首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
油葵联合收获机清选装置结构优化与试验   总被引:2,自引:0,他引:2  
针对油葵联合收获作业过程中存在籽粒含杂率及损失率偏高的问题,测定油葵脱粒后脱出物的尺寸特征和悬浮特性,通过机构的运动学分析与物料的受力分析,确定了油葵联合收获机清选装置主要结构参数与工作参数。以风机转速、振动频率和分风板倾角为影响因素,油葵籽粒含杂率和籽粒损失率为评价指标,开展工作参数优化试验,单因素试验结果表明,清选装置较优工作区间为:风机转速1100~1300r/min、振动频率3~5Hz、分风板倾角20°~40°;设计Box-Behnken试验,建立了响应面回归模型,并进行参数优化,结果表明:各试验因素对含杂率和损失率影响显著性大小顺序均为风机转速、振动频率、分风板倾角;当风机转速1200r/min、振动频率4Hz、分风板倾角27°时,试验结果表明平均油葵籽粒含杂率为4.25%,平均籽粒损失率为1.82%,满足油葵联合收获机清选的国家标准要求。  相似文献   

2.
玉米清选装置结构优化设计与试验   总被引:2,自引:0,他引:2  
针对目前玉米籽粒直收机的清选装置存在籽粒损失率和含杂率偏高、传统试验受季节性影响大等问题,基于CASE 4099型联合收获机清选系统,搭建玉米脱粒清选试验平台,设计了一种竖式可调节分风板,并采用数学建模、仿真模拟和试验验证相结合的方法对清选装置作业性能进行优化。建立籽粒在振动筛上运动过程的数学模型,分析了振动筛倾角、振幅、频率、振动方向角和风机风力与振动筛筛面夹角等因素与籽粒在振动筛上平均运动速度和移动距离的关系;对清选装置内部流场风速分布进行仿真和试验,仿真结果表明,分风板左或右偏18°时,流场中风速分布均匀,在垂直方向上差值较小,验证试验结果表明,分风板右偏18°时流场内各测量点风速分布均匀,适于籽粒与杂质分离,清选效果较好;以振动筛转速、风机转速为主要影响因素,以籽粒损失率、含杂率为指标进行正交试验,结果表明当振动筛曲柄转速为275r/min、风机转速900r/min为最优作业参数组合,损失率和含杂率分别为1.34%、1.66%。  相似文献   

3.
为了了解玉米籽粒收获机清选参数对清选性能的影响情况,基于脱粒清选试验台对风机转速、鱼鳞筛开度、调风板倾角、曲轴转速进行了单因素试验和正交实验,以清选损失率和含杂率为评价指标,利用极差分析法得出了最优清选参数组合,即当风机转速为1 150r/min、鱼鳞筛开度为16mm、调风板倾角为54°、曲轴转速为325r/min时,清选效果最好,损失率为0.286%,含杂率为0.149%。  相似文献   

4.
针对目前玉米籽粒收获机不能适应15kg/s以上的大喂入量清选需要,设计了一种具备预清选功能的清选装置。首先对玉米脱出物离开螺旋输送器到达预清选筛前的玉米籽粒进行受力分析,然后对曲柄连杆机构的运动模型加以简化。其次分析玉米籽粒在筛面上的运动状态;对离心风机叶轮、蜗壳进行设计计算。采用单因素试验确定风机转速、振动频率、上筛筛孔开度取值范围;以风机转速、振动频率、上筛筛孔开度为试验因素,以籽粒含杂率和清选损失率为评价指标,设计三因素三水平中心组合试验,建立各因素与指标之间的回归模型。通过响应曲面方法对试验结果进行分析,并采用Design-Expert12对回归模型进行多目标优化。玉米脱出物喂入量为16kg/s时,得出较优组合为:风机转速1202.50r/min、振动频率5.41Hz、上筛筛孔开度18mm,在此条件下籽粒含杂率为0.79%,清选损失率为1.10%;验证试验结果表明,当风机转速1200r/min、振动频率5Hz、上筛筛孔开度18mm时,籽粒含杂率为0.82%,清选损失率为1.14%,试验值与优化值相对误差小于5%,与传统双层往复振动筛清选装置相比籽粒含杂率降低2.07个百分点,清选损失率降低2.13个百分点,证明所设计合理。  相似文献   

5.
双吸风口振动式花生荚果清选装置设计与试验   总被引:7,自引:0,他引:7  
为改进花生摘果机、花生捡拾收获机的清选装置,提高花生清选性能,在花生摘果机清选物飘浮速度试验基础上,根据饱满花生荚果、空瘪果、碎茎秆、果柄和花生叶等各组分飘浮速度差异,提出了前、后2个吸风口(双吸风口)与振动筛组合式清选原理,进行了总体方案与关键部件设计并研制出5XT-2Z型花生摘果机,通过清选性能试验研究了振动筛振动频率、吸风口高度和风机转速对花生清选损失率和含杂率的影响。试验结果表明,3种饱满花生荚果飘浮速度为10.30~14.39 m/s,空瘪果、碎茎秆、花生果柄和花生飘浮速度分别为7.03~8.89 m/s、4.51~5.46 m/s、2.80~3.35 m/s、1.74~2.13 m/s;优化后的振动筛曲柄转速为200 r/min,吸风口高度为135 mm,风机转速为390 r/min,此参数下清选损失率为1.35%,含杂率为1.75%。  相似文献   

6.
针对小区联合收获机清选装置存在的籽粒损失率和含杂率偏高等问题,结合内外滚筒旋转式脱粒装置,搭建脱粒清选试验平台,仿真分析结果表明,该清选装置符合筛分要求。以脱出籽粒中含杂率及损失率作为试验指标,选取对清选性能影响较大的风机转速和振动筛曲柄转速为试验因素,分别进行单因素试验,得到风机转速为1 000 r/min时,含杂率与损失率分别为0.65%和1.06%;振动筛曲柄转速为275 r/min时,含杂率与损失率分别为0.55%和0.87%。最后运用Central Composite中心复合设计方法进行响应面试验,研究因素交互作用对试验指标的影响规律。试验结果表明,最佳匹配参数为风机转速900 r/min、振动筛曲柄转速300 r/min;在最佳参数组合下,对该装置进行多次验证试验,得到其含杂率和损失率的平均值分别为0.75%和0.62%,表明在该参数组合下此装置能够满足小区收获的清选性能要求。   相似文献   

7.
玉米籽粒收获机清选装置参数优化试验   总被引:6,自引:0,他引:6  
针对玉米籽粒直收过程中清选作业损失率高、籽粒含杂率高的问题,开展玉米籽粒收获机清选作业参数优化试验,探究整机作业工况下清选装置作业参数对籽粒损失率和含杂率的影响规律,得到清选作业参数最优组合,并进行田间验证试验。玉米籽粒收获机清选作业参数较优水平区间为风机转速800~1 000 r/min,振动频率6~8 Hz,上清选筛筛孔开度15~25 mm。清选作业籽粒含杂率最优作业参数组合为风机转速1 000 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm;籽粒损失率最优作业参数组合为风机转速900 r/min,振动频率6 Hz,上清选筛筛孔开度20 mm;清选作业综合指标最优作业参数组合为风机转速900 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm。得到玉米籽粒收获机清选作业籽粒含杂率、籽粒损失率和综合指标的回归模型,田间验证试验表明,籽粒含杂率相对误差为5. 56%,籽粒损失率相对误差为5. 10%,综合指标相对误差为4. 60%,最优作业参数组合表现良好,且回归模型可靠。  相似文献   

8.
针对藜麦籽粒较小、机械收获后含杂多,以及目前市场上的清选设备清选不彻底、籽粒损失高等问题,在改进的QXS-3.0清选试验台上进行了清选效果试验。选取影响清选性能的振动筛筛孔尺寸、振动筛转速、上层振动筛倾角和下层振动筛倾角为试验因素,清洁率和损失率为试验指标,进行了单因素试验与分析。结果表明:当编织筛筛孔尺寸为12目、振动筛转速为300r/min、上层振动筛倾角为1°、下层振动筛倾角为2.8°时,清洁率达91.8%。试验分析为机械收获后含杂多的藜麦进一步精选和清选性能改善打下了较好的基础。  相似文献   

9.
纵轴流联合收获机清选装置结构优化与试验   总被引:4,自引:0,他引:4  
通过物料在气流作用下的运动方程从而找出影响物料运动状态的主要因素,利用正交试验分析风机转速、鱼鳞筛开度、分风板I角度、分风板II角度4个参数对清选性能(损失率及含杂率)的影响,从而得出单纵轴流联合收割机清选装置最佳的工作参数。为解决滚筒中后部落下的物料含杂率较高,籽粒容易随茎秆被抛出机外,造成谷物损失的问题,设计一种回程筛板(由回程板及编织筛组成)。田间试验发现:当回程筛板安装角度为3 0°、风机转速为1 4 0 0 r/min、第I导风板倾角为3 0°、第II导风板倾角为1 5°、鱼鳞筛开度为2 4.5 mm时,清选性能较佳,损失率为0.20%,含杂率为0.17%。  相似文献   

10.
油菜分段收获脱粒清选试验   总被引:9,自引:3,他引:6  
对我国南方油菜分段收获割晒后的脱粒清选特性和脱粒清选参数进行了研究。通过在试验台上脱粒和清选正交试验,得出了分段收获捡拾脱粒机脱粒、清选部件形式和两组合理的工作参数。试验结果表明:脱粒分离夹带损失最小的优选参数组合为喂入量1.6kg/s、滚筒转速750r/min、脱粒间隙15mm、滚筒形式钉齿6排;影响脱粒分离夹带损失率的主次因素为滚筒形式、喂入量、脱粒间隙和滚筒转速。综合考虑清选损失率和含杂率最〖JP3〗小的优选参数组合为开度10mm鱼鳞筛、振动筛曲柄转速260r/min、离心风机转速860r/min、离心风机倾角15°;由模糊综合评价值的极差分析可得因素的主次排序为离心风机倾角、振动筛曲柄转速、筛片结构形式和离心风机转速。  相似文献   

11.
针对胡麻分离清选过程高损失率、高含杂率问题,设计了风筛式胡麻清选装置。利用EDEM-Fluent耦合方法,对胡麻清选装置清选过程进行仿真分析,探究清选装置作业参数对胡麻籽粒含杂率和清选损失率的影响规律,确定最优的组合参数。基于清选装置气流场胡麻脱粒物料的运动分析,建立了胡麻清选装置简化模型;对风机风速、气流倾角、清选筛振动频率和振幅4个参数进行单因素试验和正交试验。结果表明,风机风速、气流倾角、清选筛振动频率和振幅是影响清选装置清选性能的显著因素。应用Design-Expert软件建立了籽粒含杂率和清选损失率的数学回归模型,获得最佳工作参数组合:风机风速4.5 m/s、气流倾角4°、清选筛频率6 Hz、清选筛振幅9 mm,最优工作参数组合下胡麻籽粒含杂率为2.97%,清选损失率为2.39%。该研究结果可为胡麻清选装置的设计和优化提供参考。   相似文献   

12.
燕麦弧形栅格筛复清选式圆筒筛清选装置设计与试验   总被引:3,自引:0,他引:3  
为了解决燕麦清选装置清选性能低的问题,根据燕麦的物理特性对单风机三圆筒筛清选装置进行了结构改进,设计了一种燕麦弧形栅格筛复清选式圆筒筛清选装置。在大圆筒筛上安装了能使物料跳起、充分分离的跳跃板结构,并且设计和加装了弧形栅格式挡板筛及复清选部件,对大圆筒筛的跳跃板及弧形栅格式挡板筛的清选原理及受力进行了理论分析。以离心风机转速、大圆筒筛转速、弧形栅格式挡板筛倾角为试验因素,燕麦籽粒含杂率和损失率为试验指标,进行了室内三元二次正交旋转组合试验。室内试验结果表明:当离心风机转速为1 500 r/min、大圆筒筛转速为110 r/min、弧形栅格式挡板筛倾角为41°时,本装置清选效果最好,含杂率为1. 96%,损失率为2. 64%。田间验证试验结果表明,在最优参数下,含杂率为1. 97%,损失率为2. 68%。  相似文献   

13.
辊搓圆筒筛式谷子清选装置设计与试验   总被引:3,自引:0,他引:3  
为解决谷子初脱后因物料中残留谷码多、含水率高而导致清选含杂率和损失率较高的问题,设计了辊搓圆筒筛式谷子清选装置。该装置主要由谷码辊搓装置、圆筒筛装置、横流风机和离心风机等组成,实现了先脱谷码后清选的功能。选取离心风机转速及角度、横流风机转速、圆筒筛转速和谷码辊搓装置主动辊转速作为试验因素,籽粒含杂率和损失率作为试验指标进行了正交试验,试验表明:谷码辊搓装置主动辊转速250 r/min、离心风机角度3°、小圆筒筛转速60 r/min、离心风机转速700 r/min、中圆筒筛转速60 r/min、大圆筒筛转速70 r/min,横流风机转速600 r/min为该清选装置的最优组合。对该参数组合进行验证试验,并对该装置清选性能进行对比试验,结果表明,在最优组合条件下籽粒含杂率为1.64%、总损失率为0.86%,该装置籽粒含杂率与总损失率均低于传统型风机圆筒筛式和风机振动筛式清选装置。  相似文献   

14.
针对覆膜花生收获后的花生秧在饲料加工过程中存在膜秧分离不彻底、损失率高等问题,结合揉切后物料尺寸特征和悬浮特性,设计了一种兼具分级、清土、输送和除膜功能的风筛组合式膜秧分离装置,并进行了膜秧分离特性试验与参数优化。以上层筛风机转速、下层筛风机转速和振动筛频率为试验因素,以除膜率和损失率为试验指标,运用Design Expert 8.0.6软件设计三因素三水平二次回归正交试验,建立了响应面回归模型,并进行优化与试验验证。结果表明:各因素对除膜率影响的主次顺序为:下层筛风机转速、上层筛风机转速、振动筛频率;各因素对损失率影响的主次顺序为:下层筛风机转速、振动筛频率、上层筛风机转速。对优化结果进行了试验验证,当上层筛风机转速760r/min、下层筛风机转速670r/min、振动筛频率4Hz时,除膜率为91.24%,损失率为8.51%,验证试验结果与模型预测值相对误差小于5%。  相似文献   

15.
风筛式清选装置清选性能试验研究   总被引:2,自引:0,他引:2  
为了研究风筛式清选装置运动参数对清选性能的影响规律,在自行研制的清选试验台上进行小麦清选试验,利用DPS数据处理系统进行方差分析,并建立清洁率、损失率与贯流风机转速、离心风机转速、离心风机倾角及振动筛曲柄转速之间的数学模型,利用遗传算法进行多目标优化,获得优化参数组合的Pareto最优解集,并进行验证,为风筛式清选装置的设计及使用调整提供依据.  相似文献   

16.
纵轴流清选装置混合流场数值模拟与优化试验   总被引:3,自引:0,他引:3  
清选装置性能决定着收获机的作业性能,为了克服纵轴流全喂入风筛式清选装置单风道离心风机气流场不均匀的缺点,对风机、脱粒滚筒产生的混合流场进行三维数值模拟,提出纵轴流全喂入双风道六出风口风机的改进结构,并分析结构改进后振动筛面的气流速度对全流域气流分配的影响。同时,对改进后清选装置进行风机转速、风机入射倾角、鱼鳞筛夹角3因素正交优化,分析了各因素对气流场的影响规律,得到最优参数组合:当风机入射倾角30°、鱼鳞筛夹角40°、风机转速1 900 r/min时,更利于高负荷高效率清选。最后,通过田间试验验证了双风道结构和优化试验的准确性,水稻籽粒损失率0.91%,含杂率0.87%,小麦籽粒损失率0.82%,含杂率0.76%。  相似文献   

17.
横置多滚筒联合收获机清选装置参数优化与试验   总被引:2,自引:0,他引:2  
随着联合收获机新型多滚筒脱粒分离装置结构的运用,需要优化清选装置结构参数以满足新的作业要求。为寻找能适应多滚筒脱粒分离结构的高性能清选参数,选取多风道离心式风机转速、鱼鳞筛开度、分风板Ⅰ倾角、分风板Ⅱ倾角为研究参数,进行了单因素和正交试验,分析了上述因素对清选性能的影响,并针对正交试验结果使用极差分析法对多滚筒联合收获机清选装置的参数进行优化。优化结果表明:当风机转速1 100 r/min、鱼鳞筛开度24mm、分风板Ⅰ倾角30°、分风板Ⅱ倾角26°时,整机的清选效果较好,清选损失率为0.2%,清选含杂率为0.7%。  相似文献   

18.
花生联合收获机清选装置试验研究   总被引:2,自引:0,他引:2  
进行了半喂入花生联合收获机花生脱出物组成成分的比例、组成成分尺寸和外形差异、悬浮速度,以及摘果辊下方分布等清选特性试验和检测。优化设计后的清选装置安装在半喂入花生联合收获机上,进行了田间正交试验,得到了影响清选性能的因素主次顺序为振动筛频率、风机转速、振动筛倾角、风机出风口角度;最优参数组合为振动筛频率7Hz,风机转速900r/min,振动筛倾角8°,风机出风口角度17°。优化设计后的清选装置能应用到国产某型号花生联合收获机上,经田间收获试验验证,达到设计要求。  相似文献   

19.
稻麦联合收获机清选装置智能设计与优化系统研究   总被引:1,自引:0,他引:1  
针对传统农机产品研发周期长、设计效率低等问题,构建了一套稻麦联合收获机清选装置智能设计与优化系统。该系统由用户需求模块、知识库和推理模块、参数化建模模块以及智能优化模块组成,可以实现清选装置的智能设计与优化。首先,在SQL Server 2012中建立了清选装置设计知识库,研究了清选装置设计的推理流程,系统可以根据用户需求,调用知识库中的相关设计知识,并使用实例和规则相结合的推理方法进行设计推理,从而输出清选装置关键零部件参数;其次,使用Visual Studio编程软件,结合C++及KF(知识融合)两种开发语言对NX进行二次开发,搭建清选装置参数化模型库,参考知识库和推理模块输出的零部件参数进行建模,得到清选装置部件模型;以清选装置入风口风速、上导风板倾角、下导风板倾角、振动筛频率为优化变量,设计清选装置CFD-DEM耦合仿真的正交试验,通过计算试验过程中的清选含杂率和损失率来评估清选效果;最后,基于仿真结果数据,采用PSO-SVR算法建立清选装置优化变量与清选含杂率、损失率的回归模型,使用SPEA2算法实现清选含杂率、损失率的多目标优化,并得到一组损失率最低的Pareto非劣解集,即当清选装置入风口风速为6m/s、振动筛频率为4.5Hz、上导风板倾角为32°、下导风板倾角为18°时,对应的清选装置模型损失率最低,含杂率、损失率分别为1.077%、0.97%。以此为参考,可优化清选装置关键零部件模型设计参数,为稻麦联合收获机清选装置设计提供优化方案。  相似文献   

20.
针对目前全喂入联合收获机收获羊草种子过程中存在损失率大、含杂率高的问题,根据清选作业流程,结合羊草种子自身物理特性,搭建羊草种子风筛清选装置,并对清选部件、喂料装置、接料装置进行设计优化。进行风筛清选装置室内性能试验研究,通过单因素试验,得出清选性能随各因素变化的规律,利用响应面试验建立各因素与含杂率和损失率的关系,并对各因素及其交互作用进行分析。最后得出较优工作参数组合为:振动筛转速275 r/min,风机转速985 r/min,喂入量0.087 kg/s,在此参数组合下试验的含杂率为27.3%,损失率为3.3%,风筛清选装置满足设计要求,可为研发羊草等禾本科牧草种子全喂入联合收获机提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号