首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
针对现有条播或大行株距穴播机难以满足西洋参窄行密植精密播种农艺要求、西洋参机械化种植缺乏适用播种机械的问题,设计了一种采用多行并联气力针式排种装置和行星轮点播式导种装置的窄行密植西洋参精密播种机。阐述了播种机及排种装置结构原理与整机传动方案,重点设计了行星轮点播式全约束导种装置,通过机构分析确定了行星轮系的结构参数;通过卸种过程理论分析和高速摄影试验,明确了卸种轨迹影响因素和卸种水平位移,确定了导种装置插播器接种口尺寸和合适卸种正压;通过导种轨迹理论与仿真分析,明确了插播器运动规律和低位零速投种条件,确定了导种装置投种控制凸轮轮廓。播种机田间试验结果表明,当吸种负压为-4.5 kPa、卸种正压为3.0 kPa、作业速度为0.54 km/h时,设计的播种机穴粒数合格率为86.2%,重播率为4.4%,空穴率为9.4%,播深合格率为92.8%,穴距合格率为93.9%,满足西洋参播种农艺要求。  相似文献   

2.
针对叶菜类种子粒径小、播量大、形状不规则,传统排种器难以实现精密播种的现状,设计一种叶菜精密播种的关键部件气力式排种器。排种器采用正负气压组合式排种原理,可简化播种机排种器结构与数量,提高排种器工作效率与工作质量。性能测试结果表明,在吸嘴吸种时间为1.0 s、气吹吸嘴时间为0.3 s、气针清嘴时间为0.3 s时,生产率、重播率及空穴率综合性能最优,分别为12 800穴/h、3.98%、3.95%。   相似文献   

3.
根据新疆番茄穴盘育苗排种器播种过程对种子的"单粒单穴"的农业工艺要求,创新设计了一种基于气吹悬浮供种方式的滚筒式番茄育苗播种机,解决了精密播种过程中多粒、空穴、漏播等问题。通过介绍播种机的主要结构及其播种原理,分析排种器吸附取种过程及种子瞬时吸附受力,得出滚筒吸附取种的条件。通过样机试验及吸附取种理论分析,得出影响播种机取种性能主要指标的主次关系依次为种箱结构气室正压力、吸孔的直径、滚筒转速。当种箱结构气室正压力为2.0k Pa、吸孔直径为1.5mm、滚筒转速为12r/min时,取种综合效果效果较理想。同时,通过试验设计及数据处理,得出较优水平组合,统计结果为:单粒率92.5%,多粒率5.3%,空穴率3.0%。气吹悬浮供种滚筒式育苗排种器的播种效果较佳,可满足农艺要求。  相似文献   

4.
由于播种西洋参需用催出芽的种子,机械排种器播种时极易将种芽碰掉,影响发芽率,不能满足西洋参种子的播种要求。为此,设计了一种气力式排种装置,阐述了气力式精密排种器的工作原理,确定了其主要结构参数。同时,以威海文登西洋参种子为播种对象,采用二次正交旋转组合试验,对吸种装置进行了吸排种性能试验研究,建立了行进速度、吸气孔直径、负压3个主要因素与漏播率、重播率的数学模型,分析了各个因素对漏播率和重播率的影响规律,并进行了参数优化。对重播率影响的因素其主次顺序为:负压、吸气孔直径、行进速度;漏播率影响的主次顺序为:吸气孔直径、负压、行进速度。当行进速度为1.5m/s、吸气孔直径为1mm、负压为4 k Pa时,机播重播率低于3.3%,漏播率低于2.3%,装置综合性能达到最优。经试验验证,试验结果与优化结果基本一致,满足西洋参精密播种的种植要求。  相似文献   

5.
针对温室大棚空间狭窄、大田气力式精量播种机无法进入作业,而现有小型机械式播种机播种精度低的问题,设计了适用于温室大棚的小型气力式蔬菜精量播种机,采用正负压双作用排种器提高播种精度,并通过更换排种盘配合不同的开沟分种装置实现不同蔬菜及不同行数的播种作业,提高了播种机的适应性。对排种器进行基于EDEM的离散元仿真分析,探究充种区种群运动规律和搅种装置性能。对整机进行田间试验,结果表明:漏播率≤5%,重播率≤5%,种子机械破损率≤1%,播深一致性合格率≥90%,各项指标符合蔬菜种植农艺要求。  相似文献   

6.
温室大棚电驱气力式胡萝卜播种机设计与试验   总被引:1,自引:0,他引:1  
目前能适应设施大棚种植条件的小型播种机多采用窝眼轮式排种器,播种精度低,播种质量无法实时监测。小型气力式播种机需要配置气力式排种器和风机,存在动力系统设计困难、排种稳定性差、整机结构复杂、笨重等设计难题。本文基于设计的气吸式排种器,设计了叉形分种器,实现窄行距精密播种作业;确定油电混合动力系统,排种器和风机采用电驱方式,排种稳定性得到了提高。设计了基于旋转编码器测速的电驱式胡萝卜播种机控制系统,该系统以PLC为主控制器,根据旋转编码器采集的前进速度信息实时调节排种器转速,实现排种转速与播种机前进速度实时匹配。基于对射式矩阵光纤传感器,开发了播种质量监测系统,解决了小粒径种子的监测问题。通过试验表明,续航时间为10h,计数相对误差小于等于4.6%,型孔堵塞时能发出警报提醒;播种株距合格率大于93.7%、漏播率小于等于3.9%、重播率小于2.4%,漏播率检测误差小于8.4%,试验结果符合国家相关标准要求及胡萝卜种植农艺要求。  相似文献   

7.
气吸式水稻钵盘精量播种装置的设计与试验研究   总被引:20,自引:0,他引:20  
根据工厂化育秧的农艺要求,提出了往复摆动式气吸精量播种装置的设计方案,介绍了其工作原理和主要参数的设计,从理论上分析了影响气力吸种部件吸种性能的主要因素为吸嘴直径、吸嘴端部结构形式、气室真空度,通过试验确定了最佳参数组合为:A型结构吸嘴,孔径为1mm,真空度为0.012MPa,工作频率为30r/min,经验证,其单粒率达96%以上,重播率小于3%,空穴率小于1%。  相似文献   

8.
小型手推精量穴播机的设计与试验分析   总被引:1,自引:0,他引:1  
地膜覆盖播种技术依赖于精密穴播机。甘肃省地处西北丘陵山区,大型农业机械作业困难,而小型农机发展相对不足,迫切需要适用于山区小地块播种的小型精密穴播机。因此,设计了一种手推式小型精密穴播机。该播种机采用外置式种箱和窝眼轮式精量排种器,能够有效避免种子拥堵和精量播种;采用齿轮传动,排种器排种和鸭嘴开启同步进行。田间试验结果表明:播种机播种深度合理,空穴率、穴粒数合格率等均合格,满足作物播种农艺要求。  相似文献   

9.
气力槽轮组合式蔬菜精密排种器吸嘴型孔设计与试验   总被引:2,自引:0,他引:2  
尹文庆  赵璐  李骅  胡飞  於海明 《农业机械学报》2019,50(4):68-76,136
针对蔬菜品种多、种子差异大的特点,设计了一种气力槽轮组合式精密排种器,以满足多种蔬菜种子类型精密播种的需求。设计的精密排种器采用二级排种方式,第一级采用小结构槽轮排种器进行排种,第二级采用负压吸种、正压投种的气力排种器进行排种;运用三维激光扫描及三维点云计算方法,测量了青菜、萝卜和茄子种子的三轴尺寸,并以此为依据,设计了直孔、锥形孔、圆柱孔、腰圆孔等多种吸嘴型孔;以气室真空度、排种盘转速及吸嘴型孔类型为变量进行了3种种子的排种性能试验。对气室真空度采用单因素试验,试验结果表明:适宜青菜、萝卜、茄子排种的气室真空度分别为4、5、3 k Pa;对排种盘转速及吸嘴型孔类型采用完全组合试验,试验结果表明:排种盘转速为17. 5~22. 5 r/min时3种种子的排种性能较好,尤其在20 r/min时3种种子的排种合格率均达到最高。适宜青菜、萝卜、茄子排种的吸嘴型孔分别为:锥形孔、腰圆孔和直孔,在最优真空度及转速条件下排种合格率分别达到97. 0%、95. 4%、93. 7%,满足播种指标要求。  相似文献   

10.
针对小麦收获后花生播种存在的麦茬高、秸秆量大,拖拉机多次进地旋耕、起垄、播种、覆膜等作业效率低、耗费人力成本高、耽误农时等问题,同时根据我国黄淮海地区麦茬地夏花生机械化起垄覆膜播种的农艺要求,设计了一种集灭茬、旋耕、施肥、起垄、播种、喷药、铺膜和膜上覆土于一体的麦茬夏花生播种机。阐述了播种机的结构和工作过程,设计了传动系统、起垄装置、排种器等关键部件。以秸秆粉碎合格率、起垄合格率、穴粒数合格率指标进行了田间试验。田间试验表明,整机结构稳定,性能良好,能够达到设计要求和农艺要求。  相似文献   

11.
随着我国夏花生种植面积的不断增加,夏花生播种环节中出现麦茬留茬度大、现有花生播种机难以适配高速与精密播种的要求的问题。为此,通过理论分析与田间试验相结合的方式,主要针对灭茬旋耕装置、起垄装置与镇压装置进行研究,设计了2H-3/6型夏花生播种机并进行了田间试验。试验结果表明:2H-3/6型夏花生播种机播种双粒率为97.75%,漏播率为1.69%,重播率为0.56%,穴距合格指数为94.33%,播深合格率达到92%,机组滑移率为0.84%,田间出苗率为90.14%,符合行业标准和农艺要求。  相似文献   

12.
为解决精密排种器本身对播种状态实时监控困难的问题,在传统振动气吸式精密排种器的基础上,采用负压吸种、正压放种的排种方式,设计一种无漏播吸嘴代替传统吸附孔。该吸嘴内的活塞块检测开关能实现三个开关功能:防堵塞、防漏播和播种显示,控制吸种组件和清种机构的运行,以及对播种情况进行显示,实现无漏、无堵播种;同时,还对无漏播吸嘴的吸种、放种和清种过程进行分析,种子重量与弹簧弹性系数K、负压、吸种口吸附孔直径等参数正相关,弹簧弹性系数K与吸种口型孔直径负相关。无漏播吸嘴与传统吸嘴的播种性能对比试验结果表明,无漏播吸嘴单粒率平均为93.5%,空穴率平均为0,重播率平均为6.5%,与传统吸嘴相比,分别提高5.5%、6.25%和-0.25%,但无漏播吸嘴的生产效率比传统吸嘴下降近10%,但节约种子用量和保证增产增收,总吸种率达到100%,具有较高的推广应用价值。  相似文献   

13.
研制了一种自走式小籽粒精密播种机,采用二因素五水平二次正交旋转组合试验设计方法在播种机性能检测试验台进行试验,建立了种子漏播率、种子重播率、种子破损率、粒距合格率与排种轮转速、导种管橡胶管长度二因素之间的数学模型,确定了最优排种轮转速为10r/min,揭示了有导种管可以对播种性能优化和导种管橡胶管长度对播种性能影响微弱,为二代小籽粒精密播种机的研发提供了设计依据。  相似文献   

14.
针对脚踏式玉米播种机和手持式玉米播种机中分步驱动的播种器结构复杂、同步性差、可靠性低且易产生故障等问题,设计了一种凸轮驱动式玉米排种器。将吸种装置和播种嘴撑开装置同时设计在凸轮机构上,在棘轮的驱动下,随着凸轮的旋转,周期性地吸种、持种及打开排种口,实现排种功能。试验表明:安装了凸轮驱动式玉米排种器的脚踏式玉米播种机和手持式玉米播种机在播种频率为60~70次/min时,播种合格率为93.9%~9 4.7 7%,重播率几乎为0,漏播率在5.2 7%~6.0 3%之间,均满足国家标准中对精密播种机的播种要求及玉米种植的农艺要求。  相似文献   

15.
针对叶菜类种子粒径小且无规则形状、传统播种机存在精量化程度不高及播种成功率低等问题。以气吸针式播种方式为基础,设计了一种气吸针式摇摆叶菜精量播种机,并采用笔型气缸将直线往复运动转化为播种机摇摆往复运动来实现气缸运动一次完成两次播种。设计了导种结构代替传统播种机垂直运动方向的机械结构,并加入了振动装置使种子处于高频振动状态,提高种子吸附成功率的同时,也避免了种子间相互粘连。依据叶菜种子的三维尺寸,通过理论计算得出了实现种子吸附的临界气流速度为10.1m/s,且采用仿真软件对播种机核心部件笔型气缸的量程、吸嘴内腔结构和负压分流管的结构进行了确定。搭建了气吸针式摇摆叶菜精量播种试验平台,以负压大小、吸嘴口直径大小、种盘振动强度为试验因素,以漏播率、重播率、单粒率为试验指标,进行三因素三水平正交试验,通过对方差与极差的分析确定了试验因素的最优组合参数,即负压大小-25kPa、吸嘴口直径大小0.6mm、种盘振动强度64Hz;依据此参数组合进行播种验证试验,漏播率为2.75%、重播率为5.5%和单粒率为91.75%,可满足叶菜的精量播种要求,为叶菜精量播种提供了一种新的方法。  相似文献   

16.
穴盘精密播种设备主要用于实现穴盘精密播种,是设施播种育苗环节的关键设备,可以减轻播种作业的劳动强度,提高播种效率。针对现有圆辊型孔式穴盘播种机的排种辊更换不方便、适应性差的问题,为满足丸粒化蔬菜种子精密播种的需要,设计了一种基于组合式排种辊的穴盘播种机。该机采用可拆卸排种辊的结构形式,排种辊采用排种盘分体组合式,由独立的排种盘组合而成,针对常用的50穴、72穴、128穴标准育苗盘设计了组合排种辊,不同育苗盘的播种作业只需要更换相应的排种盘,实现一机多用,并通过对排种盘清种和护种过程进行运动和受力分析,为播种机的完善设计与试验提供理论支撑。  相似文献   

17.
"气吸式精密播种机"可解决传统槽轮式或窝眼轮式播种机易伤种子、空穴率高及单粒播种的弊端,可实现多粒播种、秧盘计数、多类秧盘播种,并能通过更换吸嘴实现多品种播种。  相似文献   

18.
传统的小麦播种机在播种作业中,地轮为排种器提供动力,其会受到田间复杂环境的影响而产生打滑现象,降低了播种均匀性,小麦播种质量受到较大影响。为实现小麦精量播种,结合气吸式小麦排种器设计了电控排种系统。系统利用旋转编码器测得机具行进速度,控制器依照预先设定的株距参数,分析得出合理的排种器转速并对电机进行控制,实现可控株距的小麦单粒精量播种。试验台排种试验结果表明:排种器的排种合格指数为88.05%,重播指数为3.64%,漏播指数为6.96%,合格粒距变异系数为23.07%,播种质量指标符合JB/T 10293-2013《单粒(精密)播种机技术条件》,满足小麦精量播种的农艺要求。  相似文献   

19.
为满足高寒地区冬小麦生长的越冬要求,针对在低矮作物(如大豆等)未成熟时垄间套播冬小麦种植模式的农艺要求,设计了垄间套播冬小麦机械式排种免耕播种机。为了保证冬小麦开沟器不在垄台上伤害农作物,设计了双向平行四杆仿形机构,能同时完成上下、左右仿形。田间试验结果表明:平均播种深度为45.9mm,合格率为86.7%;平均施肥深度为76.45mm;冬小麦出苗速率SE为4.88(株/天)/m,在次年返青期冬小麦的返青率为85.3%,能够满足垄间(垄沟两侧)套播冬小麦的播种要求。  相似文献   

20.
国内外气力式排种器发展研究   总被引:3,自引:0,他引:3  
排种器是播种机的核心部件,其性能优劣直接决定播种质量,进而影响作物产量和品质。气力式排种器广泛应用于精密播种机。简要介绍气力式排种器的分类及性能特点,分析国内外气力式排种器的研究情况,并对其未来发展前景进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号