首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fipronil is an urban-use insecticide, and the increased use has led to its frequent detections in urban streams. Most studies on the environmental fate of fipronil so far have focused on soils, and little is known about its behavior in sediment-water systems. In this study, we investigated the transformation and sorption of fipronil in urban stream sediments from California, incubated under facultative and anaerobic conditions. Degradation of fipronil in sediments generally followed exponential decay kinetics, and the first-order half-lives of fipronil were only 4.6-18.5 days in anaerobic sediments. The persistence of fipronil under facultative conditions was considerably longer, with half-lives from 25 to 91 days. Sterilization generally decreased the dissipation of fipronil, indicating that microbial activity was an important factor in fipronil transformations in sediments. Under facultative conditions, fipronil sulfide and sulfone were observed, while only fipronil sulfide was detected in anaerobic samples. The sorption coefficient K d consistently increased with organic carbon contents of sediments. In the same sediment, K d usually also increased with contact time, suggesting decreased availability for aged residues. Results from this study showed that the stability of fipronil in sediments depends closely on the oxygen status and that due to the readily conversion of fipronil to the sulfone and sulfide metabolites, the overall risk assessment of fipronil in surface aquatic systems should take into consideration fipronil as well as its metabolites.  相似文献   

2.
To study the interaction of phenylheterocycles with gamma-aminobutyric acid (GABA) receptors, 4- or 5-alkyl(or phenyl)-1-phenyl-1H-1,2,3-triazoles were synthesized and examined for their ability to inhibit the specific binding of [3H]-4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a noncompetitive antagonist, to the housefly and rat GABA receptors, as well as to the beta3 subunit homo-oligomer of the human GABA receptor investigated as a model receptor. 4-Substituted 1-phenyl-1H-1,2,3-triazoles were found to be more potent competitive inhibitors than the 5-substituted regioisomers in the case of all receptors. The 4-tert-butyl or 4-n-propyl analogue of 1-(2,6-dichloro-4-trifluoromethylphenyl)-1H-1,2,3-triazole exhibited the highest level of inhibition of [3H]EBOB binding to all receptors. Most of the synthesized analogues were more active in terms of the inhibition of EBOB binding to the housefly and human beta3 GABA receptors than to the rat receptor. The 4-cyclohexyl analogue showed the highest (185-fold) housefly versus rat receptor selectivity. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis demonstrated that both the 4-trifluoromethyl-2,6-dichloro substitution on the phenyl ring and a small, bulky, hydrophobic substituent at the 4-position of the triazole ring played significant roles in conferring high potency in cases involving the housefly and human beta3 receptors. The human beta3 receptor resembled the housefly receptor in terms of their recognition of phenyltriazoles, whereas 3D-QSAR analysis revealed a slight difference between the two receptors in terms of their mechanisms of recognition of the para-substituent on the phenyl moiety. Some of the triazoles synthesized here exhibited insecticidal activity, which was correlated with their ability to inhibit [3H]EBOB binding to the housefly receptor. Thus, 1-phenyl-1H-1,2,3-triazoles with the appropriate substituents exert insecticidal activity by selectively acting at the site for noncompetitive antagonism of insect GABA receptors.  相似文献   

3.
The fate of fipronil, a phenylpyrazole insecticide, and its metabolites under tropical conditions was studied in soil and in vegetation after treatment for locust control. Two different plots were treated with a formulation of fipronil at doses of 5 and 10 g of active ingredient ha(-)(1), respectively. Vegetation and soil at depths of 0-5 and 5-20 cm were sampled for up to 2 months after treatment. After extraction and purification on fipronil immunoaffinity cartridges, residues were analyzed by gas chromatography using electron capture and mass detectors. In soil, a rapid initial decrease of fipronil was observed with a rapid formation of the sulfone and the photodegradate; the amide and the sulfide were not detected. In vegetation, a rapid initial decrease of fipronil was also observed with a rapid formation of mostly the sulfone; the photodegradate and the sulfide were also detected but at much lower concentrations. The metabolites resulting from the degradation of fipronil were similar in both soil and vegetation, but their relative concentrations were different.  相似文献   

4.
Hydrolyses of fenamiphos, fipronil, and trifluralin were studied in aqueous buffer solutions of pH 4.1, 7.1, and 9.1 at different temperatures, 5, 22 +/- 1, 32 +/- 1, and 50 +/- 1 degrees C. Fenamiphos, fipronil, and trifluralin were found to be more stable in acidic and neutral buffer solutions at temperatures of 5 and 22 +/- 1, and dissipation is rapid at 50 +/- 1 degrees C. In basic buffer and at higher temperature, degradation of fenamiphos was found to be very rapid when compared with fipronil and trifluralin. The rate constants calculated at 32 degrees C for fenamiphos were 2349.4 x 10(-)(8) (pH 4.1), 225.2 x 10(-)(8) (pH 7.1), and 30476.0 x 10(-)(8) (pH 9.1); for fipronil 1750.0 x 10(-)(8) (pH 4.1), 3103.0 x 10(-)(8) (pH 7.1), and 3883.0 x 10(-)(8) (pH 9.1); and for trifluralin 2331.0 x 10(-)(8) (pH 4.1), 2360.0 x 10(-)(8) (pH 7.1), and 3188.0 x 10(-)(8) (pH 9.1). On the basis of rate constant values, these pesticides appeared to be more susceptible to hydrolysis than synthetic organophosphorus compounds such as chlorpyriphos, diazinon, malathion, and ronnel. DT(50) values calculated at 32 degrees C were 228 (pH 4.1), 5310.24 (pH 7.1), and 37.68 (pH 9.1) h for fenamiphos; 608.6 (pH 4.1), 373.9 (pH 7.1), and 270.2 (pH 9.1) h for fipronil; and 502.1 (pH 4.1), 496.8 (pH 7.1), and 355.7 (pH 9.1) h for trifluralin.  相似文献   

5.
It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.  相似文献   

6.
It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.  相似文献   

7.
The phenylpyrazole insecticide, fipronil, is used in seed coating against Agriotes larvae, which infest mainly corn and sunflower. Coating the seeds of the cultivated plants with fipronil has proven its effectiveness against Agriotes populations. In the case of sunflower or even corn, the possible root uptake of this insecticide may lead to a toxic effect against pollinators such as honeybees. In the present report, the uptake and transport of fipronil inside the sunflower seedling was studied in the laboratory. In a first study, sunflower was cultivated on an aqueous medium containing fipronil. An intense root uptake of fipronil occurred, leading to a transport into leaves depending upon transpiration. In a second study, plants were cultivated on a soil in which fipronil was uniformly distributed. Under our soil conditions (20% organic carbon), the partition coefficient between soil and water (K(d)) was found to be equal to 386 +/- 30. The average rate of fipronil transfer from soil water to seedlings was from 2 to 2.6 times lower than water transfer. During the 3 week experiment, 55% of recovered labeled compounds was in the parent form and 35% had been converted to lipophilic metabolites, with either a 4-CF(3)-SO(2) or 4-CF(3)-S substituant, which are also very potent lipophilic insecticides. This paper suggests that the possible uptake of fipronil by sunflower seedlings under agronomic conditions is mainly controlled by the physicochemical characteristics of the seed-coating mixture.  相似文献   

8.
Beer induced the response of the ionotropic gamma-aminobutyric acid receptors (GABA(A) receptors) expressed in Xenopus oocytes, indicating the presence of gamma-aminobutyric acid (GABA)-like activity. Furthermore, the pentane extract of the beer, hop (Humulus lupulus L.) oil, and myrcenol potentiated the GABA(A) receptor response elicited by GABA. The GABA(A) receptor responses were also potentiated by the addition of aliphatic esters, most of which are reported to be present in beer flavor. Aliphatic esters showed the tendency to decrease in the potentiation of the GABA(A) receptor response with an increase in their carbon chain length. When myrcenol was injected to mice prior to intraperitoneal administration of pentobarbital, the pentobarbital-induced sleeping time of mice increased additionally. Therefore, the beer contained not only GABA-like activity but also the modulator(s) of the GABA(A) receptor response.  相似文献   

9.
Here, we describe the enzymatic synthesis of novel inhibitors using acarviosine-glucose as a donor and 3-alpha-D-glucopyranosylpropen (alphaGP) as an acceptor. Maltogenic amylase from Thermus sp. (ThMA) catalyzed the transglycosylation of the acarviosine moiety to alphaGP. The two major reaction products were isolated using chromatographies. Structural analyses revealed that acarviosine was transferred to either C-7 or C-9 of the alphaGP, which correspond to C-4 and C-6 of glucose. Both inhibited rat intestine alpha-glucosidase competitively but displayed a mixed-type inhibition mode against human pancreatic alpha-amylase. The alpha-acarviosinyl-(1-->7)-3-alpha-D-glucopyranosylpropen showed weaker inhibition potency than acarbose against both alpha-glycosidases. In contrast, the alpha-acarviosinyl-(1-->9)-3-alpha-D-glucopyranosylpropen exhibited a 3.0-fold improved inhibition potency against rat intestine alpha-glucosidase with 0.3-fold inhibition potency against human pancreatic alpha-amylase relative to acarbose. In conclusion, alpha-acarviosinyl-(1-->9)-3-alpha-D-glucopyranosylpropen is a novel alpha-glucosidase-selective inhibitor with 10-fold enhanced selectivity toward alpha-glucosidase over alpha-amylase relative to acarbose, and it could be applied as a potent hypoglycemic agent.  相似文献   

10.
A liquid chromatographic procedure for the determination of albendazole ([5-(propylthio)-1H-benzimidazol-2yl]carbamic acid methyl ester) and its major metabolites, albendazole sulfoxide, albendazole sulfone, and albendazole-2- aminosulfone in rainbow trout, tilapia, and salmon muscle with adhering skin tissue is described. The muscle tissue samples are made alkaline with potassium carbonate and extracted with ethyl acetate. The extracts are further subjected to cleanup by utilizing a number of liquid-liquid extraction steps. After solvent evaporation, the residue is reconstituted in mobile phase and chromatographed. The chromatography is carried out on a reversed phase Luna C(18) column, using acetonitrile/methanol/buffer as a mobile phase and a fluorescence detector. The average recoveries from the fortified muscle tissue of the three fish species for albendazole (25-100 ppb), albendazole sulfoxide (15.5-62 ppb), albendazole sulfone (1-10 ppb), and albendazole-2- aminosulfone (10-100 ppb) were 94, 77, 82, and 67%, respectively. The average CV for each compound was < or =10%. The procedure was validated and then applied to the determination of albendazole and its three major metabolites in the muscle tissue of the three fish species obtained after orally dosing with albendazole.  相似文献   

11.
Elucidation of fipronil photodegradation pathways   总被引:1,自引:0,他引:1  
The phenylpyrazole insecticide fipronil (I) photolyzes to its desthio product (II) in aqueous solution. However, the necessity of an intervening oxidation to a sulfone intermediate (III) has not been resolved, and the photodegradation products of II have not been identified. Using GC-MS, HPLC-UV/vis, electrospray MS, (19)F NMR, and GC-TSD, our objective was to characterize the photodegradation pathways of I, which would clarify the role of III, identify products of II, and explain unbalanced mass accounts in previous studies. Findings showed that II is formed directly and photochemically from I, confirmed by the greater stability of III (t(1/2) 112 h), and that successive oxidations of I to III and then a sulfonate (IV) comprise a second pathway. Compound II underwent photodechlorination, substitution of chlorine by trifluoromethyl, and pyrazole ring cleavage. This work is significant to understanding the photochemistry of novel phenylpyrazole pesticides in the environment.  相似文献   

12.
Fipronil metabolism and dissipation in a simplified aquatic ecosystem   总被引:2,自引:0,他引:2  
Several phenylpyrazole derivatives are selective inhibitors of chloride channel activities in insects. In this chemical family, fipronil is a powerful insecticide now widely used for several purposes. The dissipation of this molecule in a simplified aquatic ecosystem has been studied for 3 months, using (14)C-labeled fipronil. The main features of the complex process leading to fipronil transformation in this system were the following. The fipronil aqueous solution was submitted to two chemical transformations: the photodependent desulfuration of the side chain bound to the 4-position of the heterocyclic ring and the chemical hydrolysis of the nitrile function bound to the 3-position. Fipronil, rapidly transferred from the water solution to the organic matter, was protected from the previously mentioned chemical transformations but evolved to give two main metabolites, which were either reduced or oxidized in the side chain on the 4-position. These derivatives were powerful insecticides as shown by LC(50) measurements on Aedes aegypti larvae (LC(50) for CF(3)-S-R and CF(3)-SO(2)-R = 8.8 nM). During the course of this experiment, nitrile hydrolysis took place slowly, originating either from the chemical hydrolysis in the aqueous solution or from enzymatic hydrolysis inside the microbial biomass. The fipronil-amide (3-NH(2)-CO-R') derivative, although much more polar than fipronil itself, was mostly bound to the organic matter. Other more polar derivatives were also detected but in very small amounts. No (14)CO emission was observed during the experiment.  相似文献   

13.
Two previous studies have reported that pu-erh tea contains a high level of γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system and has several physiological functions. However, two other researchers have demonstrated that the GABA content of several pu-erh teas was low. Due to the high value and health benefits of GABA, analysis of mass-produced pu-erh tea is necessary to determine whether it is actually enriched with GABA. A high-performance liquid chromatography (HPLC) method was developed for the determination of GABA in tea, the results of which were verified by amino acid analysis using an Amino Acid Analyzer (AAA). A total of 114 samples of various types of Chinese tea, including 62 pu-erh teas, 13 green teas, 8 oolong teas, 8 black teas, 3 white teas, 4 GABA teas, and 16 process samples from two industrial fermentations of pu-erh tea (including the raw material and the first to seventh turnings), were analyzed using HPLC. Statistical analysis demonstrated that the GABA content in pu-erh tea was significantly lower than that in other types of tea (p < 0.05) and that the GABA content decreased during industrial fermentation of pu-erh tea (p < 0.05). This mass analysis and comparison suggested GABA was not a major bioactive constituent and resolved the disagreement GABA content in pu-erh tea. In addition, the GABA content in white tea was found to be significantly higher than that in the other types of tea (p < 0.05), leading to the possibility of producing GABA-enriched white tea.  相似文献   

14.
Fipronil, (±)-5-amino-1-(2,6-dichloro-∝,∝,∝-trifluoro-p-tolyl)-4-trifluoromethysulfinylpyrazole-3-carbonitrile, is used as an effective insecticide for the control of rice pests in China. Although many studies examining the fate of fipronil in the soilenvironment have been conducted, there are no studies on the microbial degradation of fipronil in the soil environment. Fipronil was degradedby microorganisms in the non-sterile clay loam soil, which resulted in the formation of metabolite, MB45950. The degradation of fipronil in non-sterile clay loam soil was mainly influenced by the soil microbes. The half-lives in non-sterile clay loam soil were 9.72 and 8.78 d at 25 and 35 °C, respectively compared to 33.51 and 32.07 d at 25 and 35 °C, respectively in the sterile soil. The microbial viability test showed that non-sterile clay loam soil had viable microorganisms throughout the experiment. Fipronil did not adversely affect the microbes once soil microbes adapted to the presence of fipronil in the clay loam soil.  相似文献   

15.
Two biological assays were conducted in which the antirachitic activity in chicks of 5,6-trans-vitamin D3 added to feed is compared with that of 5,6-cis-vitamin D3. On the basis of the results obtained it is concluded that the relative potency of the trans isomer is, at the most, 5% and that the antirachitic activity of the trans isomer is not markedly enhanced (an increase to a relative potency of 16%, at the most) if the cis isomer is also included in the diet. The results are not conclusive on the inhibition or lack of inhibition of the antirachitic activity of 5,6-cis-vitamin D3 by the presence of 5,6-trans-vitamin D3 in the feed.  相似文献   

16.
GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.  相似文献   

17.
Volatile sulfur compounds of 15 young port wines and 12 old port wines were determined. As there is a great difference in the pool of sulfur compounds between the two groups of wines, an experimental protocol was performed to determine which technological parameter (dissolved O(2), free SO(2) levels, pH, and time/temperature) was related with the formation/consumption of these compounds. Four sulfur compounds were selected for this purpose: dimethyl sulfide, 2-mercaptoethanol, dimethyl sulfone, and methionol. The synergistic effects of increasing temperature and O(2) at lower pH had the largest impact. Dimethyl sulfide was formed during the experimental period in the presence of O(2). Dimethyl sulfone had the same behavior. Methionol decreased significantly in the presence of O(2), but no methional was formed. 2-Mercaptoethanol, considered to be an important "off-flavor" in dry wines, also decreased during the experimental period (54 days) in the presence of O(2), and the respective disulfide was formed. These results corroborate the fact that old port wine (barrel aged) never develops "off-flavors" associated with the presence of methionol (cauliflower), 2-mercaptoethanol (rubber/burnt), or methional (cooked potato). In fact, temperature and oxygen are the major factors in the consumption of these molecules. However, some notes of "quince" and "metallic" can appear during port wine aging, and these can be associated with the presence of dimethyl sulfide.  相似文献   

18.
Effects of the broad-spectrum insecticide fipronil were investigated on a non-target insect living in the soil, the springtail Folsomia candida Willem. Fipronil induced a significant reduction in juvenile production (PNEC = 250 μg kg−1 dry soil), which seemed to be linked with an impact on the first stages of springtail development: juveniles and 7-day-old adults. These young organisms have a thinner integument, a smaller mass body and a weaker detoxification efficiency and were more sensitive than adults (14 days old) to fipronil and phenylpyrazole derivatives. Contact toxicity for juveniles was measured (LC50(96 h)) giving the following values: fipronil, 450 μg l−1; sulfone-fipronil, 430 μg l−1; sulfide-fipronil, 160 μg l−1. F. candida organisms were able to avoid contaminated food because phenylpyrazoles decreased food appetency. However, F. candida could bioaccumulate fipronil through trans-tegumental penetration (BAF96 h = 160) and its high biotransformation rate inside springtail bodies (1 ng fipronil metabolized day−1 individual−1) was suspected to increase this process. Under natural conditions, phenylpyrazoles risk assessment on springtails seems to be weak due to their capacity of avoiding high contaminated zones and their biochemical tolerance to this class of insecticides.  相似文献   

19.
The antiradical activity of caffeic acid (1), dihydrocaffeic acid (5), and their corresponding n-alkyl esters was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) method. Dihydrocaffeic acid (5) was the most potent compound, having an antiradical effect higher than that of (+/-)-alpha-tocopherol, whereas caffeic acid (1) was less efficient. Esterification of the carboxyl group of dihydrocaffeic acid (5) had a dramatic effect on its antiradical potency, but similar effects were not observed for caffeic acid (1) derivatives. The n-alkyl esters of both phenolic series had similar potencies, and their antiradical activities were independent of the alkyl chain length. Dose-dependent scavenger effects were found in both series. Acid-base properties of the compounds, evaluated by using potentiometry and spectrophotometry, showed that the catechol moiety had pK(a2) and pK(a3) values of 9. 24-9.02 and 11.38-10.99 in the dihydrocaffeic series and 8.48-8.24 and 11.38-11.07 in the caffeic series, respectively. Antiradical activity and pK(a) values of the compounds were not related.  相似文献   

20.
An enzyme-linked immunosorbent assay (ELISA) for fipronil was developed by using polyclonal antibodies (pABs) or monoclonal antibodies (mABs), and its suitability of the determination of this analyte in spiked water samples was studied. The pABs-based assay showed I50 = 17.95 ppb, I90 = 203.40 ppb, and I10 = 0.066 ppb, whereas the mABs-based assay showed I50 = 5.99 ppb, I90 = 485.40 ppb, and I10 = 0.074 ppb. The recoveries of fipronil from tap water samples by pABs-based ELISA were 93.00-124.00% in the range of 0-500 ng/mL, and those obtained from the samples by mABs-based ELISA were 94.70-108.00%. Different types of water from pool, river, and sea were spiked at different levels (ranging form 0.1 to 10 microg/L) and were assayed by the indirect ELISA with mABs. The recoveries of fipronil by this ELISA were in the range of 80-120%. The results demonstrate that this assay is suitable for the quantitative detection of fipronil at trace levels in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号