 3.0 kGy and its effectiveness for inactivating Escherichia coli (E. coli) K-12 and extending shelf life were investigated. The decimal reduction dose, D10 values, of E. coli in cultural medium and blueberries were 0.43 ± 0.01 kGy and 0.37 ± 0.015 kGy, respectively. Irradiation reduced bacteria inoculated on blueberries from 7.7 × 108 CFU/g to 6 CFU/g at 3.13 kGy and decreased the decaying of blueberries stored at 4 °C up to 72% and at room temperature up to 70% at this dose. No significant effect on the total monomeric anthocyanins, antioxidant activity, and l-ascorbic acid content of blueberries was observed from irradiation at doses ≤3 kGy. However, significant decreases in the antioxidant activity and l-ascorbic acid content were found in both control and irradiated blueberries after storage at 4 °C for 7 and 15 d. Information obtained in this study indicates that low dose electron-beam irradiation is effective in reducing E. coli and extending shelf life while maintaining the antioxidant properties of blueberries.  相似文献   

19.
Guava (Psidium guajava L. cv. ‘Allahabad Safeda’) fruit harvested at the mature light-green stage were exposed to 300 and 600 nL L−1 1-methylcyclopropene (1-MCP) for 6, 12 and 24 h at 20 ± 1 °C, and held in either cold storage (10 °C) for 25 days or ambient conditions (25–29 °C) for 9 days. Most of the physiological and biochemical changes during storage and ripening were affected by 1-MCP in a dose dependent manner. Ethylene production and respiratory rates were significantly suppressed during storage as well as ripening under both the storage conditions depending upon 1-MCP concentration and exposure duration. 1-MCP treatment had a pronounced effect on fruit firmness changes during storage under both the conditions. The reduced changes in the soluble solids contents (SSC), titratable acidity (TA) and vitamin C content showed the effectiveness of 1-MCP in retarding fruit ripening. Vitamin C content in 1-MCP-treated fruit was significantly higher than in non-treated fruit, and those treated with 300 nL L−1 1-MCP for 6 h. The development of chilling injury symptoms was ameliorated to a greater extent in 1-MCP-treated fruit during cold storage and ripening. A significant reduction in the decay incidence of 1-MCP-treated fruit was observed under both the storage conditions. 1-MCP at 600 nL L−1 for 12 h, in combination with cold storage (10 °C) seems a promising way to extend the storage life of guava cv. ‘Allahabad Safeda’ while 1-MCP at 300 nL L−1 for 12 and 24 h or 600 nL L−1 for 6 h, may be used to provide 4–5 days extended marketability of fruit under ambient conditions.  相似文献   

20.
The effects of four cut types (wedges, slices, 1/2 and 1/4 slices) of ‘Lisbon’ lemons (Citrus lemon L.) and storage at four temperatures (0, 2, 5 and 10 °C) on post-cutting life were studied. Respiration rates of all cut types that were stored at 0, 2 and 5 °C up to 8 days were 2–5 times higher than those of the whole lemons, while the increase was up to 12-fold at 10 °C. Small differences among treatments were observed in the post-cutting changes of color parameters and chemical composition. Based on sensory analysis, the four cut types remained marketable for up to 7 days at all tested temperatures, but only the wedges, slices, and 1/2 slices stored at 0, 2 and 5 °C preserved their sensory attributes for up to 10 days. Good retention of vitamin C (about 85% ascorbic acid and 15% dehydroascorbic acid) and antioxidant capacity were found after 10 days at 0, 2, and 5 °C. Ethanol was the main fermentative metabolite found (88% of the total) and its concentration increased by up to three-fold in slices, 1/2 and 1/4 slices after 10 days at 10 °C. Total phenolics concentrations decreased gradually throughout the storage period in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号