首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid chromatographic (LC) method is described for determination of olaquindox residues in swine tissues. The drug is extracted from tissues with acetonitrile, and the extract is evaporated to dryness. This residue is cleaned up by alumina column chromatography. LC analysis is carried out on a Nucleosil C18 column, and olaquindox is quantitated by ultraviolet detection at 350 nm. The average recoveries of olaquindox added to tissues at levels of 0.2, 0.1, and 0.05 ppm were 74.0, 68.6, and 66.3%, respectively. The detection limit was 2 ng for olaquindox standard and 0.02 ppm in tissues.  相似文献   

2.
An analytical method has been developed that is applicable to the determination of Ivermectin in medicated feeds at the 2 ppm concentration level. It is based upon liquid chromatographic analysis with a reverse-phase column and ultraviolet detection. After the drug is extracted from the feed into methanol, an analytical sample is prepared by the consecutive use of column chromatography on alumina and solid-phase extraction on Sep-Pak C18 and silica cartridges. This procedure has been applied to the concentration range 0.50-3.0 ppm of Ivermectin in feed with an accuracy of +/- 2% mean relative error and a precision of +/- 2% relative standard deviation at the 2 ppm concentration level.  相似文献   

3.
A liquid chromatographic (LC) method with fluorometric detection was developed to quantitatively determine residue levels of monensin, salinomycin, narasin, and lasalocid in beef liver tissue. The ionophores are extracted from the tissue, purified by both alumina and Sephadex LH-20 column chromatography, and then derivatized. Lasalocid was directly esterified with 9-anthryldiazomethane (ADAM), but monensin, salinomycin, and narasin were first acetylated with acetic anhydride and then esterified with ADAM. The ADAM derivatives were purified on a silica gel column and separated by LC using an RP C-8 5 micron column. A fluorescence detector set at 365 nm (excitation) and 418 nm (emission) was used to monitor the column effluent. The detection limits were 0.15 ppm, and the calibration curves were linear between 0.5 and 5.0 ppm for all 4 ionophores. Mean recoveries were 57, 70, 75, and 90% for lasalocid (5 ppm), monensin (2.5 ppm), salinomycin (2.5 ppm), and narasin (2.5 ppm), respectively. The ionophores were also separated and semiquantitated by using bioautography and thin layer chromatography with a vanillin spray.  相似文献   

4.
Sulfonamides are widely used as a feed additive in animal production in Japan. The present paper is a determination of 3 sulfonamides: sulfamethazine (SMZ), sulfamonomethoxine [SMX, 4-amino-N-(3-methoxypyrazinyl)-benzenesulfonamide], and sulfadimethoxine (SDX) in animal tissue and egg by liquid chromatography (LC). Tissues were extracted with acetonitrile and fat was removed by liquid/liquid partition. The sulfonamides were purified by an ODS cartridge column; then each compound was separated by an ODS LC column and detected at 268 nm. Quantification levels were 0.02 ppm for SMZ and SMX, and 0.04 ppm for SDX; detection limits were 0.01 ppm for SMZ and SMX, and 0.02 ppm for SDX. Calibration curves were linear between 2 and 40 ng for SMZ and SMX, and between 4 and 80 ng for SDX. Recoveries from muscle and egg samples spiked with 1-2 micrograms/10 g were 81-98%.  相似文献   

5.
A liquid chromatographic (LC) method is described for the determination of chlortetracycline hydrochloride (CTC) in poultry/swine and ruminant feeds in the 10-100 ppm range and in premix. CTC is extracted from ground feed/premix with acidified acetone, and the extract is filtered through a Millex-HV filter or disposable C18 column. The filtrate is partitioned with methylene chloride when additional cleanup is necessary. A Nova-Pak C18 column is used for LC separation with determination at 370 nm. The average recovery of CTC from premix was 95% with a standard deviation (SD) of 1.70 and a coefficient of variation (CV) of 1.79%. The overall average recovery from feeds was 77% with an SD of 3.18 and a CV of 4.10%.  相似文献   

6.
A procedure is described for the quantitation of Zoalene (3,5-dinitro-o-toluamide) and its 2 major monoamino metabolites in chicken tissues. The method includes blender extraction of tissue with chloroformethyl acetate (1 + 1), adsorption of the drug and metabolites on neutral alumina, and subsequent elution of the residues with pH 3.5 formate buffer-methanol (6.5 + 3.5). Recovered residues were separated on a 5 micron C18 column with the alumina eluting solvent as the LC mobile phase. The parent drug and metabolites were detected and quantitated with an electrochemical detector in the reductive mode with a minimum level of reliable measurement of 0.1 ppm. Overall mean recoveries greater than 85% were obtained with Zoalene and its 2 monoamino metabolites in breast, thigh, and liver tissues fortified with 0.25-2.00 ppm. The results on tissues from chickens fed a diet containing 0.0125% Zoalene are presented.  相似文献   

7.
Melengestrol acetate (MGA) is determined by liquid chromatography using a fraction from preparatory LC as a means of sample cleanup for feedstuffs, both dry and liquid. Dry ground feed is Soxhlet extracted with hexane and passed through a 2% deactivated alumina column for initial cleanup. The eluate is evaporated, redissolved in methanol, filtered, and injected onto a preparatory LC column. The fraction containing MGA is separated from the remaining matrix, evaporated to dryness, dissolved in methanol, and quantitated by LC analysis. Liquid supplements are extracted in methanol, and the extract is evaporated to near dryness. The residue is diluted with water, extracted with chloroform, passed through sodium sulfate, and evaporated to dryness. The remaining sample is dissolved in methanol prior to preparative LC and quantitative LC. Recoveries for 2 laboratory-fortified commercial feeds, one dry and one liquid, containing 0.39 and 0.40 mg/lb, were 98.3% +/- 4.4 and 95.8% +/- 4.3, respectively. Results compare favorably with existing methods. Up to a 4-fold time savings was realized by this method without automation.  相似文献   

8.
A high-speed liquid chromatographic (LC) method using post-column derivatization is described for the determination of monensin, narasin, and salinomycin in a variety of animal feeds. The ionophores are extracted with hexane-ethyl acetate (90 + 10). A portion of the sample is evaporated, diluted to a known volume, and analyzed using a 6 cm 3 microns C18 column and an absorbance detector after post-column reaction with vanillin. The method has been applied to poultry and swine feeds with levels of 3-100 ppm added antibiotic. A comparison was also carried out with medicated poultry feed and beef feed lot supplement samples previously analyzed by 2 separate bioassay methods for monensin and salinomycin, respectively. Recoveries for the LC method ranged from 92.1 to 103% with an average recovery of 98.1% and a coefficient of variation of 3.65%.  相似文献   

9.
A gas chromatographic method is described for determining residues of mecarbam and 3 of its metabolites, mecarboxon, diethoate, and diethoxon, in cottonseeds. For mecarbam analysis, following Soxhlet extraction with chloroform (after blending), the oily extract is partitioned with propylene carbonate and cleaned up on a silica gel column. Metabolites are extracted by the same method, followed by cleanup of mecarboxon on a silica gel column or diethoxon on an alumina column; cleanup of diethoate can be performed on either column. All 4 compounds are determined using a flame photometric detector equipped with a phosphorus filter. Average recoveries for cottonseed samples fortified with 0.03-1.0 ppm mecarbam ranged from 80 to 88%. Average recoveries were 81-88% for mecarboxon and 90-92% for diethoate (alumina column) and diethoxon from samples fortified with 0.05-1.0 ppm. Average recovery of diethoate from samples cleaned up on the silica gel column were 84-88% in the range of 0.05-0.2 ppm. Values obtained for mecarbam residues in field-treated samples are also presented.  相似文献   

10.
A reverse-phase liquid chromatographic (LC) method is described for simultaneously determining 5 coccidiostats--aklomide, dinsed, ethopabate, nitromide, and zoalene in chicken liver. The method entails blender extraction of 10 g liver with ethyl acetate, column chromatography through Sephadex LH-20 and neutral alumina, and LC analysis on a C18 column with UV detection at 260 nm. The drugs were eluted from Sephadex with methanol-benzene (10 + 90), from alumina with methanol-dichloromethane (10 + 90), and from C18 with acetonitrile-water (linear gradient: 25% acetonitrile for 10 min, increasing to 55% over 15 min; flow rate 1 mL/min). Liquid chromatography was completed in 40 min and calculations were based on peak height measurements. Average recoveries of the coccidiostats from fortified liver ranged from 72 to 97%, except for dinsed, which showed a relatively constant average recovery of 57%. The detection limit for the standards was 2.5 ng on column. Levels as low as 50 ng/g were detected in fortified liver samples.  相似文献   

11.
A liquid chromatograph was interfaced to an atomic absorption spectrometer for the detection and quantitation of maduramicin in feed matrixes at the 1-8 ppm level. Ionophores in general form strong 1:1 products with various metal cations, yielding complexes that are insoluble in water but very soluble in organic solvents. Maduramicin, a carboxylic, polyalcohol, polyether antibiotic, is labeled with the sodium cation and analyzed by atomic absorption spectroscopy (AAS). The lower limit of detection is approximately 100-200 ng maduramicin sodium salt. Feeds containing 1-8 ppm maduramicin are extracted with acetone, the extract is passed through an alumina column, the column is eluted with acetonitrile-water (90 + 10), and the eluate is analyzed for maduramicin by liquid chromatography-AAS after concentration and conversion of maduramicin to the sodium salt. Recoveries of maduramicin averaged 89.5%. Liquid chromatography with AAS detection has been shown to be a sensitive and highly specific technique for the determination of ionophores in general and maduramicin in particular.  相似文献   

12.
A liquid chromatographic (LC) method is described for determination of spiramycin residues in chicken muscles. The drug is extracted from muscles with acetonitrile, the extract is concentrated to 3-4 mL and rinsed with n-hexane followed by ethyl ether, and the drug is extracted with chloroform. LC analysis is carried out on a Zorbax BP-C8 column, and spiramycin is detected spectrophotometrically at 231 nm. Recoveries of spiramycin added to chicken muscles at 0.2 and 0.1 ppm were 93.9 and 89.0%, respectively. The detection limit was 5 ng for spiramycin standard, and 0.05 ppm in chicken muscles.  相似文献   

13.
A liquid chromatographic (LC) method is described for determination of ampicillin residues in fish tissues. The drug is extracted from tissues with methanol, and the extract is evaporated to dryness. This residue is cleaned up by Florisil cartridge chromatography. LC analysis is carried out on a Nucleosil C18 column, and ampicillin is quantitated by ultraviolet detection at 222 nm. Recoveries of ampicillin added to tissues at levels of 0.2 and 0.1 ppm were 73.2 and 61.5%, respectively. The detection limit was 3 ng for ampicillin standard, and 0.03 ppm in tissues.  相似文献   

14.
A liquid chromatographic method was developed for the determination of nicarbazin (4,4'-dinitrocarbanilide.2-hydroxy-4,6-dimethylpyrimidine) in chicken feed. Ground feed was extracted with hot dimethylformamide, filtered, and then cleaned up on an alumina column. The nicarbazin was eluted from the column with ethanol and quantitated using a reverse phase C-18 column, with a methanol-water mobile phase and ultraviolet detection at 344 nm. Recoveries at a typical use level of 100 micrograms/g feed averaged 98% with a standard deviation of 3%. Samples fortified at levels as low as 0.1 micrograms/g were analyzed with 92% recovery. The detection limit is 1 ng, and the response is linear between 4 and 1000 ng. Feed additives in combination with nicarbazin do not interfere with recovery.  相似文献   

15.
A method is presented for determination of amprolium residues in chicken muscles by a liquid chromatographic post-column reaction system. The drug is extracted from muscles with methanol, and the extract is concentrated to 3-4 mL. This aqueous solution is rinsed with n-hexane and cleaned up by alumina column chromatography. The drug is separated from the interferences on a LiChrosorb RP-8 column, reacted with ferricyanide in alkaline solution, and quantitated by fluorometric detection at 367 nm (excitation) and 470 nm (emission). Recoveries of amprolium added to chicken muscles at levels of 0.1 and 0.2 ppm were 74.9 and 80.9%, respectively. The detection limit was 1 ng for amprolium standard and 0.01 ppm in chicken muscles.  相似文献   

16.
A simple and rapid method is described for the determination of dimetridazole (DMZ) and ipronidazole (IPR) in swine feeds at various levels (0.11-110 ppm). The drugs are released from feed by prewetting with a buffer, followed by extraction with either methanol or methylene chloride, depending on the drug level; if necessary, an acid-base cleanup is used before the liquid chromatographic analysis. The analytes are separated on a C18 column and monitored at 320 nm for detection and quantitation. Recoveries of DMZ from several feed formulations averaged 108% at the 92.8 ppm level with a standard deviation (SD) of 4.00% and a coefficient of variation (CV) of 3.70%, 101% at the 11.2 ppm level with an SD of 11.9% and a CV of 11.8%, and 100% at the 0.112 ppm level with an SD of 9.27% and a CV of 9.25%. Recoveries of IPR averaged 77.1% at the 12.9 ppm level with an SD of 1.75% and a CV of 2.27%; IPR recoveries averaged 35.2% at the 0.129 ppm level with an SD of 3.39% and a CV of 9.63%.  相似文献   

17.
A liquid chromatographic (LC) method is described for the determination of neomycin in animal tissues. Tissues are homogenized in 0.2M potassium phosphate buffer (pH 8.0); the homogenate is centrifuged, and the supernate is heated to precipitate the protein. The heat-deproteinated extract is acidified to pH 3.5-4 and directly analyzed by LC. The LC method consists of an ion-pairing mobile phase, a reverse phase ODS column, post-column derivatization with o-phthalaldehyde reagent, and fluorometric detection. The LC method uses paromomycin as an internal standard, and separates neomycin from streptomycin or dihydrostreptomycin because they have different retention times. The LC column separates neomycin in 25 min; the detection limit is about 3.5 ng neomycin. The overall recovery of neomycin from kidney tissues spiked at 1-30 ppm was 96% with a 9.0% coefficient of variation. The method was also applied to muscle tissue.  相似文献   

18.
A new method is described to determine trace quantities of N-nitrosodiethanolamine (NDElA) in aqueous diethanolamine (DElA) formulations and in oil solutions of dinoseb. A formate anion-exchange column is used in series with a cation-exchange column if there is DElA in the formulation. The eluate is then passed through a Clin Elut column. Depending on the concentration of NDElA in the sample, a packed silica-gel column is used to purify the extract further. This extract is analyzed on a liquid chromatograph coupled with a thermal energy analyzer (LC/TEA), using a mixture of methanol-hexane-methylene chloride containing 0.1% acetic acid (8 + 56 + 35) as the mobile phase. This solvent system gives good separation of NDElA from trace quantities of dinoseb remaining in the extract. The NDElA is also converted to the trimethylsilyl derivative and analyzed by gas chromatograph coupled with a mass spectrometer (GC/MS). Analyses of 11 commercial samples of dinoseb diethanolamine salt showed NDElA levels of 116-2409 ppm expressed relative to the weight of dinoseb. In contrast, analyses of 2 samples of organic solutions of technical dinoseb showed NDElA levels to be nondetectable and 0.3 ppm, respectively. Limit of detection by LC/TEA is 6.5 ng (0.5 ppm), and by GC/MS it is 0.02 ng (0.15 ppm). Recoveries from samples spiked at 0.514-1664 ppm range from 92.2 to 105.2%.  相似文献   

19.
A rapid, sensitive, liquid chromatographic (LC) method has been developed for determination of residuals of the processing aid, 4-hexylresorcinol, on shrimp meat. An aqueous homogenate of shrimp meat is extracted with ethyl acetate followed by precolumn preparation on a silica Sep-Pak cartridge. LC determination is preformed with a Nova-Pak C18 column, with UV detection at 214 nm. Sensitivity was 0.006 micrograms, and recovery from shrimp meat samples of known 4-hexylresorcinol addition was 94%. Shrimp treated with 4-hexylresorcinol under the recommended dip protocol had mean residuals of 1.18 ppm, with a standard deviation of 0.13 ppm.  相似文献   

20.
A liquid chromatographic (LC) method is described for determination of ethopabate residues in chicken tissues. The drug is extracted from tissues with acetonitrile, and the extract is concentrated to 2-3 mL. This aqueous solution is rinsed with ethyl acetate and cleaned up by Florisil column chromatography. LC analysis is carried out on a Zorbax ODS column, and ethopabate is quantitated by using a fluorometric detector set at 306 nm (excitation) and 350 nm (emission). Recoveries of ethopabate added to chicken tissues at levels of 0.01 and 0.05 ppm were 87.8 and 92.7%, respectively. The detection limit was 100 pg for ethopabate standard, and 0.5 ppb in chicken tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号