首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 229 毫秒
1.
全球气候变暖的持续性和不确定性显著影响人类社会的可持续发展。大气氧化亚氮(N2O)的持续增加是导致全球气候变暖的主要原因之一。土壤是氮素转化的重要场所和氮循环生物化学反应库,也是N2O的重要排放源,土壤N2O排放速率的变化会显著影响大气N2O含量。生物质炭是指生物质在完全或部分缺氧的情况下经热裂解制备而成的芳香类化学物质,具有多孔性、强吸附性、化学稳定性、高pH和较大阳离子交换量等特性。生物质炭施入土壤后,会直接或间接影响土壤氮素的转化,并对土壤N2O排放产生显著影响。本研究综述了生物质炭输入对土壤生态系统氮素转化与N2O排放的研究进展,分别阐述了生物质炭输入对土壤无机氮动态变化、硝化作用、反硝化作用以及N2O排放的影响,并从生物质炭吸附和减少氮素淋滤、影响土壤理化性质、土壤氨氧化菌的丰度和多样性以及反硝化菌功能基因等方面具体分析了影响上述过程的作用机制。在此基础上,对今后生物质炭在土壤增汇减排以及缓解温室效应方面的进一步理论研究和相关技术推广进行了展望。参109  相似文献   

2.
以泰州地区典型种植方式的稻麦轮作系统农田为研究对象,比较施用不同水平生物质炭对生态效应(农田土壤温室气体排放、理化性质和养分状况)和经济收益(经济收入纯收益和生态经济净收益)的综合影响。结果表明:相比于单施氮肥,配施生物质炭能够显著降低农田CH4、N2O全年排放总量和全球变暖潜能值(GWP),同时对农田土壤的理化性质和养分状况具有良好的改善作用;在经济收益方面,配施2 t/hm2生物质炭能够取得最佳的经济收入纯收益和生态经济净收益。  相似文献   

3.
为研究畜禽粪便好氧堆肥过程氨气(NH3)与温室气体的排放特征及协同减排机制,以鸡粪与蘑菇渣为原料,设置9组不同条件的好氧堆肥正交实验,并进行为期45 d的跟踪监测,了解好氧堆肥过程基本理化参数变化,分析NH3和温室气体的排放规律及最佳减排条件,探究微生物群落与环境因子、气体排放通量之间的相关性。结果表明:含水率与碳氮比(C/N)变化影响整个堆肥进程,经45 d堆肥后,大多数处理组的堆肥均已经完全腐熟,且添加一定比例的椰壳生物炭与钙镁磷肥可以提高堆肥腐熟度。NH3和4种温室气体(CH4、N2O、CO、CO2)在堆肥前期(1~22 d)排放通量较高,人工翻堆会增加气体排放通量。NH3和温室气体排放的影响因子和最佳减排条件各不相同,存在“此消彼长”的关系。对NH3、CH4、N2O排放影响较大的因子是椰壳生物炭占比、钙镁磷肥占比和通风速率,有利于这3种气体协同减排的条件为含水率...  相似文献   

4.
以黑龙江省大庆市盐碱土壤为研究对象,探讨有机种植对盐碱土主要温室气体(N2O和CO2)排放的影响。采用IPCC(1992)的方法对试验结果进行计算及对比,结果表明,相较于常规种植,有机种植的温室气体(N2O、CO2)排放通量值较低,说明有机种植对盐碱土旱田的温室气体(N2O、CO2)有减排作用。在盐碱土上有机种植大豆、玉米,随着有机种植年限的增加,温室气体(N2O、CO2)的排放值略有变化,但差异不显著,且总体的增温潜势依然低于常规种植。而且,有机种植增加了试验区土壤微生物量碳、氮的含量。  相似文献   

5.
【目的】生物炭作为比表面积大、富含有多种营养元素的一种物质已被广泛应用于农业生产。弄清生物炭与化肥氮配合施用对稻田温室气体排放和氮肥利用率的综合影响,为合理使用生物炭提供科学依据。【方法】在武穴市花桥镇进行两年大田试验,设置4个处理,即不施氮肥(CK)、常规施氮(180 kg·hm -2)(IF)、常规施氮+10 t·hm -2生物炭(IF+C)、减氮30%+10 t·hm -2生物炭(RIF+C)。采用静态箱-气相色谱法对2018和2019年水稻生长季节稻田CH4和N2O排放通量进行监测,并测定水稻产量,探讨生物炭配施不同量无机氮对稻田CH4和N2O排放、水稻产量以及氮肥利用率的影响。【结果】(1)稻季CH4和N2O排放呈现明显的季节性变化规律。CH4排放峰值主要出现在分蘖期和齐穗期,N2O排放峰值主要出现在氮肥施用和排水后。2018和2019年稻季各处理CH4排放通量分别为0.01—48.97 mg·m -2·h -1和0.36—18.08 mg·m -2·h -1,N2O排放通量分别为-0.002—0.17 mg·m -2·h -1和0.01—0.28 mg·m -2·h -1。2018年各处理CH4和N2O的平均排放通量分别为6.17—7.16 mg·m -2·h -1和0.02—0.04 mg·m -2·h -1,2019年的分别为5.16—5.83 mg·m -2·h -1和0.05—0.08 mg·m -2·h -1。(2)与CK相比,无机氮肥的施用对CH4排放没有影响,但显著提高了N2O排放,增幅为32.6%—113.0%。与IF处理相比,生物炭与无机氮配施(IF+C、RIF+C)显著降低N2O排放,在2018年降幅为33.4%—43.1%,2019年为37.0%—39.5%,但对CH4排放的影响不显著,因此对全球增温潜势的影响不显著。生物炭与无机氮配施处理IF+C与RIF+C间CH4和N2O排放差异不显著。CH4排放是综合增温潜势(GWP)的主要贡献者,对GWP的贡献达84.4%—95.2%。(3)氮肥施用显著提高水稻产量,增幅达4.0%—6.0%。与IF处理相比,生物炭处理(IF+C、RIF+C)显著增加水稻产量,增幅达9.9%—11.9%。生物炭与无机氮配施处理IF+C与RIF+C间水稻产量差异不显著。与IF处理相比,IF+C、RIF+C处理氮肥利用率显著增加了7.7%—8.1%,且RIF+C的氮肥偏生产力两年分别增加了57.1%、52.3%。【结论】减氮30%配施生物炭能有效地降低稻田N2O排放、增加水稻产量、提高氮肥利用率,是一项可持续的农艺措施。但生物炭对稻田温室气体减排的效应还要进一步研究探讨。  相似文献   

6.
生物质炭添加对农田温室气体净排放的影响综述   总被引:8,自引:1,他引:8  
农田是温室气体的重要排放源,降低农田温室气体排放对减缓全球气候变化具有重要意义。生物质炭是生物质在缺氧条件下热解产生的固体物质,因其含碳量高、难于分解、比表面积大、疏松多孔等特性,已成为农田温室气体减排研究中人们关注和研究的热点。通过综述农田添加生物质炭对温室气体CO2、CH4和N2O排放的影响及其机制,以及对温室气体净排放[包括净增温潜势(NGWP)、温室气体净排放(NGHGE)和温室气体排放强度(GHGI)]的影响等方面的国内外研究进展,并结合目前国内外生物质炭的研究现状,提出了未来生物质炭在农田温室气体减排领域的研究方向,旨在为生物质炭在农田温室气体减排中的应用提供思路和参考。  相似文献   

7.
生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响   总被引:1,自引:0,他引:1  
【目的】研究连续添加生物炭6年后对农田土壤氮转化相关微生物功能基因的影响,揭示生物炭影响作物产量和N2O排放的微生物学机制,并为生物炭的推广使用提供理论依据。【方法】通过在潮土农田设置0(BC0,对照)、2.25(BCL,低量)、6.75(BCM,中量)和11.25 t·hm-2(BCH,高量)4个秸秆生物炭量处理的田间定位试验,采用田间观测、化学分析、荧光定量PCR(qPCR)技术,系统研究施用生物炭对氧化亚氮(N2O)排放、氨单加氧酶(amoA)、亚硝酸还原酶(nirK、nirS)、氧化亚氮还原酶(nosZ)基因丰度及夏玉米产量的影响。【结果】与对照BC0处理相比,施用生物炭可显著提高夏玉米籽粒产量,且BCM处理籽粒产量达到最大值10 811 kg·hm-2,显著降低夏玉米生育期N2O累积排放量,并以BCM处理减少N2O排放效果最优。研究还发现,在夏玉米多个生育时期,与对照比较,生物炭施用可以显著提高耕层土壤无机氮储量和土壤含水量。此外,随着生物炭施用量增加,土壤氨氧化古菌(AOA)基因拷贝数在夏玉米大喇叭口期和成熟期均表现为先上升后下降趋势,且两个时期均以BCM处理最高,而氨氧化细菌(AOB)基因拷贝数在夏玉米大喇叭口期和成熟期分别为BCH处理和BCM处理最高。与对照相比,中、高量生物炭施用(BCM、BCH处理)可显著提高夏玉米大喇叭口期和成熟期土壤反硝化作用功能相关基因(nirK、nirS、nosZ)拷贝数。相关性分析表明,夏玉米成熟期土壤N2O排放通量与土壤硝态氮、土壤含水量、AOA、AOB、nirK、nirS、nosZ呈显著负相关关系。【结论】施用生物炭通过增加土壤微生物氮转化功能基因丰度进而降低土壤N2O排放,通过增加土壤耕层无机氮储量和土壤水分含量进而提高作物产量,并以中等用量(6.75 t·hm-2)施用效果最优。  相似文献   

8.
氧化亚氮(N2O)是主要的温室气体之一,并且对平流层臭氧层分解起到重要作用。土壤中N2O的产生和排放过程复杂多样,对其进行精准溯源与过程区分有助于制定减排策略。稳定同位素自然丰度技术利用N2O的同位素值δ15Nbulk(N2O中15N在整体水平上的同位素特征值)、δ18O(N2O中18O在整体水平上的同位素特征值)以及δ15Nsp(N2O分子内15N的位点特异性同位素值),可以示踪N2O来源、指示N2O产生的微生物作用途径,在N2O转化过程溯源中已取得重要进展。而同位素分馏效应是稳定同位素自然丰度技术应用的理论基础,其中微生物过程及其导致的同位素分馏是需要重点关注的问题。本研究概述了同位素分馏效应在N2O的产生、排放过程中的研究进展及其主要影响因素,梳理了同位素特征值δ15Nbulk、δ18O和δ15Nsp在分析N2O来源的研究进展,并且提出了影响准确区分过程的因素。因素包括单一产生路径的同位素特征值范围广、不同产生路径的同位素特征值范围的重叠、反应底物同位素组成的变化以及与N2O还原相关的分馏因子的可变性等问题。明确了今后需加强δ15Nsp等N2O同位素特征值分馏效应的测定,利用组合同位素特征值及先进手段进行全面的N2O溯源研究。图2参80  相似文献   

9.
生物与非生物因素对森林土壤氮矿化的调控机制   总被引:3,自引:1,他引:2       下载免费PDF全文
温室气体排放剧增引起全球变暖,已成为全球高度关注的生态环境问题。一氧化二氮(N2O)是大气中仅次于二氧化碳(CO2)和甲烷(CH4)的第三大温室气体,森林土壤氮矿化过程伴随着硝化和反硝化的发生,能够导致N2O的产生,进而引起大气N2O浓度的升高。森林土壤氮矿化是生物与非生物环境因素共同调控的复杂生态学过程,探明森林土壤氮矿化的影响因素及其调控机制,有助于丰富人们对森林土壤氮循环过程的认识,在全球变化研究中具有重要的地位与作用。本研究揭示森林土壤氮矿化的时空变化及影响因素,阐明非生物因素以及森林植被覆盖、森林凋落物、土壤微生物与土壤动物等生物因素对森林土壤氮矿化的影响特征及作用机制。目前,森林土壤氮矿化研究存在结果可比性不强;内容多集中于氮矿化单因素影响研究,缺乏多因子尤其是微生物-动物协同调控研究;缺乏不同气候类型及不同土地利用方式森林土壤氮矿化特征及影响机制研究;缺乏氮矿化对全球变化的响应研究等一系列问题。土壤氮矿化研究应该探索统一高效的测定方法,加强土壤微生物-动物-环境因子多因素耦合对森林土壤氮矿化影响机制研究,探讨不同气候类型及不同利用方式森林土壤氮矿化调控机制,重点阐明全球变化背景下森林土壤氮矿化的过程与机理。旨在为准确理解不同气候区森林土壤氮矿化的时空格局及其对全球气候变化的影响提供理论支撑。参69  相似文献   

10.
采用28 d的土壤培养试验,选用沙棘果渣(R)、生物质炭(B)和生物陶粒(T)3组材料,以自然培养组作为对照(CK),探讨沙棘果渣对土壤理化性质、温室气体(CO2、CH4和N2O)排放和微生物数量等方面的影响。结果表明:沙棘果渣能够显著提升土壤中全碳、全氮、速效钾等养分的含量,平均提升率分别为16.31%、14.99%、46.15%;对土壤pH也存在一定的提升效果,提升范围为0.25~0.69。沙棘果渣还田后土壤微生物丰度显著升高,其中前14 d微生物数量较对照平均增长335.6%。对不同材料还田后的温室气体排放和全球增温潜势分析表明,与生物质炭和生物陶粒相比,沙棘果渣还田的CO2排放量和全球增温潜势显著较高,但其CH4排放量较小且可以显著降低N2O的排放量。总体来看,沙棘果渣具有较高的还田价值,但需要考虑对温室气体排放的风险,本研究可为沙棘果渣的农业还田利用提供一定参考。  相似文献   

11.
【目的】 在等氮量有机部分替代化肥条件下研究温室番茄土壤N2O排放特征,探讨影响温室土壤N2O排放的环境因素,为估算温室菜地系统N2O的排放清单及其减排潜力提供数据支撑和理论依据。【方法】 以温室秋冬茬番茄为研究对象,设置不施肥(CK)、单施有机肥(MN)、单施化肥(CN)、有机肥部分替代化肥(CMN)4个处理,采用静态箱-气相色谱法,对番茄生育期内土壤N2O排放及土壤温度、含水量进行监测。【结果】 在相同施氮量情况下,处理CMN(有机部分替代无机)的N2O排放总量为4.05 kg·hm -2,相比处理CN(单施化肥)和MN(单施有机肥),土壤N2O排放总量降低了45.1%和33.2%;土壤N2O排放系数分别降低了50.0%和37.5%;排放强度降低了50.0%、42.1%。各处理土壤N2O排放通量峰值均出现在施肥灌水后第1天,排放主要集中在施肥灌溉后5 d内。温室番茄土壤N2O排放通量与0-5 cm地温呈显著或极显著线性相关关系;与土壤充水孔隙率(WFPS)呈显著或极显著的对数函数关系,且不同施肥处理下土壤N2O排放峰值出现在土壤充水孔隙率60%—80%范围内。【结论】 温室番茄土壤N2O排放的消长关系表现在温湿度变化和氮肥投入类型等方面,合理的减排措施应综合考虑以上因素。有机部分替代化肥施肥模式是提高温室番茄产量,减少N2O排放排放强度、排放系数和排放总量,提高肥料利用率,实现化肥零增长的重要手段。  相似文献   

12.
【目的】合理灌溉是设施生产控制N2O和NO排放,提高氮肥利用率的有效措施。研究不同灌水下限设施土壤N2O和NO排放动态与土壤水分、无机氮和可溶性有机氮关系,分析N2O和NO排放特征及影响因素,以期为N2O、NO减排和设施土壤灌溉管理提供科学依据。【方法】基于连续7年的设施土壤不同灌溉下限的田间定位试验,以番茄为供试作物,设4个土壤水吸力处理,分别为25 kPa(W1)、35 kPa(W2)、45 kPa(W3)和55 kPa(W4)。采用密闭静态箱-气相色谱和氮氧化物分析仪法,分别对番茄生长季的N2O和NO进行田间原位同步观测。【结果】番茄生长季不同灌水下限处理土壤N2O和NO排放通量分别为 -34.46—1 671.78 μg N·m-2·h-1和6.83—269.89 μg N·m-2·h-1,二者排放峰值期同步且主要发生在施肥和灌溉后,各处理NO/N2O均小于1。土壤N2O和NO累积排放量分别为W2和W1处理最低(P <0.01),各处理N2O+NO总累积排放量表现为W4处理>W3处理>W1处理>W2处理。W2处理番茄产量较W1、W3和W4处理分别增加84%、32.4%和12%。单位产量N2O+NO排放量表现为W4处理最高(P <0.01),W2处理最低。各处理施肥和收获后土壤无机氮和可溶性有机氮含量的重复测量方差分析表明,除灌水下限和观测时间交互对亚硝态氮含量影响不显著外,灌水下限和观测时间及二者交互效应对土壤无机氮和可溶性有机氮均有极显著影响(P <0.01)。冗余分析和相关分析表明,NO2--N、NH4+-N和土壤孔隙含水量(WFPS)可分别解释设施土壤N2O和NO变异的55%、32.5%和20.7%,均是极显著影响不同灌溉下限N2O和NO排放的主要影响因素。【结论】综合考虑产量和N2O、NO减排效应,灌水下限35 kPa的W2处理为本试验最适宜的灌溉管理措施。  相似文献   

13.
[目的]探明滴灌施肥对华北典型种植类型农田N2O排放的影响差异与减排贡献,并明确其综合调控机制,为区域农业生产碳氮优化调控及滴灌施肥技术在华北推广应用提供科学支撑和技术储备.[方法]选择两种典型的作物种植模式(冬小麦-夏玉米轮作和设施菜地)为研究对象,分别设置了4个处理,即对照(CK)、常规漫灌施肥(FP)、滴灌施肥(...  相似文献   

14.
  目的  研究长期氮沉降对森林土壤可利用氮的浓度和土壤N2O排放的影响,对于控制土壤温室气体排放、提高区域碳源汇评估的准确度等具有重要的意义。  方法  本文以温带森林土壤为研究对象,通过长期(11年)野外氮添加控制试验,采用静态箱/气相色谱法分析3种氮素添加水平(对照、低水平:50 kg/(hm2·a)、高水平:150 kg/(hm2·a))和3种氮素化学形态(硝态氮:NaNO3;铵态氮:(NH4)2SO4和混合态氮:NH4NO3)对温带人工林土壤N2O排放通量的影响。  结果  (1)氮素形态和氮添加水平引起土壤NH4+-N和NO3?-N的显著累积,且NO3?-N的累积效应远远高于NH4+-N;(2)不同水平和形态的氮添加均促进了N2O排放。低水平和高水平NaNO3、(NH4)2SO4、NH4NO3添加分别使土壤N2O年累积排放量增加了87.39%和146.79%、86.13%和74.91%、98.67%和50.50%。长期氮添加对土壤N2O排放的促进态势有所改变,高水平NH4+-N和NH4NO3对土壤N2O排放的促进效应低于低水平添加;(3)结合前期研究结果推测,硝化反应是温带人工林土壤N2O排放的主导过程,NH4+-N比NO3?-N转化为N2O的效率更高。  结论  本研究强调了长期野外监测的重要性,氮添加对土壤N2O排放的影响具有阶段性,如果试验时间短,氮添加对温带森林土壤N2O排放的促进效应可能会被高估。   相似文献   

15.
秸秆还田深度对土壤温室气体排放及玉米产量的影响   总被引:4,自引:0,他引:4  
【目的】秸秆还田是培肥地力、增加土壤有机质和改善土壤结构的重要技术手段,但以往的研究表明秸秆还田会加速土壤温室气体的排放。本研究通过对秸秆不同还田深度下农田土壤温室气体排放特征和产量的研究,明确降低温室气体排放量的最佳还田深度,以期为合理利用秸秆、提高作物产量,实现农业可持续发展提供科学依据。【方法】采用大田微区试验,以玉米为供试作物,设置4个还田深度,采用静态箱-气相色谱法测定整个玉米生长季不同还田深度下温室气体(CO2、CH4、N2O)的排放特征,产量及产量构成因素。试验共设5个处理,还田深度分别为0—10 cm(T1)、10—20 cm(T2)、20—30 cm(T3)和30—40 cm(T4),同时以不还田处理作为对照(CK)。【结果】(1)在整个玉米生长季CO2和N2O均表现为排放,CH4表现为吸收。CO2累积排放量为T3处理最高,较CK显著增加了28.6%,T4处理增加最少,较CK显著增加了17.1%(P<0.05),但T1与T4处理之间差异不显著;而N2O的累积排放量T2处理为最高,与CK相比,累积排放量显著增加111.3%,T4处理增加最少,与CK相比显著增加了12.8%(P<0.05);CH4则表现为吸收,且秸秆还田后降低了农田土壤对CH4的吸收能力,吸收量表现为CK处理>T4处理>T3处理>T1处理>T2处理,且各还田处理与CK之间差异显著(P<0.05)。(2)秸秆不同还田深度下,与对照相比,各处理玉米产量均显著增加,增产在5.6%—20.8%(P<0.05),但各处理之间的穗长、穗粗和行粒数差异不显著。当秸秆还至30—40 cm时,产量最高,较CK增加了20.8%,表明秸秆还田对提升土壤肥力及作物增产有重要作用。(3)从温室气体综合增温潜势(GWP)和温室气体排放强度(GHGI)来看,在100年尺度上,GWP表现为T2处理>T3处理>T1处理>T4处理>CK处理,而GHGI表现为T2处理>T3处理>T1处理>CK处理>T4处理,表明与CK相比,各处理均增加了玉米季温室气体的综合增温潜势,而T4处理则降低了玉米季温室气体排放强度,说明秸秆深还至30—40 cm可在一定程度上缓解全球增温潜势。【结论】秸秆还田会显著增加CO2和N2O排放,降低对CH4的吸收能力;秸秆深还至30—40 cm可相对降低综合增温潜势,降低温室气体排放强度,同时显著增加玉米产量。因此,为实现较高的玉米产量和较低的温室气体排放强度,秸秆深还至30—40 cm是较为合理的土壤改良培肥方式。  相似文献   

16.
为了研究添加生物炭、秸秆、生物炭与秸秆联用对热带地区稻田温室气体排放的影响,通过盆栽培养试验,设常规施肥(CK)、常规施肥配施 40 t·hm?2 椰糠生物炭(B)、常规施肥配施3 t·hm?2水稻秸秆(C)、常规施肥配施 40 t·hm?2 椰糠生物炭加3 t·hm?2水稻秸秆(B+C)4个处理,采用静态箱-气相色谱法监测整个水稻种植季CH4和N2O排放,估算全球增温潜势(GWP)并测定收获后作物产量。结果表明,相比CK处理, B、C和B+C处理的N2O累计排放量分别降低21.43%、21.89%和14.77%;B处理的CH4累计排放量降低38.21%,而C和B+C处理的CH4累计排放量分别增加14.63%和19.85%;C和B+C处理显著增加GWP,而B处理显著降低GWP;单独添加生物炭减排效果最佳。与CK相比,B、C处理的单株水稻产量分别增加5.22%、8.76%,而B+C处理的单株水稻产量降低18.39% (P<0.05)。因此,在我国热带地区稻田,单独施用40 t·hm?2生物炭,可以实现温室气体减排和增产,值得在田间推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号