首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
4 YZPDK-4玉米收获秸秆打捆一体机的设计和试验   总被引:1,自引:0,他引:1  
针对目前我国玉米秸秆回收利用率不断增长的实际需求和穗茎兼收型玉米收获机有效供给相对不足等问题,研制了一种玉米收获秸秆打捆一体机,前割台进行玉米果穗收获,中部通过甩刀式秸秆切碎装置对秸秆进行切碎收获和打捆装置打捆,使机器同时进行玉米果穗收获与秸秆打捆收获。为此,对整机机构及关键部件进行了理论分析,确定了整机结构参数;以机具前进速度、粉碎刀辊转速、打捆装置输入转速作为试验因素对草捆密度进行三因素三水平二次回归正交试验;通过Design-Expert 8. 0. 6数据分析软件,建立各因素与指标的响应面数学模型,分析了各因素与评价指标之间的关系,并对影响因素进行了综合优化。试验结果表明:各因素对草捆密度均有显著影响,影响主次顺序为粉碎刀辊转速机具前进速度打捆装置输入转速;各试验因素最优参数组合:机具前进速度为0. 53m/s,粉碎刀辊转速为1 747r/min,打捆装置输入转速为711r/min,对应的草捆密度为180. 676kg/m~3。根据该试验参数组合,进行田间试验验证,得到评价指标与理论优化值相差0. 876kg/m~3,相对误差为0. 48%,优化预测模型可靠。该研究实现了玉米果穗收获和秸秆打捆一体化,为穗茎兼收型玉米收获机提出了新的思路,可为畜牧业饲料收集提供新的途径。  相似文献   

2.
为提高棉秆回收率、压缩打捆效率和打捆质量,根据自走式棉秆联合收获打捆机的田间作业条件和棉秆的力学特性,采用理论、仿真和试验分析相结合的方法,对关键部件滚筒式铡切机构、拨禾轮、螺旋输送辊和曲柄滑块压缩机构进行了改进。改进后的自走式棉秆联合收获打捆机的滚筒式铡切机构转速为120 r/min,拨禾轮转速为36 r/min,螺旋输送辊转速为178 r/min,滚筒式铡切机构转速为120 r/min,曲柄滑块压缩机构压缩频率为110次/min,拨禾轮圆周上均布的拨禾板数量为8个。同时进行改进前后的对比试验。试验结果表明:改进后的自走式棉秆联合收获打捆机的棉秆回收率提高6.6%,压缩打捆效率提高43.4%,打捆密度提高14.7%,成捆率提高10.1%,规则草捆率提高4.7%。  相似文献   

3.
动定刀支撑滑切式秸秆粉碎装置设计与试验   总被引:6,自引:0,他引:6  
设计了适用于卧式玉米秸秆粉碎还田机的动定刀支撑滑切式秸秆粉碎装置,该装置利用等滑切角式粉碎定刀和随粉碎刀辊高速旋转的粉碎动刀形成的支撑滑切作用对秸秆进行粉碎。其中等滑切角式粉碎定刀刃口曲线采用对数螺线方程,粉碎动刀设计为并联直刀和L改进型弯刀组合结构。结合玉米秸秆的特性,明确了各关键部件的参数,并运用ANSYS-Workbench软件对粉碎定刀进行了静强度校核和对粉碎刀辊进行了模态分析,得出了粉碎定刀的应力分布图和粉碎刀辊的前6阶固有频率和振型;粉碎定刀最大应力发生在刀片上端部后侧,最大应力为13841MPa,刀片材料满足要求;〖JP3〗粉碎刀辊最低阶数的固有频率为102.62Hz,高于其工作激励频率23.3~30.Hz,不会形成共振。田间试验表明,当动定刀支撑滑切式秸秆粉碎装置刀辊转速为1600r/min时,其秸秆粉碎长度合格率可达91.5%,相对无支撑切割(1800r/min)可降低作业功耗17.4%。  相似文献   

4.
为了弄清玉米秸秆田间粉碎时机车前进速度、粉碎刀具转速对秸秆粉碎功耗和粉碎合格率的影响,运用二次回归正交试验对田间玉米秸秆粉碎性能进行研究。田间试验发现:当玉米秸秆粉碎刀具转速从540r/min逐渐上升至630r/min时,秸秆粉碎合格率和粉碎功耗随着粉碎刀具转速的升高而升高;当机车前进速度由2.9km/h上升至3.16km/h时,粉碎功耗随着前进速度的增加而升高,但粉碎合格率则随着前进速度的增加而减小。同时,通过参数优化获得:当机车前进速度为2.9km/h、刀辊转速为597r/min时,得到秸秆粉碎性能最佳工作指标,即粉碎功耗为2.98kW,粉碎合格率为90.02%。  相似文献   

5.
穗茎兼收秸秆打捆型玉米收获机的设计与试验   总被引:1,自引:0,他引:1  
玉米作为重要的粮食、经济作物和饲料,在我国经济建设和粮食生产中有着重要的地位。同时,随着我国农业结构的调整和畜牧业的发展,玉米秸秆的综合利用日益成为关注的热点。为此,在消化吸收国内外先进技术的基础上,结合玉米机械化生产实际和推广应用需求,通过集成创新和技术提升,研发了穗茎兼收秸秆打捆型玉米收获机。通过比较,秸秆切碎装置采用往复式切割器,秸秆输送装置采用单层四辊式输送器,秸秆切碎抛送装置采用滚筒式切碎器及曲柄压缩式方捆秸秆打捆装置。该收获机能够实现在玉米果穗收获的同时完成玉米秸秆的切碎打捆,对推广应用玉米穗茎兼收技术和提高秸秆的综合利用率具有重要的意义。  相似文献   

6.
为选择玉米秸秆打捆机粉碎抛送装置刀轴排列的最佳装配方案,利用多体动力学仿真软件ADAMS分别对采用单螺旋线、双螺旋线及对称排列装配方案的刀辊进行仿真分析,得出双螺旋线排列方案性能最佳。利用ANSYS Workbench对双螺旋线排列方案进行模态分析,通过结果图可以得到最低临界转速为6 109.8r/min,而实际上粉碎刀轴在工作时的转速范围是1 800~2 000r/min,所以刀轴满足实际工作的需求。本文为改装玉米秸秆打捆机提供有效数据,更为合理设计打捆机粉碎部件提供理论依据。  相似文献   

7.
无线局域网络技术在田间秸秆粉碎功耗测试中的应用   总被引:1,自引:0,他引:1  
将无线局域网络技术引入玉米秸秆粉碎机的田间粉碎测试中,实现了对玉米秸秆田间粉碎功耗的无线遥测,田间测试试验证明该无线局域网络测试系统安全方便.同时通过回归正交试验方法获得当机车前进速度为2.9 km/h,刀辊转速为597 r/min时.秸秆粉碎性能最佳工作指标为粉碎功耗2.98 kW,粉碎合格率90.017%.  相似文献   

8.
秸秆条带捡拾粉碎深埋装置设计与试验   总被引:1,自引:0,他引:1  
针对东北黑土区保护性耕作秸秆还田条件下,地表秸秆量大导致免耕播种过程易雍堵、播种后地温提升慢等问题,提出了一种秸秆条带捡拾粉碎深埋方式,通过捡拾粉碎机构将地表部分秸秆捡拾粉碎,由罩壳处筛孔完成土秆筛分,集秆螺旋器进行秸秆的定向集运,最后经运秸风机实现秸秆输送深埋。本文对粉碎刀结构、排列方式和转速等关键参数进行确定,对粉碎刀轴的秸秆漏捡区域面积展开分析,通过理论分析和离散元单因素仿真试验明确了集秆螺旋器转速与其所受扭矩和秸秆运动速度之间的关系,初步确定了螺旋器转速为900~1100r/min,设计了开沟铲的结构参数,并利用离散元全因素仿真试验模拟了作业速度与开沟深度两因素间与表层土壤颗粒运动及开沟铲受力之间的关系,以作业速度、开沟深度和螺旋器转速为因素,秸秆深埋合格率为试验指标进行Box-Behnken试验。田间试验结果表明,当前进速度为3km/h、开沟深度为290mm、螺旋器转速为1000r/min时,其秸秆掩埋合格率为64.2%,其预测值约为67.4%,误差小于5%,满足设计需求。研究成果为东北黑土地保护性耕作推广提供了新的方案和技术支撑。  相似文献   

9.
大田玉米收获机收获制种玉米时容易产生伤穗落籽、杂物堵塞等现象,本文针对适收期制种玉米生物特性,设计了一种大型制种玉米联合收获机,采用小行距对行柔性板式摘穗割台和可替换组合式剥皮装置,确保低损摘穗、输送、剥皮作业,降低籽粒损失与损伤;其中割台上方配备钢质覆胶弧形摘穗板,“橡胶+钢质”夹持输送链和六棱低速拉茎辊,可替换组合式剥皮装置采用柔性破皮+揉搓+降速组合形式。通过Plackett-Burman试验设计筛选提取影响机具指标的主要因素,采用Box-Behnken试验设计原理,以机具前进速度、拉茎辊转速和剥皮辊转速为试验因素,以总损失率与含杂率为性能指标,通过田间试验对机具进行检验,优化得出机具最佳作业参数。试验结果表明,优化后,当机具前进速度为4.87km/h、拉茎辊转速为877.27r/min、剥皮辊转速为442.52r/min时,果穗总损失率为1.61%,含杂率为0.55%。田间试验结果表明,当收获机前进速度为4.9km/h、拉茎辊转速为880r/min、剥皮辊转速为450r/min时,果穗总损失率为1.64%,含杂率为0.57%,满足制种玉米机械化联合收获的作业要求,可为制种玉米联合收获机设计与试验提供参考。  相似文献   

10.
针对现有丘陵山区小型玉米收获机在复杂田间环境收获果穗时,存在适应性差、剥皮装置籽粒损伤率高、剥净率低等问题,设计了具有双液压姿态调整的剥皮装置,其剥皮辊采用鱼鳞+双螺旋式橡胶辊组合,在提高剥净率的同时,减小了籽粒损失率。对玉米果穗剥皮装置进行了性能分析和参数优化,以便达到降低籽粒损失率、提高果穗剥净率的目的。采用二次回归正交组合试验方案,以剥皮辊转速、作业行驶速度、剥皮装置与水平面倾角以及压送装置转速为试验因素,以籽粒损失率和果穗剥净率为试验指标进行试验,建立参数优化数学模型。利用Design-Expert中Optimization模块进行优化,结果表明:当剥皮辊转速为853.081r/min、行驶速度为0.799 955m/s、倾角为16°、压送装置为500r/min时,籽粒损失率为0.204 945%,剥净率为98.1179%。为方便样机的加工与制作,对优化参数进行圆整处理,即剥皮辊转速为850r/min,行驶速度为0.8m/s,倾角为16°,压送装置为500r/min,并进行样机试验,结果表明:优化参数满足山地丘陵地区玉米果穗收获相关技术要求。  相似文献   

11.
针对丘陵山区大豆玉米带状种植模式的玉米果穗收获有机难用、无机可用的现状,设计一款自走式小型玉米摘穗机。该机采用纵卧式摘穗辊实现果穗摘取,并通过输送装置收集装袋;采用“Y”型布局的L型小甩刀实现茎秆粉碎。对摘穗过程进行动力学分析、对粉碎过程进行静力学分析,确定其核心装置设计参数并进行样机试制。以茎秆粉碎长度合格率、果穗损失率、籽粒破碎率为试验指标进行田间试验,来验证该机设计的合理性。试验表明:在生产率为0.8 hm2/d、果穗籽粒含水率为26.38%、茎秆含水量为71.25%的条件下进行试验,茎秆粉碎长度合格率为92.4%、果穗损失率为2.06%、籽粒破碎率为0.61%。该机设计各项指标符合国家相关标准,能够满足丘陵山地地区玉米机械化收获需求。  相似文献   

12.
针对玉米秸秆粉碎过程中秸秆力学和能耗变化规律不明确,限制秸秆粉碎还田质量提升,不利于秸秆还田技术在东北黑土区推广应用的问题,本文基于异速圆盘动态支撑式玉米秸秆粉碎装置和秸秆受力状态,将玉米秸秆粉碎全过程分为秸秆捡拾阶段、秸秆升举输送阶段和入侵粉碎阶段,建立秸秆各阶段受力数学模型,确定其关键影响参数及范围。以捡拾粉碎刀转速、对数螺线支撑圆盘刀滑切角和捡拾粉碎刀与对数螺线支撑圆盘刀间的传动比为试验因素,选取秸秆最大破碎力、滑切切割功耗和滑切冲量为试验指标,应用有限元分析方法研究试验因素对试验指标的影响规律。结果表明,捡拾粉碎刀转速为1950 r/min、对数螺线支撑圆盘刀滑切角为40°和捡拾粉碎刀与对数螺线支撑圆盘刀间的传动比为0.5时,秸秆最大破碎力、滑切切割功耗和滑切冲量分别为101.71 N、1049.42W和0.032N·s。田间验证试验结果表明,滑切切割功耗为1150.43W,与模型预测值误差为9.63%,秸秆粉碎长度合格率为93.34%,满足行业标准要求。  相似文献   

13.
浮动式玉米单穗脱粒装置设计与试验   总被引:5,自引:0,他引:5       下载免费PDF全文
为实现玉米脱粒机脱粒间隙可自动调节,减小玉米脱粒过程中的机械损伤,设计了浮动式玉米单穗脱粒装置。该脱粒装置主要由间隙浮动调节装置、喂入料斗、离散辊、脱粒辊和差速辊等组成,具有脱粒间隙自动调节和玉米果穗喂入自动分离、逐个排出功能。选取离散辊转速、脱粒辊转速和差速辊转速为试验因素,以玉米籽粒的破损率和未脱净率为试验指标,采用二次回归正交旋转组合的试验方法,对浮动式玉米单穗脱粒装置进行了参数优化试验。优化结果为:离散辊转速为234 r/min、脱粒辊转速为511 r/min、差速辊转速为91 r/min,在最优参数组合下的实际籽粒破损率为0.25%、未脱净率为0.76%、玉米芯完整度为100%。  相似文献   

14.
针对我国香蕉秸秆粉碎还田作业过程中香蕉秸秆粉碎质量差,秸秆缠绕堵塞等问题,设计了一种双定刀滑切防缠式香蕉秸秆粉碎还田机。基于滑切定理,解析了粉碎刀随轴转动过程中的动态滑切角和粉碎定刀滑切角的相对作用原理,以等速螺线设计L形粉碎定刀刀刃曲线,确定了粉碎刀结构参数;对香蕉秸秆缠绕粉碎刀辊进行受力分析,设计防缠绕板并确定装配数量与结构参数;以装置前进速度、粉碎刀辊转速、防缠绕板高度为试验因素,以香蕉秸秆粉碎合格率、抛撒不均匀度和香蕉秸秆缠绕数量为评价指标进行三因素三水平正交试验,建立因素与指标的响应面数学模型。试验结果表明,最优参数组合为作业机前进速度1.5 m/s、防缠绕板高度41.6 mm、粉碎刀辊转速1 800 r/min,此时香蕉秸秆粉碎合格率为93.8%,香蕉秸秆缠绕数量为26,香蕉秸秆抛撒不均匀度为12.1%。以最优组合进行田间试验验证,试验结果表明双定刀滑切防缠式香蕉秸秆粉碎还田机整机防缠性能优越,满足设计要求。  相似文献   

15.
东北地区玉米秸秆产量大,秋季玉米收获后可还田作业时间短、秸秆腐烂慢,为秸秆还田带来困难。为满足东北地区秸秆快速还田和腐烂要求,研制了一种秸秆混肥还田机,可将粉碎秸秆或站立秸秆切碎收集,并与N肥混合后被输送到还田机的一侧,或成条堆放在田间,或喂入到由铧式犁开出垄沟内。利用三维软件SolidWorks对秸秆粉碎捡拾和输送装置进行了参数设计和实体建模,利用有限元ANSYS Workbench对所设计的粉碎刀进行静力学分析验证了其结构的合理性,并通过分析粉碎刀的秸秆粉碎过程和运动轨迹确定了当粉碎刀受力最小时的最佳排列方式。试验结果表明:当秸秆粉碎捡拾装置转速为2250r/min、还田机前进速度为1.27m/s时,秸秆还田率为95%,秸秆剪切长度合格率为95.5%,秸秆混肥不均匀度为20.5%,作业性能达到了设计要求,可为秸秆混肥还田机的改进设计提供参考。  相似文献   

16.
基于SolidWorks玉米秸秆打捆机的设计   总被引:1,自引:0,他引:1  
设计一种牵引式玉米秸秆打捆机,采用外缠绕式钢辊圆捆打捆方式,秸秆的收集采用粉碎抛送装置,完整的秸秆粉碎后被抛送到螺旋喂入装置中,螺旋喂料装置由相对的螺旋叶片和螺旋齿组成,打好的草捆采用缠网的捆绑方式。整机设计利用SolidWorks进行建模,制作仿真动画,并利用有限元分析插件对钢辊进行模态分析,对悬挂牵引装置进行应力分析。  相似文献   

17.
1.北京4YZ—3B/C型自走式玉米联合收割机该机(见图1)由北京收获机械集团北京市机械设备厂研制,经过2年的田间试验和不断改进,已通过北京市经贸委组织的鉴定,现已批量生产。该机可1次完成摘穗、果穗收集、集箱、茎秆粉碎还田等项作业。在收获玉米时,收获机沿着玉米行间行走,玉米茎秆被茎秆扶持器导入茎秆导槽,再被喂入链抓取进入摘穗装置,又被拉茎辊拉过摘穗板的工作间隙,这时果穗被摘下,而茎秆被粉碎装置切断并粉碎还田。摘下的果穗由喂入链送到果穗搅龙输送器,再由果穗搅龙输送器送到升运器,通过除杂后送入果穗箱。…  相似文献   

18.
在分析研究现有玉米收获技术及青贮饲料收获技术的基础上,设计了4YZQK-4型青贮打捆玉米收获机。该机主要由穗茎兼收割台、打捆装置及打捆装置控制系统等组成,能够一次完成果穗收获及茎秆割断、喂入、切碎、抛送、打捆等作业。穗茎兼收割台在摘取果穗的同时,采用切断刀将植株从根部切断,秸秆层经喂入装置压实,切碎揉搓装置切碎破节,最后通过打捆装置打捆。该机具为解决玉米穗茎兼收关键技术提供了技术方案和应用实例。试验结果表明:4YZQK-4型青贮打捆玉米收获机满足设计要求,茎秆切碎和打捆效果良好。  相似文献   

19.
4LYZ-3K型穗茎兼收玉米收获机设计与试验   总被引:2,自引:1,他引:1  
在分析研究现有玉米收获技术及秸秆打捆收获技术的基础上,设计4LYZ-3K型穗茎兼收玉米收获机。该机主要由穗茎兼收割台、打捆装置及打捆控制系统等组成,能够一次完成果穗收获及秸秆割断、喂入、切碎、抛送、打捆等作业。穗茎兼收割台在摘取果穗的同时,采用切断刀将植株从根部切断,秸秆层经喂入装置压实,切碎揉搓装置切碎破节,最后通过打捆装置打捆。田间性能测试结果表明,该机割茬高度≤91mm、成捆率96%、作业小时生产率0.4hm2/h,各项性能指标均达到设计要求,为我国穗茎兼收玉米收获机的研发提供应用实例和技术依据。  相似文献   

20.
对电动蔬菜收获机的切割装置、行驶机构、输送和收拢装置、打捆装置进行动力计算,选择合适功率、转速的电动机型号,并对电池组参数进行分析计算。切割装置选用额定功率为900W,额定转速为800r/min的电机;行驶机构选用额定功率为750W,额定转速为1 500r/min的电机;输送和收拢装置选用额定功率为500W,额定转速为1 800r/min的电机;打捆装置选用额定功率为600W,额定转速为1 500r/min的电机;最后确定选用锂电池组作为蔬菜收获机动力源,确定电池容量为156Ah。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号