首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据收集的亚洲10国70个家牛群体血红蛋白位点的基因频率,剖析了各家牛总群体的遗传分化程度。结果表明:总群平均基因多样度、基因分化系数、Shannon信息测值及固定指数,都反映出孟加拉国和印度尼西亚两国牛总群体的遗传分化程度较大,印度牛总群体的遗传分化程度较低。各总群的遗传变异来源在亚群内与亚群间分布不同,各总群的等位基因纯合度与其平均有效等位基因数呈明显的反变关系。  相似文献   

2.
 利用26对黄牛微卫星引物,对分别来自云南省泸水县凤凰山大额牛保种区和贡山县独龙野牛种源保护基地的2个大额牛群体进行遗传变异分析,研究其群体内的遗传变异和群体间的遗传分化。结果共检测到105个等位基因,每个座位的等位基因数从2~6不等,所有座位平均等位基因数、平均有效等位基因数、平均期望杂合度、平均多态信息含量分别为4.0385±0.9999,3.1393±0.9507,0.6490±0.1246和0.5904±0.1334,表明大额牛群遗传多样性比较丰富。F统计量、基因流、Nei氏遗传距离和遗传相似系数等值反映出两个群体遗传差异较小,遗传分化不明显,遗传一致性较大。  相似文献   

3.
中国大豆育成品种群体遗传结构分化和亚群特异性分析   总被引:2,自引:1,他引:1  
 【目的】研究中国大豆育成品种总群体的遗传结构分化及其地理生态亚群和育成时期亚群的遗传多样性、特异性及其相互关系,为中国大豆育种主干亲本遴选提供遗传背景依据。【方法】从1923-2005年育成的1 300个品种中抽选378份中国大豆育成品种组成代表性样本,选用大豆核基因组64个SSR标记,采用Structure Version 2.2软件,进行群体遗传结构分析、亚群体分化分析和遗传多样性与遗传特异性分析。【结果】中国大豆育成品种群体由7类血缘组成,遗传上明显分化为不同的地理生态亚群和育成时期亚群,各有其不同的血缘构成特点;各地理生态亚群具有其特有、特缺和互补等位变异,体现了其遗传来源的相对生态特异性;随着品种育成时期的推进,不同时期有不同血缘的种质加入,各育成时期亚群具有其特有、特缺和互补等位变异,体现了育种发展的特点。中国大豆育成品种群体与中国地方品种群体、中国野生大豆群体相比,其遗传基础因源于有限祖先亲本数的瓶颈效应而相对狭窄;分省亚群中黑龙江、江苏亚群的等位变异数可以向其他亚群提供的补充等位变异数均依次最多,其亲本来源较宽、遗传基础较广。分时期亚群平均等位变异数随着时期的推移各亚群等位变异数增加,遗传多样性程度增高,近期育成品种的遗传基础宽于历史上前期育成的品种。【结论】研究结果证明中国大豆育成品种群体存在遗传结构上的地理生态分化和育成时期分化,因而各亚群具有相对遗传特异性,体现在血缘构成和特有、特缺及互补等位变异上,这构成了未来大豆育种中亚群间种质或基因交流的遗传基础。  相似文献   

4.
中国野生大豆群体特征和地理分化的遗传分析   总被引:3,自引:2,他引:1  
【目的】从分子标记等位变异水平上探讨中国野生大豆群体的遗传特征、连锁不平衡特点和地理生态分化的遗传机制,并以重要生态性状全生育期为代表解析性状地理分化的遗传基础。【方法】从全国24个省区不同地理生态型的野生大豆材料中抽选174份组成代表性样本,选用204个SSR标记,利用TASSEL及STRUCTURE 2.2软件进行群体连锁不平衡(linkage disequilibrium,LD)和群体遗传结构分析。在此基础上对群体的地理分化、亚群体特异性及全生育期位点等位变异的地理分化进行遗传分析。【结果】中国野生大豆群体蕴含丰富的遗传变异,20条连锁群中,I和C2连锁群有相对较多的位点平均等位变异和遗传分化。不论是共线性组合,还是非共线性组合,都有一定程度的LD存在,说明历史上发生过连锁群间的大量重组;野生群体D ′平均值为0.34,高值多,比栽培大豆高,说明野生群体发生过更多的重组,保留下较高的LD。采用H-W平衡模型将野生群体聚成4类,模型聚类亚群划分与地理生态分类相关、有交叉,推测各地理亚群体发生过材料的迁移。各地理亚群经长期自然选择,各位点等位基因的频率发生变化,还有新生的与绝灭的,因此,各地理亚群间产生明显的等位基因分化。与地理生态性状全生育期关联的有15个位点160个等位变异,其中,亚群特有等位变异共58个,来自14个位点,同一位点可以在多个亚群体产生不同的特有等位变异,其效应从南至北逐渐下降,这说明生态区间不仅有强烈的遗传分化,而且是有规律的遗传分化。【结论】中国野生大豆群体遗传多样性高,共线、非共线位点间连锁不平衡程度高,4个生态亚群体间位点高度遗传分化,产生大量地区特有等位变异,全生育期还表现由南向北降效的规律性遗传分化。  相似文献   

5.
应用扩展的Nei·M公式对陕西境内4个黄牛群体毛色位点的表型遗传分化进行了研究。结果表明,各总群平均表型异质度与其选种水平密切相关,各总群的表型遗传分化程度与各畜群规模及分布范围有关,各总群遗传变异来源在系统内和系统间存在明显差异,部分表型遗传分化程度较高的指标可作为未来品系育种的研究对象。  相似文献   

6.
【目的】明确中国南方水稻纹枯病菌不同地理群体的遗传结构,为研究该病害的流行规律提供信息。【方法】采用8个SSR荧光标记对收集自中国南方8省(自治区)的188个水稻纹枯病菌进行检测。利用POPGENE version 1.31软件计算各项遗传多样性参数,近交系数由FSTAT 2.9.3软件估算。基于马尔可夫链模型,采用GENEPOP 4.2软件以卡方检验估计Hardy-Weinberg平衡。应用Arlequin 3.1软件进行分子方差变异分析,并通过遗传分化系数计算基因流。基于Neis遗传距离,利用MEGA5.0软件构建UPGMA树状图。使用STRUCTURE 2.3.3软件的贝叶斯聚类法进行群体遗传结构分析,并估计群体间遗传混杂程度。采用Mantel test检测遗传距离与地理距离的相关性。【结果】8个地理群体的平均观测等位基因数和有效等位基因数分别为4.025和2.071。Shannon’s信息指数为0.659-1.088,平均为0.859。等位基因丰富度为2.500-5.152,平均为3.858。观测杂合度为0.425-0.619,平均为0.506。期望杂合度为0.399-0.546,平均为0.472。总群体水平的近交系数(FIS = -0.069)为负值,表明总群体内杂合子过剩(纯合子缺失)。Hardy-Weinberg平衡检验表明,在6个群体中存在因杂合子的缺失或过剩引起的平衡偏离,暗示了水稻纹枯病菌同时具有克隆生长和有性繁殖,两种繁殖方式间的平衡因群体而异。AMOVA分析结果显示,有88.14%的遗传变异来自群体内部的个体间,表明遗传变异主要发生在群体内。Mantel检测发现,遗传距离与其地理距离之间呈显著正相关(r=0.422,P=0.025)。UPGMA聚类表明,所有群体可被划分为遗传分化明显的两个亚群(FST =0.209-0.624),其中位于珠江沿岸的广宁和长塘群体为一个组群,而位于长江沿岸的6个群体为另一组群,与遗传结构分析结果一致。位于长江沿岸的群体遗传混杂明显,基因交流水平高(Nm=2.525-8.447),群体分化程度较低(FST=0.029-0.094)。【结论】中国南方水稻纹枯病菌分布范围广泛、可能的混合繁殖模式以及菌核或菌丝具有远距离传播特性,是导致其遗传多样性水平较高的原因。长江亚群内部个体在不同群体之间的迁移所形成的基因流动,在一定程度上阻止了群体间的遗传分化。而长江亚群和珠江亚群之间存在明显的遗传分化,推测病原菌有限的长距离迁移可能是群体遗传变异空间结构形成的主要原因。  相似文献   

7.
【目的】分析4个陕南水牛群体的遗传多样性,为陕南水牛品种的资源保护和开发利用提供理论支持。【方法】利用10对微卫星引物,采用PCR扩增和非变性聚丙烯酰胺凝胶电泳技术,对192头陕南水牛(分别采自城固、南郑、宁强和汉滨4个群体,每群体48头)进行了遗传多样性检测,统计了各群体的等位基因频率、等位基因数、有效等位基因数(Ne)、遗传杂合度(H)、各群体间的奈氏标准遗传距离及多态信息含量(PIC),根据遗传距离进行了聚类分析。【结果】4个陕南水牛群体在10个微卫星位点共发现104个等位基因,其中有8个特有等位基因,等位基因频率为0.0052~0.3490,总群体各位点平均有效等位基因数为4.0174~13.1469;10个微卫星位点平均多态信息含量为0.7007~0.8932,均为高度多态;平均杂合度为0.7550~0.9288。聚类分析结果显示,城固群体与南郑群体首先聚在一起,然后依次同宁强、汉滨水牛群体聚在一起。【结论】10对微卫星标记可作为有效的遗传标记用于陕南水牛遗传多样性的分析;陕南水牛群体变异程度多样性丰富,选育程度较低;聚类分析结果符合陕南水牛的地理分布格局和产区的自然环境,4个群体之间遗传差异较小,遗传一致性程度较大。  相似文献   

8.
利用21对微卫星标记对来自于腾冲、无量山、迪庆、武定、泸水、西双版纳6个云南东方蜜蜂Apis cerana群体进行遗传多样性及遗传分化分析.通过计算多态信息含量、平均杂合度、等位基因数、遗传距离、基因流、F-统计量等参数,评估各东方蜜蜂群体遗传多样性和各群体间遗传分化.各座位的等位基因数为4(AP313)至18(AT003).除迪庆群体外,其余群体均显示较高水平的期望杂合度,其中,武定群体最高,为0.696;迪庆群体最低,为0.367.各东方蜜蜂群体间存在极显著的遗传分化,平均分化系数Fst为0.264.云南6个东方蜜蜂群体的遗传分化显著,除迪庆群体外,其余5个群体遗传多样性较高;分析遗传分化与地理距离的关系发现,云南6个东方蜜蜂群体间的遗传分化与地理距离不存在显著相关.  相似文献   

9.
[目的]分析秦川牛的遗传多样性,加强对该品种资源的保护。[方法]利用15个微卫星座位,运用多重荧光PCR技术对59头秦川牛个体的基因组DNA进行扩增,通过等位基因频率、多态信息含量、基因杂合度和有效等位基因数分析秦川牛品种的遗传多样性。[结果]结果表明:在15个座位的等位基因数为5~18个,平均等位基因数为10.3个;各座位上的杂合度都较高,平均杂合度为0.7959;平均有效等位基因数为5.3066;15个座位中多态信息含量为0.6441~0.8649,均为高度多态。[结论]通过荧光标记可用于牛品种遗传多样性的分析,并可为进一步QTL定位和标记辅助选择研究提供参考。  相似文献   

10.
中国栽培大豆群体结构不同分类方法的比较   总被引:4,自引:0,他引:4  
利用215个大豆品种的135个分子标记数据,用STRUCTURE软件、PowerMarker软件和地理生态类型3种分类方法研究了大豆品种的群体遗传结构,以探索适宜的分类方法.结果表明:用STRUCTURE软件分类时,亚群间成对分化系数(Fst)的平均值最大,为0.108 3,含有相同最高频率等位基因的位点数最小,为85,说明各亚群间遗传差异最大;亚群内遗传多样度(Hs)为0.491,多态性信息含量(P/C)为0.737 6,群体内分化系数(Fis)为0.974,均为最小,说明亚群内个体问遗传相似性最高.因此,用STRUCTURE软件研究群体遗传结构最适宜.  相似文献   

11.
利用7个微卫星标记结合高分辨率全自动核酸分析系统,对四川和上海两个不同地区生产的SD大鼠封闭群进行遗传检测,计算并分析其群体遗传学参数。结果在两个SD大鼠群体中共发现等位基因40个,每位点等位基因数4~8个,平均5.714 3个;平均期望杂合度为0.706 8;平均多态信息含量为0.663 4。两个群体分别检测到38和36个等位基因;平均期望杂合度分别为0.706 9和0.697 9;平均多态信息含量分别为0.655 1和0.646 1;两个群体分别有4个位点和5个位点符合Hardy-Weinberg平衡。两群体间Nei(1972)遗传同一性和遗传距离分别为0.268 2和0.764 8,Nei(1978)无偏遗传同一性和遗传距离分别为0.238 1和0.788 2,不同微卫星位点的平均Fst值为0.090 5,表明两个种群的遗传分化程度为中等分化。试验结果表明,两个种群都符合封闭群动物的群体遗传特征,是比较理想的封闭群。  相似文献   

12.
东亚及南亚固有绵羊群体的遗传结构研究   总被引:1,自引:0,他引:1  
 【目的】分析东亚及南亚固有绵羊群体的遗传结构。【方法】以多座位电泳法检测中国4个绵羊群体结构基因座上的变异,同时引用11个绵羊群体的同类资料作为参考。【结果】15个群体结构基因座平均杂合度和有效等位基因数分别为0.2746和1.559;平均杂合度和有效等位基因数都是蒙古国绵羊群体最大,蒙古国、中国、越南、孟加拉国和尼泊尔绵羊群体的遗传多样性依次减小。绵羊群体间遗传分化系数在0.0126~0.3083之间,平均为0.148,说明遗传变异主要存在于群体内,占总变异的85.2%。群体地理位置的远近与遗传距离间无相关性;大多数群体间基因流通畅,使得群体间地理位置的远近与遗传距离不完全一致。东亚及南亚15个固有绵羊群体大致可分为两大类群:一类包括了中国和蒙古国的部分群体,另一类则包括了中国云南绵羊、尼泊尔以及孟加拉国的部分群体,其余群体逐步汇入这两大类群。【结论】东亚及南亚15个固有绵羊群体间的遗传分化程度相对不高;地理隔离不是影响群体间遗传分化的主要原因;亲缘关系聚类分析可将15个绵羊群体大致分为两大类群。  相似文献   

13.
以血清蛋白质和酶多态位点作为遗传标记,通过检测八眉猪四大产区六个亚群的遗传组成,对八眉猪群体内的遗传变异进行了分析和探讨。结果表明,八眉猪亚群间在个别位点上有较大分化,主要是Po和Hp位点;八眉猪亚群间遗传变异占其总群体的4.15%,八眉猪群体内的遗传变异占我国部分地方猪种(或群体)总和的10.84%;亚群间的亲缘关系以L和Ch亚群最近,与HD亚群最远;亚群间的分化具有一定的层次,即主要是中心产区与一般产区的分化。  相似文献   

14.
利用微卫星标记分析滩羊群体的遗传多样性及遗传分化   总被引:1,自引:0,他引:1  
利用10对微卫星标记对小尾寒羊、宁夏牧区园区白滩羊、保种场滩羊和黑滩羊的遗传多样性和遗传分化进行分析,根据DC和DA遗传距离构建系统树。结果表明:10个微卫星座位中共检测到167个等位基因,每个座位在每个群体均检测到5个以上的等位基因。座位和群体期望杂合度均在0.8左右;座位平均多态信息含量为0.722 3~0.838 5;园区白滩羊平均多态信息含量为0.794 6,保种场白滩羊平均多态信息含量为0.778 4,黑滩羊平均多态信息含量为0.772 3,群体平均多态信息含量为0.772 3~0.794 6。群体间表型分化系数为0.089 3,总群体近交系数为0.674 0,群体内近交系数为0.642 0。运用DC和DA遗传距离,分别采用UPGMA和NJ法构建的系统聚类图基本一致。综合遗传分化系数、遗传距离及聚类图,结果提示,滩羊与小尾寒羊群体间遗传分化程度最大,黑滩羊与白滩羊群体间存在一定的遗传分化,2个白滩羊群体间遗传分化程度相对最小。  相似文献   

15.
新疆褐牛种群遗传多样性分析   总被引:1,自引:1,他引:0  
[目的]检测新疆褐牛的遗传多样性及其不同居群(杂交类型)的亲缘关系.[方法]采用8对微卫星分子标记对新疆褐牛的4个群体进行遗传多样性与遗传结构分析.[结果]在192个个体扩增得到72个等位基因,每个位点平均等位基因数(A)为9.4个新疆褐牛群体的平均预期杂合度(HE)为0.716 2,平均观察杂合度(H0)为0.695 4,群体处于遗传平衡状态.群体平均多态信息含量和平均杂合度较高,4个群体8个位点的平均多态信息含量分别为0.673 6、0.622 0、0.626 5和0.541 3.群体基因流BM2133位点最大(7.0965),BM1824位点最小(2.112 8),各位点平均基因流为4.008 9,4个群体间存在一定的基因交流.4个群体间的遗传变异为5.87;,另外94.13;的遗传变异由个体间的差异产生.基因流不是主导新疆褐牛种群遗传结构的关键因素.聚类分析显示4个群体可按遗传距离分为两类.[结论]新疆褐牛4个群体的遗传多样性丰富,可作为育种材料培育牛的新品种与新疆褐牛新类型.  相似文献   

16.
利用6对微卫星DNA标记对福建省4个中华蜜蜂群体进行遗传多样性分析,评估群体内的遗传变异和群体间的遗传分化.结果表明:共检测到50个等位基因,每个位点的等位基因数从2到19不等,所分析位点平均的期望杂合度和PIC值分别为0.6088和0.5629.4个中华蜜蜂群体6个微卫星位点平均有效等位基因数为8.333,平均基因杂合度分别为0.5608、0.4798、0.5738和0.6010,群体分化率为11.3%,4个群体间的基因流动值较大.4个中华蜜蜂群体均表现出较高的群体杂合度和丰富的遗传多样性.  相似文献   

17.
利用12个微卫星分子标记对长江下游4个放流鲢群体进行了遗传多样性分析。在12个基因座位中,共检测到56个等位基因,每个座位检测到的等位基因数为1~7个,其中有10个基因座位具有多态性,多态位点百分率为83.33%,4个群体的平均等位基因数A为3.98,平均有效等位基因数Ne为2.384 0,观测杂合度Ho平均值为0.467 6,期望杂合度He平均为0.490 6,多态信息含量平均值为0.381 2。4个鲢群体的遗传多样性较丰富,与文献报道的下游野生群体大致相当,但明显低于上游野生群体;放流鲢群体的平均观测杂合度均低于各自相对应的平均期望杂合度,表现出一定程度的近交现象。4个放流鲢群体间遗传相似系数为0.937 1~0.971 8,遗传距离为0.028 2~0.062 8,基因分化系数Fst为0.027 5~0.050 6,表明群体间的遗传分化程度较弱。  相似文献   

18.
用RAPD技术对南阳牛种质资源的DNA进行检测,采用Popgene软件对扩增结果进行统计分析表明:筛选的16个引物共得到了236条扩增DNA片断,其中89.7%的扩增条带表现出多态性。平均每个位点有1.989 6个等位基因,有效等位基因数为1.233 3。Nei遗传多样性指数为0.159 7,Shannon's遗传多样性指数为0.270 3。种群总的遗传多样性Ht为0.163 7,种群内的遗传多样性Hs为0.130 5,种群的基因分化系数为0.202 8,种群间的基因流为1.965 3。  相似文献   

19.
麦洼牦牛群体4个新微卫星位点遗传多态性分析   总被引:2,自引:0,他引:2  
【目的】利用4个新分离的牦牛基因组多态微卫星位点,分析麦洼牦牛的遗传多态性及群体的遗传分化特征。【方法】以130个麦洼牦牛个体基因组DNA为模板,PCR扩增Bogr203、Bogr204、Bogr205和Bogr215 4个微卫星位点序列,通过测序进行基因分型,根据基因型计算各个位点的多态性,并推断麦洼牦牛群体的遗传分化特征。【结果】麦洼牦牛群体在4个微卫星位点具有较高的遗传多态性,平均观察杂合度(Ho)、平均期望杂合度(He)和平均多态信息含量(PIC)分别达到0.626,0.800和0.751;通过Structure软件能够较明确地将麦洼牦牛群体区分为2个亚群,这与麦洼牦牛分布地域广泛有较大关系,但各个亚群的牦牛个体及其分布区域还需要进一步研究。【结论】麦洼牦牛品种具有较高的遗传多态性,并可能分化为至少2个亚群。  相似文献   

20.
八眉猪蛋白质多态位点上的遗传分化   总被引:2,自引:0,他引:2  
以血清蛋白质和酶多态位点作为遗传标记,通过检测八眉猪四大产区六个亚群的遗似传组成。对八眉猪群体内的遗传变异进行了分析和探讨。结果表明,八眉猪亚群间在个别位点上有较大分化,主要是Po和Hp位点;八眉猪亚群间遗传变异占其总群体的4.15%,八眉猪群体内的遗传眯慢占我国部分地方猪种(或群体)总和的10.84%;亚群间的亲缘关系以L和Ch亚群最近,与HD亚群最远;亚群间的分化有一定的层次,即主要是中心产区  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号