首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Susan M.  Newell  DVM  MS  John P.  Graham  MVB  MSc  Gregory D.  Roberts  DVM  MS  Pamela E.  Ginn  DVM  Cleatis L.  Chewning  RT    Jay M.  Harrison  MS  Camille  Andrzejewski  BS 《Veterinary radiology & ultrasound》2000,41(1):27-34
Magnetic resonance images of the cranial abdomen were acquired from 15 clinically normal cats. All cats had T1-weighted images, 8 cats had T2-images made and 7 cats had T1-weighted post Gd-DTPA images acquired. Signal intensity measurements for T1, T2, and T1 post contrast sequences were calculated for liver, spleen, gallbladder, renal cortex, renal medulla, pancreas, epaxial muscles, and peritoneal fat. On T1-weighted images the epaxial muscle had the lowest signal intensity, followed by renal medulla, spleen, renal cortex, pancreas, liver and fat, respectively. On T2-weighted images, epaxial muscle had the lowest signal intensity followed by liver, spleen, fat, and gallbladder lumen. Calculations of specific organ percent enhancement following contrast medium administration were made and compared with that reported in humans. A brief review of the potential clinical uses of MR in cats is presented.  相似文献   

2.
The magnetic resonance (MR) imaging features of central nervous system lymphoma in eight dogs and four cats are described. Intracranial lesions affected the rostrotentorial structures in six dogs and caudotentorial structures in two cats. Lesions affected the spinal cord in two dogs and in two cats. One dog and one cat with intracranial lymphoma had signs of local extracranial extension and lymphadenopathy. Lesions were considered extraparenchymal in four dogs and three cats, intraparenchymal in two dogs and one cat, and appeared to have both intra- and extraparenchymal components in two dogs. All lesions were hyperintense in T2-weighted images when compared to white matter, most were hypointense in T1-weighted images (7/12), and most were hyperintense in fluid-attenuated inversion recovery (FLAIR) images (5/9). When compared to grey matter, these lesions appear either isointense (5/12) or hyperintense (7/12) on T2-weighted images, half of them were hypointense in T1-weighted images (6/12), and most were isointense in FLAIR images (7/9). Lesion margins were usually indistinct in T2-weighted images (10/12) and had perilesional hyperintensity in FLAIR images (7/9). The majority of lesions (10/12) had abnormal meninges around the lesion and half (6/12) had generalized contrast enhancement. Mass effect was evident in all lesions. Although not specific, when combined with the history and neurologic signs, MR features aid presumptive diagnosis that should be confirmed by cytology or histopathology.  相似文献   

3.
To compare fluid-attenuated inversion recovery (FLAIR) and T2-weighted magnetic resonance (MR) imaging in small animal patients with suspected brain disease, paired sets of FLAIR and T2-weighted MR images of 116 dogs and cats were reviewed separately without any patient information. Images were rated as normal or abnormal using a five-point scale, and the distribution, signal intensity, and anatomic location of abnormalities were recorded. In 60 animals, both FLAIR and T2-weighted images were normal. In 50 animals, the same abnormalities were identified in both FLAIR and T2-weighted images. Overall, very good agreement was found between FLAIR and T2-weighted MR images (kappa = 0.88). FLAIR images had abnormalities that were not recognized in the corresponding T2-weighted images in six of 116 examinations (5%). In four of these, the abnormalities in FLAIR images were thought to represent pathology, including granulomatous meningoencephalitis in one dog, postictal edema in one dog, and undiagnosed lesions in two dogs. In the remaining two examinations, the abnormalities in FLAIR images were probably artifacts. No examples were found of intracranial abnormalities in T2-weighted images that were not visible in FLAIR images. In this study, acquiring FLAIR images in addition to T2-weighted images resulted in detection of otherwise occult abnormalities in relatively few patients.  相似文献   

4.
In humans affected with inflammatory myopathies, regions of altered signal intensity are found on magnetic resonance (MR) images of affected muscles. Although electromyography (EMG) is more practical for muscle disease evaluation, and a muscle biopsy is the only manner in which a definitive diagnosis can be made, MR imaging has proven useful if a specific anatomic localization is difficult to achieve. Three dogs with focal inflammatory myopathy diagnosed with the assistance of MR imaging are discussed and the findings are compared with those found in humans. MR images of the affected muscles in each dog were characterized by diffuse and poorly marginated abnormal signal on T1- and T2-weighted images. Marked enhancement was noted in these muscles after contrast medium administration. An inflammatory myopathy was confirmed histologically in all three dogs. A good association existed between the MR images and muscle inflammation identified histopathologically. MR imaging may be a useful adjunctive procedure for canine inflammatory myopathies.  相似文献   

5.
To describe the signs that may be associated with intracranial inflammatory conditions, magnetic resonance (MR) images of 25 dogs that had inflammatory cerebrospinal fluid (CSF) were mixed with those of a control group of 40 dogs that had CSF negative for inflammatory disease and reviewed without knowledge of the clinical signs or diagnosis. CSF was considered inflammatory if the protein level was > 0.25 g/l and the white cell count was > 5 mm(-3). Abnormalities were found by MR imaging in 19 (76%) dogs with inflammatory CSF. Two dogs had focal lesions, 10 had multifocal lesions, and seven had diffuse lesions. Lesions affected all divisions of the brain. Mass effect was identified in seven (28%) dogs, including one that had a choroid plexus carcinoma. Lesions were hyperintense in T2-weighted images in 18 dogs and hypointense in T1-weighted images in six dogs. Multifocal or diffuse intraaxial lesions that were hyperintense in T2-weighted images were observed in 17 (68%) dogs with inflammatory CSF. Administration of gadolinium resulted in enhancement of intraaxial lesions in nine (36%) dogs and enhancement of meninges in seven (28%) dogs. Six (24%) dogs with inflammatory CSF had images interpreted as normal.  相似文献   

6.
7.
Two cats were presented with vestibular signs and seizures. Both cats were diagnosed with thiamine deficiency. The transverse and dorsal T2-weighted magnetic resonance (MR) images revealed the presence of bilateral hyperintense lesions at specific nuclei of the midbrain, cerebellum, and brainstem. After thiamine supplementation, the clinical signs gradually improved. Repeated MR images taken 3 weeks after thiamine supplementation had started showed that the lesions were nearly resolved. This case report describes the clinical and MR findings associated with thiamine deficiency in two cats.  相似文献   

8.
Cerebral microbleeds in people are small foci of hemosiderin-containing macrophages in normal brain parenchyma. They are the remnant of previous hemorrhage and occur with greater frequency in older individuals. Our purpose was to describe the magnetic resonance (MR) appearance of cerebral microbleeds in four dogs. These lesions appeared as round, hypointense foci measuring ≤4 mm on T2*-gradient-recalled echo images. They were less conspicuous or absent on T2-weighting, being iso- or hypointense, and uniformly invisible on T1-weighted images. No contrast enhancement was seen in any of the cerebral microbleeds. Necropsy-derived histopathologic analysis of one brain confirmed these lesions to be chronic cerebrocortical infarcts containing hemosiderin. The MR changes seen in dogs were analogous to what has been described in people and will be helpful in distinguishing cerebral microbleeds from other brain lesions.  相似文献   

9.
OBJECTIVE: To evaluate thin-slice 3-dimensional gradient-echo (GE) magnetic resonance imaging (MRI) of the pituitary gland in healthy dogs. ANIMALS: 11 healthy dogs. PROCEDURES: By use of a 0.2-Tesla open magnet, MRI of the skull was performed with T1-weighted GE sequences and various protocols with variations in imaging plane, slice thickness, and flip angle before and after administration of contrast medium; multiplanar reconstructions were made. The pituitary region was subjectively assessed, and its dimensions were measured. Image quality was determined by calculation of contrast-to-noise and signal-to-noise ratios. RESULTS: Best-detailed images were obtained with a T1-weighted GE sequence with 1-mm slice thickness and 30 degrees flip angle before and after administration of contrast medium. Images with flip angles > 50 degrees were of poor quality. Quality of multiplanar reconstruction images with 1-mm slices was better than with 2-mm slices. The bright signal was best seen without contrast medium. With contrast medium, the dorsal border of the pituitary gland was clearly delineated, but lateral borders were more difficult to discern. CONCLUSIONS AND CLINICAL RELEVANCE: MRI of the canine pituitary gland with a 0.2-Tesla open magnet should include a T1-weighted GE sequence with 1-mm slice thickness and flip angle of 30 degrees before and after administration of contrast medium. The neurohypophysis was best visualized without contrast medium. The MRI examination permitted differentiation between the pituitary gland and surrounding structures.  相似文献   

10.
In humans, contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging plays an important role in detecting brain disease. The aim of this study was to define the clinical utility of contrast-enhanced FLAIR imaging by comparing the results with those with contrast-enhanced spin echo T1-weighted images (SE T1WI) in animals with different brain disorders. Forty-one dogs and five cats with a clinical suspicion of brain disease and 30 normal animals (25 dogs and five cats) were evaluated using a 0.2 T permanent magnet. Before contrast medium injection, spin echo T1-weighted, SE T1WI, and FLAIR sequences were acquired in three planes. SE T1WI and FLAIR images were also acquired after gadolinium injection. Sensitivity in detecting the number, location, margin, and enhancement pattern and rate were evaluated. No lesions were found in a normal animal. In affected animals, 48 lesions in 34 patients were detected in contrast-enhanced SE T1WI whereas 81 lesions in 44 patients were detected in contrast-enhanced FLAIR images. There was no difference in the characteristics of the margins or enhancement pattern of the detected lesions. The objective enhancement rate, the mean value between lesion-to-white matter ratio and lesion-to-gray matter ratio, although representing an overlap of T1 and T2 effects and not pure contrast medium shortening of T1 relaxation, was better in contrast-enhanced FLAIR images. These results suggest a superiority of contrast-enhanced FLAIR images as compared with contrast-enhanced SE T1WI in detecting enhancing brain lesions.  相似文献   

11.
The magnetic resonance imaging appearance of the feline middle ear is described in three healthy cats and in five cats with middle ear disease. Owing to the good spatial resolution, multiplanar slice orientation as well as display high contrast resolution of soft tissue, in particular fluids, MR imaging was helpful prior to surgery. It is superior to radiography which failed to allow identification of the abnormality in two of our five cats. MR imaging for middle ear disease should include dorsal and transverse plane images using T1- and T2-weighted sequences. In the presence of a mass within the bulla or the external ear canal application of contrast medium is helpful.  相似文献   

12.
The medical records and magnetic resonance (MR) images of dogs with an acquired trigeminal nerve disorder were reviewed retrospectively. Trigeminal nerve dysfunction was present in six dogs with histologic confirmation of etiology. A histopathologic diagnosis of neuritis (n=2) or nerve sheath tumor (n=4) was made. Dogs with trigeminal neuritis had diffuse enlargement of the nerve without a mass lesion. These nerves were isointense to brain parenchyma on T1-weighted (T1W) precontrast images and proton-density-weighted (PDW) images and either isointense or hyperintense on T2-weighted (T2W) images. Dogs with a nerve sheath tumor had a solitary or lobulated mass with displacement of adjacent neuropil. Nerve sheath tumors were isointense to the brain parenchyma on T1W, T2W, and PDW images. All trigeminal nerve lesions enhanced following contrast medium administration. Atrophy of the temporalis and masseter muscles, with a characteristic increase in signal intensity on T1W images, were present in all dogs.  相似文献   

13.
The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges.  相似文献   

14.
The aim of this study was to identify magnetic resonance (MR) signs that aid differentiation of neoplastic vs. non-neoplastic brain diseases in dogs and cats. MR images of 36 dogs and 13 cats with histologic diagnosis of intracranial disease were reviewed retrospectively. Diagnoses included 30 primary and three metastatic brain tumors, 11 infectious/inflammatory lesions, three vascular, one degenerative disease, and one developmental malformation. Upon univariate analysis of 21 MR signs, there were seven that had a significant association with neoplasia: single lesion (P = 0.004), shape (P = 0.015), mass effect (P = 0.002), dural contact (P = 0.04), dural tail (P = 0.005), lesions affecting adjacent bone (P = 0.008), and contrast enhancement (P = 0.025). Increasing age was also found to be associated with neoplasia (P = 0.0001). MR signs of non-neoplastic brain diseases in dogs and cats were more variable than those of brain neoplasia.  相似文献   

15.
The characteristics of magnetic resonance imaging (mri) of the brains and spinal cords of 11 dogs with histologically confirmed granulomatous meningoencephalomyelitis (gme) were determined. The lesions were in the brain of eight of the dogs, in the brain and spinal cord of two, and in the spinal cord alone in one dog. A single lesion was present in four of the dogs and multiple lesions were found in six. In one dog with intracranial signs, no visible lesions could be detected on mri. No meningeal enhancement was detected in T1-weighted images post-contrast, or in fluid attenuation inversion recovery (flair) images, but there were histological lesions in the meninges in nine of the dogs. The T2-weighted images and flair sequences were characterised in all cases by hyperintensity, whereas the signal intensity of the lesions on T1-weighted images was variable. After the administration of paramagnetic contrast, some of the lesions showed no enhancement, but others showed marked patterns of enhancement. The lesions in 10 of the dogs were easily identifiable by mri and the images had several unifying characteristics, but they could not be considered disease-specific.  相似文献   

16.
17.
REASONS FOR PERFORMING STUDY: Obtaining magnetic resonance images of the inner hoof wall tissue at the microscopic level would enable early accurate diagnosis of laminitis and therefore more effective therapy. OBJECTIVES: To optimise magnetic resonance imaging (MRI) parameters in order to obtain the highest possible resolution of the structures beneath the equine hoof wall. METHODS: Magnetic resonance microscopy (MRM) was performed in front feet from 6 cadaver horses using T2-weighted fast spin echo (FSE-T2), and T1-weighted gradient echo (GRE-T1) sequences. RESULTS: In T2 weighted FSE images most of the stratum medium showed no signal, however the coronary, terminal and sole papillae were visible. The stratum lamellatum was clearly visible and primary epidermal lamellae could be differentiated from dermal lamellae. CONCLUSION: Most structures beneath the hoof wall were differentiated. Conventional scanners for diagnostic MRI in horses are low or high field. However this study used ultra-high field scanners currently not available for clinical use. Signal-to-noise ratio (S/N) increases as a function of field strength. An increase of spatial resolution of the image results in a decreased S/N. S/N can also be improved with better coils and the resolution of high field MRI scanners will increase as technology develops and surface array coils become more readily available. POTENTIAL RELEVANCE: Although MR images with microscopic resolution were obtained ex vivo, this study demonstrates the potential for detection of lamellar pathology as it occurs. Early recognition of the development of laminitis to instigate effective therapy at an earlier stage and may improve the outcome for laminitic horses. Clinical MR is now readily available at 3 T, while 4 T, 7 T and 9 T systems are being used for human whole body applications.  相似文献   

18.
Premortem magnetic resonance imaging (MRI) was performed in two cats with brain stem abscessation confirmed post mortem by histology and recovery of multiple bacterial species. The MRI features of the abscesses were distinctive and included a thick and marked enhancement of the abscess capsule and extension of the lesion from a tympanic bulla in one cat. A focal area of increased signal intensity was present on T2-weighted images. A circumscribed area of decreased signal intensity was surrounded by a ring of increased signal intensity on precontrast T1-weighted images. A center of decreased signal intensity with a thick, markedly enhanced abscess capsule was observed on post contrast T1-weighted images. These findings are compared to the current experimental and clinical literature of brain abscess. The underlying pathogenesis of MRI features is reviewed.  相似文献   

19.
Certain magnetic resonance (MR) enhancement patterns are often considered to be associated with a specific diagnosis but experience shows that this association is not always consistent. Therefore, it is not clear how reliably contrast enhancement patterns correlate with specific tissue changes. We investigated the detailed histomorphologic findings of intracranial lesions in relation to Gadodiamide contrast enhancement in 55 lesions from 55 patients, nine cats, and 46 dogs. Lesions were divided into areas according to their contrast enhancement; therefore 81 areas resulted from the 55 lesions which were directly compared with histopathology. In 40 of 55 lesions (73%), the histomorphologic features explained the contrast enhancement pattern. In particular, vascular proliferation and dilated vessels occurred significantly more often in areas with enhancement than in areas without enhancement (P=0.044). In 15 lesions, there was no association between MR images and histologic findings. In particular, contrast enhancement was found within necrotic areas (10 areas) and ring enhancement was seen in lesions without central necrosis (five lesions). These findings imply that necrosis cannot be differentiated reliably from viable tissue based on postcontrast images. Diffusion of contrast medium within lesions and time delays after contrast medium administration probably play important roles in the presence and patterns of contrast enhancement. Thus, histologic features of lesions cannot be predicted solely by contrast enhancement patterns.  相似文献   

20.
We describe the abnormal magnetic resonance (MR) imaging findings in the deep digital flexor tendon (DDFT) and distal sesamoid bone in horses with radiographic changes compatible with navicular syndrome. Thirteen postmortem specimens were examined using a 1.5-T magnetic field, with spin echo (SE) T1-weighted, turbo SE (TSE) proton density-weighted (with and without fat saturation), and fat saturation TSE T2-weighted sequences. The limbs were then dissected to compare the MR findings with the gross assessment and histologic examination of the DDFT and distal sesamoid bones. Tendonous abnormalities were detected by MR imaging in 12 DDFTs and confirmed at necropsy. Most tendon lesions were located at the level of the distal sesamoid bone and the proximal recess of the podotrochlear bursa. Tendon lesions were classified based on their MR imaging features as core lesions, dorsal lesions, dorsal abrasions, and parasagittal splits. Areas of increased MR signal in the DDFTs were characterized by tendon fiber disturbance and lack of continuity of the collagen fibers, foci of edema, hemorrhages, and formation of lakes containing eosinophilic plasma-like material or amphophilic material of low density. Bone marrow signal alterations in the distal sesamoid bone were seen in all digits. Two main phenomena were responsible for the abnormal signal, respectively, in T1-weighted (decreased signal) and in T2-weighted fat-suppressed images (increased signal): a decrease in the fat marrow content in the trabecular spaces and an increase in the fluid content. Histologic examination revealed foci of bone marrow edema, hemorrhage, necrosis, and fibrosis. Cyst formation and trabecular abnormalities (disorganization, thinning, remodelling) were also observed in areas of abnormal signal intensity. Increased bone density because of trabecular thickening induced a decrease in signal in all sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号