首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The present study was conducted to determine the criteria for selecting good quality embryos on Day-2 post-insemination and at the blastocyst stage. Bovine oocytes were matured, fertilized and cultured in vitro. First, Day-2 embryos were classified based on the number of blastomeres into 2-cell, 3- to 4-cell, 5- to 8-cell and >8-cell stage embryos; chromosome samples were then prepared. In the second experiment, the Day-2 embryos classified according to the number of blastomeres were cultured separately for an additional 6 days (Day 8). The resultant Day-8 blastocysts from each group of Day-2 embryos were classified into the following 3 grades based on morphology and diameter: Grade A, hatched and hatching blastocysts; Grade B, expanded blastocysts; and Grade C, unexpanded blastocysts. Chromosome samples were then prepared. The 5- to 8-cell stage Day-2 embryos had the lowest incidence of chromosomal abnormalities (13.5%, P<0.05) and the highest development rate to blastocysts (59.2%, P<0.05). Furthermore, the blastocysts derived from the 5- to 8-cell stage embryos had the largest mean number of cells (102.8+/-42.4, P<0.05), largest number of metaphases per blastocyst (9.5+/-4.8, P<0.05) and lowest incidence of chromosomal abnormalities (24.6%, P<0.05). The Grade A blastocysts had the largest mean number of cells (136.6+/-33.4, P<0.05), a large number of metaphases per blastocyst (11.9+/-5.5, P<0.05) and a low incidence of severe chromosomal abnormalities (17.3%). The results showed that, at Day 2, the 5- to 8-cell stage embryos were of better quality since they had the lowest incidence of chromosomal abnormalities and the highest blastocyst rate and the resultant blastocysts had the largest number of cells and lowest incidence of chromosomal abnormalities. In particular, selection of Grade A blastocysts can improve the development rate to term.  相似文献   

2.
The present study was conducted to determine the relationship between embryonic development speed at different stages (the cleaved stage at 52 h and the blastocyst stage at 6 days post insemination) and incidences of chromosome abnormalities in in vitro produced porcine embryos. Porcine oocytes were collected from 3-6-mm ovarian follicles obtained at a slaughterhouse and matured in modified NCSU-37 medium for 44-46 h. Following in vitro fertilization with a final concentration of 1 x 10(5) sperm/ml for 3 h, all oocytes were cultured in vitro for 52 h. Day-2 (52 h after insemination) embryos were classified according to their cleaved stages into 2-cell, 3- to 4-cell, 5- to 8-cell, and >8-cell stages; these were cultured separately for additional 4 days (Day 6). The resultant Day-6 blastocysts were classified according to the morphological diameter into 3 grades: Grade A, expanded blastocysts; Grade B, expanding blastocysts; and Grade C, early blastocysts. They were then analyzed chromosomally. The 3- to 4-cell and 5- to 8-cell embryos had significantly high blastocyst development rates (46.1 and 36.9%, respectively), and these blastocysts contained significantly more cells (40.2 and 42.4 cells, respectively) than those derived from 2-cell embryos and >8-cell embryos (28.6 and 26.5 cells, respectively). The incidence of chromosomal abnormalities was significantly higher in the blastocysts derived from 2-cell and >8-cell stage embryos than in the blastocysts derived from the other stage embryos. Furthermore, the grade A blastocysts had the lowest incidence of chromosomal abnormalities (35.3%) and contained the most cells (48.7 cells). Porcine in vitro production (IVP) yielded a high blastocyst rate and an excellent embryo quality when 3- to 4-cell and 5- to 8-cell stage embryos were selected on Day 2 after insemination. The same criteria yielded a higher quality of expanded blastocysts based on the stage of embryo development and morphology.  相似文献   

3.
This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2–4-cell embryos, 8–16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages.  相似文献   

4.
The quality of porcine blastocysts produced in vitro is poor in comparison with those that develop in vivo. We examined the quality of in vitro‐matured and fertilized (IVM/IVF) oocytes, their abilities to develop to blastocysts under in vivo and in vitro conditions, and the potential of the embryos to develop to term after transfer. IVM/IVF oocytes were either transferred and the embryos recovered on Days 5 and 6 (100% and 87.5%, respectively) (‘ET‐vivo’ embryos), or cultured in vitro for 5 or 6 days (‘IVC’ embryos). The proportion of blastocysts differed significantly between the two groups on Day 5 (20.6% and 8.0%, respectively), but not on Day 6 (23.8% and 21.2%, respectively). The mean number of cells in ET‐vivo blastocysts on Days 5 or 6 was significantly higher (72.8 and 78.7, respectively) than that in IVC blastocysts (22.1 and 39.7, respectively). When IVM/IVF oocytes and IVC blastocysts on Day 6 were transferred, all (three and three, respectively) developed to piglets (16 and 16, respectively), without any difference in the rates of development to term (2.1% and 2.6%, respectively). These data suggest that, although blastocyst production differs between the two culture conditions, IVM/IVF oocytes possess the same ability to develop to term.  相似文献   

5.
The aim of this study was to evaluate the developmental kinetics of cats' blastocysts in connection with their morphology and blastomeres allocation to trophoblast or embryoblast cells. We examined gross blastocyst morphology and the total number of blastomeres together with its allocation to inner cell mass (ICM) or trophectoderm (TE) cells in pre‐implantation feline embryos obtained from 6th to 9th day of in vitro culture. From all the investigated embryos, 61.8% developed to early blastocyst, 37.4% to full and 7.6% to hatching blastocyst stage. The total cell number (TCN) varied form 58 cells in early day 6 to 245 in hatching day 8 blastocyst, with the mean 84.9 cells in early, 156.7 in full, and 204.4 in hatching ones. Day 8 blastocyst had the highest number of total cells, together with the highest mean number of ICM regardless of its morphological assessment. Early blastocyst (apart from day 6) had the highest number of arrested cells, while dead cells were the highest in full day 9 blastocyst. More data about the relationship between blastocyst development and morphology would facilitate the selection of optimal blastocysts for further procedures.  相似文献   

6.
To improve embryo development in bovine separated blastomeres, we evaluated applicability of co‐culture with intact embryos. The morphological quality of blastocysts derived from separated blastomeres and rate of blastocyst formation were only slightly increased when the cells were co‐cultured with intact embryos, which did not provide significant differences when statistically analyzed. However, the cell count of inner cell mass (ICM), trophectoderm (TE) and total number of cells in Day 8 blastocysts were significantly higher when the cells were co‐cultured with the intact embryos than those with the cells cultured individually (P < 0.05). Transfer of four monozygotic pairs of blastocysts derived from the cells co‐cultured with intact embryos led to three pregnancies even when the blastomeres were produced by in vitro maturation and in vitro fertilization of oocytes collected by ovum pick‐up from elite cows. These results suggest that co‐culturing with intact embryos may enhance development of bovine separated blastomere.  相似文献   

7.
The occurrence of apoptosis in a fraction of blastomeres in the preimplantation embryo is well known but the consequences of this phenomenon for the developmental potential of the blastocyst has not been well established. Here we demonstrate that blastocysts with low amounts of activated group II caspase activity have increased potential for development to the hatched blastocyst stage. Bovine blastocysts produced in vitro were assayed using a non-invasive fluoregenic substrate that is cleaved by activated group II caspases (i.e., caspase-2, -3 and -7). Subsequently, blastocysts were cultured until Day 10 post-insemination and the proportion undergoing hatching determined. In Experiment 1, blastocysts were cultured without respect to stage of development (expanded or non-expanded); blastocysts classified as having low caspase activity had higher hatching rates than blastocysts with medium or high caspase activity. In Experiment 2, embryos were categorized as nonexpanded or expanded blastocysts. Caspase activity was lower and hatching rate higher for expanded blastocysts than for nonexpanded blastocysts. For nonexpanded blastocysts, embryos classified as having low caspase activity had higher hatching rates as compared to embryos with medium or high caspase activity. In conclusion, the capacity for blastocysts to undergo further development is related to degree of group II caspase activity. Conditions that enhance the incidence of apoptosis in blastocysts may reduce developmental competence. In addition, determination of caspase activity may be useful for selection of embryos for transfer into recipients.  相似文献   

8.
The objective of this study was to evaluate the in vitro development of bovine embryos encapsulated in alginate. Day-4 embryos produced in vitro (n = 110) were encapsulated with 1.5% sodium alginate and co-cultured with oviduct cells. Unencapsulated embryos (n = 106) were used as controls. In vitro development rate to the blastocyst stage at Day 7 was similar between encapsulated, 42.7%, (47/110) and control. 34% (36/106). embryos. Although encapsulated embryos were able to hatch on Day 9, they did so in a lower proportion than controls (P < 0.05). In conclusion, alginate encapsulation of bovine embryos does not disturb the in vitro development up to the blastocyst stage but significantly reduces the hatching process.  相似文献   

9.
The optimum culture system for in vitro matured and fertilised oocytes still remains to be clarified. Culture media (CM) for mammalian embryos are routinely prepared fresh for use and preserved under refrigeration during one or two weeks. The purposes of this work were (1) to compare the efficiency of a synthetic oviduct fluid (SOF) with two different bovine serum albumin (BSA) concentrations (3 and 8 g/L) for the in vitro production of bovine blastocysts, (2) to test the effect of timing on adding fetal calf serum (FCS) to the SOF, and (3) to evaluate the effects on bovine embryo development of freezing and lyophilisation as procedures for preserving the SOF. Supplementation of SOF with 3 g/L BSA increased Day-7 blastocyst expansion rates (18.3 ± 1.6 vs. 14.4 ± 0.7; P < 0.05), although no differences in hatching rates were found. Addition of FCS to SOFaa (SOF with amino acids) medium supplemented with sodium citrate (SOFaaci) at 48 and at 72 h post-insemination (PI) allowed obtaining higher Day-6 embryo development rates than when FCS was added at 18 or 96 h PI (Day-6 morulae + blastocyst rate: 30.0 ± 1.1, 40.8 ± 1.1, 43.9 ± 2.3 and 39.3 ± 0.5 for FCS addition at 18, 48, 72 and 96 h, respectively). Hatching rates were significantly improved when serum was added at 72 h PI. Finally, both refrigeration and lyophilisation appeared as useful cryopreservation procedures for SOFaaci, although a significant loss of its ability to support embryo development, compared to the control fresh culture medium, was observed.  相似文献   

10.
11.
Various somatic cell nuclear transfer (SCNT) techniques for mammalian species have been developed to adjust species-specific procedures to oocyte-associated differences among species. Species-specific SCNT protocols may result in different expression levels of developmentally important genes that may affect embryonic development and pregnancy. In the present study, porcine oocytes were treated with demecolcine that facilitated enucleation with protruding genetic material. Enucleation and donor cell injection were performed either simultaneously with a single pipette (simplified one-step SCNT; SONT) or separately with different pipettes (conventional two-step SCNT; CTNT) as the control procedure. After blastocysts from both groups were cultured in vitro, the expression levels of developmentally important genes (OCT4, NANOG, EOMES, CDX2, GLUT-1, PolyA, and HSP70) were analyzed by real-time quantitative polymerase chain reaction. Both the developmental rate according to blastocyst stage as well as the expression levels CDX2, EOMES, and HSP70 were elevated with SONT compared to CTNT. The genes with elevated expression are known to influence trophectoderm formation and heat stress-induced arrest. These results showed that our SONT technique improved the development of SCNT porcine embryos, and increased the expression of genes that are important for placental formation and stress-induced arrest.  相似文献   

12.
This study was conducted to examine the potential for implantation and sustainable fetal development of mouse embryos cultured from the pronuclear to blastocyst stage. Pronuclear embryos from ICR mice (Harlan Sprague‐Dawley) were cultured in Sydney IVF sequential media (Cook) to the blastocyst stage in medium only or co‐cultured with autologous cumulus cells. We also experimented with co‐culture in 100 µL drops. Drop co‐culture produced blastocyst formation rates with a mean of 47.0%, which was significantly higher (P < 0.05) compared to embryos cultured in identical culture conditions except without cumulus cells at 27.3%. Blastocysts obtained in vitro in Cook medium only and co‐cultured in Cook medium with cumulus cells were transferred to pseudopregnant females of ICR strain. The day of blastocyst transfer into surrogate females was designated as post‐transfer of blastocyst day 1 (PT 1). The implantation and fetal development was compared to embryo transfer of in vivo derived blastocysts, which served as controls. There were no statistical differences for implantation and fetal development rates for blastocysts cultured in vitro in either Cook medium only or co‐culture in Cook medium with cumulus cells compared to in vivo‐derived blastocysts. The advantage of the co‐culture system is in generating more blastocysts available for transfer.  相似文献   

13.
This study was performed to investigate the effects, in terms of nuclear material and actin cytoskeleton quantities (fluorescent pixel counts), of four different bovine blastocyst culturing techniques (in vitro, stepwise in vitro‐to‐in vivo, or purely in vivo). Cumulus oocyte complexes from abattoir‐sourced ovaries were matured in vitro and allocated to four groups: IVP‐group embryos developed up to blastocyst stage in vitro. Gamete intra‐fallopian transfer (GIFT)‐group oocytes were co‐incubated with semen for 4 h before transfer to oviducts of heifers. Following in vitro fertilization, cleaved embryos (day 2 of embryo development, day 2–7 group) were transferred into oviducts on day 2. Multiple ovulation embryo transfer (MOET)‐group embryos were obtained by superovulating and inseminating heifers; the heifers’ genital tracts were flushed at day 7 of blastocyst development. Within each group, ten blastocysts were selected to be differentially dyed (for nuclei and actin cytoskeleton) with fluorescent stains. A novel computer program (ColorAnalyzer) provided differential pixel counts representing organelle quantities. Blastocysts developed only in vivo (MOET group) showed significantly more nuclear material than did blastocysts produced by any other technique. In terms of actin cytoskeleton quantity, blastocysts produced by IVP and by day 2–7 transfer did not differ significantly from each other. Gamete intra‐fallopian transfer‐ and MOET‐group embryos showed significantly larger quantities of actin cytoskeleton when compared with any other group and differed significantly from each other. The results of this study indicate that culturing under in vitro conditions, even with part time in vivo techniques, may adversely affect the quantity of blastocyst nuclear material and actin cytoskeleton. The software employed may be useful for culture environment evaluation/developmental competence assessment.  相似文献   

14.
In contrast to the embryos derived from live animals, the embryos produced in vitro undergo increased damage and reduced survival after cryopreservation, particularly when produced with serum. In medium containing serum, retinoic acid increases cell numbers in the inner cell mass and the trophectoderm without altering their relative proportions in the bovine blastocyst. In this work, in medium without serum, we analyzed the contribution of retinoic acid to the development of blastocyst and survival to vitrification, and found a strong cell reduction in the inner mass when compared to the trophectoderm. Day-6 in vitro -produced morulae were treated for 24 h with retinoic acid (0.7 and 1.4 μ m ) and subsequently cultured without additives for a further 24 h period. Day-8 blastocyst production and cell counts in hatched blastocysts were unaffected by retinoic acid. However, Day-7 expanded, vitrified embryos produced with retinoic acid 1.4 μ m survived at lower rates than controls when cultured after warming. Vitrification greatly reduced cell numbers in the inner mass (p < 0.0001), while cells in the trophectoderm remained unaltered. Differential cell counts analysis in blastocysts should be taken up to replace unspecific determination of total cells to appreciate substantial modifications in their exact terms. The strong reduction we found in the inner cell mass could explain why in vitro survival to cryopreservation is sometimes scarcely informative on the viability of the embryo after transfer to recipients.  相似文献   

15.
16.
Melatonin has been reported to improve the in vitro development of embryos in some species. This study was conducted to investigate the effect of melatonin supplementation during in vitro maturation (IVM) and development culture on the development and quality of porcine embryos. In the first experiment, when the in vitro fertilized embryos were cultured with different concentrations of melatonin (0, 10, 25 and 50 ng/ml) for 8 days, the blastocyst formation rate of embryos cultured with 25 ng/ml melatonin (10.7%) was significantly increased (p < 0.05) compared to the control embryos cultured without melatonin (4.2%). The proportion of DNA‐fragmented nuclei in blastocysts derived from embryos cultured with 50 ng/ml melatonin was significantly lower (p < 0.05) than that of embryos cultured without melatonin (2.1% vs 7.2%). In the second experiment, when oocytes were cultured in the maturation medium supplemented with different concentrations of melatonin (0, 10, 25 and 50 ng/ml), fertilized and then cultured with 25 ng/ml melatonin for 8 days, there were no significant differences in the rates of cleavage and blastocyst formation among the groups. However, the proportions (2.7–5.4%) of DNA‐fragmented nuclei in blastocysts derived from oocytes matured with melatonin were significantly decreased (p < 0.05) compared to those (8.9%) from oocytes matured without melatonin, irrespective of the concentration of melatonin. Our results suggest that supplementation of the culture media with melatonin (25 ng/ml) during IVM and development has beneficial effects on the developmental competence and quality of porcine embryos.  相似文献   

17.
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The ChariotTM reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.  相似文献   

18.
Cathepsin B, a lysosomal cysteine protease of the papain family, has recently been implicated in the quality and developmental competence of bovine preimplantation embryos. In this study, to determine whether inhibition of cathepsin B activity can improve porcine oocyte maturation and early embryo developmental competence, we supplemented in vitro maturation or embryo culture media with E-64, a cathepsin B inhibitor. Cathepsin B activity was high in poor quality germinal vesicle stage oocytes, but no differences in mRNA expression or protein localization were observed between good and poor quality oocytes, which were categorized based on morphology. Following treatment with 1 μM E-64, cathepsin B activity sharply decreased in 4-cell and blastocyst stage embryos. E-64 had no effect on cell number but significantly (P < 0.05) increased blastocyst formation and decreased the number of apoptotic cells in blastocysts. It also significantly (P < 0.05) enhanced mitochondrial membrane potential in blastocysts, reducing the release of cytochrome c and resulting in decreased expression of Caspase-3 and Caspase-9. In conclusion, inhibition of cathepsin B activity in porcine parthenotes using 1 μM E-64 resulted in attenuation of apoptosis via a reduction in the release of cytochrome c from mitochondria.  相似文献   

19.
The present study investigated in vitro culture methods [droplet and Well of the Well (WOW)] using semi-defined and defined media [modified porcine zygote medium (mPZM)] and the additional effects of insulin on in vitro matured and intracytoplasmically inseminated porcine oocytes. In Experiment 1, in vitro matured and intracytoplasmically inseminated porcine oocytes were cultured for 6 days in the following four groups: 1) mPZM-3 (containing bovine serum albumin) + droplet (30 mul), 2) mPZM-3 + WOW, 3) mPZM-4 (containing polyvinyl alcohol) + droplet, and 4) mPZM-4+ WOW. The culture media (mPZM-3 and mPZM-4) and methods (droplet and WOW) did not significantly affect the cleavage rate, but the blastocyst rate of the oocytes cultured in mPZM-3 was significantly (P<0.01) higher than that of mPZM-4 (20.1 and 9.4%, respectively). The blastocyst rates as percentages of the cleaved oocytes (51.8 and 16.9%) and the hatched blastocyst rate as percentages of the number of blastocysts (12.3 and 2.2%) were also significantly (P<0.01) higher in mPZM-3 compared with those in mPZM-4. There was significant interaction (P<0.05) between the two main factors; the effects of the culture media and methods on the rate of hatched blasyocysts as percentages of the blastocysts produced and, the hatched blastocyst rate (20.3%) as percentages of the number of blastocysts produced in mPZM-3 were significantly (P<0.05) higher than in the other groups. In Experiment 2, the additional effects of insulin (100 ng/ml) in mPZM-3 and mPZM-4 media was investigated in the WOW culture system. Insulin addition did not improve cleavage, blastocyst formation, or the number of cells in blastocysts. However, as in Experiment 1, mPZM-3 resulted in a significantly higher blastocyst rate as percentages of the cleaved oocytes than mPZM-4 (33.9 and 18.4%). These results indicate that a chemically defined medium (mPZM-4) needs to be improved to provide more suitable culture conditions for in vitro development of in vitro matured and intracytoplasmically inseminated porcine oocytes. However, the WOW system may be a useful IVC method for blastocyst development of in vitro matured porcine oocytes following ICSI when a semi-defined medium (mPZM-3) is used.  相似文献   

20.
The present study was conducted to examine the feasibility of in vitro embryo production and transfer technologies for producing Middle White piglets. After collection from three retired Middle White sows, a total of 222 oocytes were matured, fertilized and cultured in vitro, and a total of 50 embryos from the 4-cell to blastocyst stage were produced by the 4th or 5th day. These embryos were transferred individually into three recipients along with 5 in vivo-derived Duroc blastocysts. All of the recipients became pregnant, and they farrowed a total of 9 Middle White and 9 Duroc piglets. These results suggest that in vitro embryo production using ovaries from retired sows is useful for reproduction of pigs of pure breeds including the Middle White for breeding activities and conservation/utilization of genetic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号