首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. K. Banerjee  Kalloo 《Euphytica》1987,36(2):581-584
Summary Inheritance of resistance to tomato leaf curl virus (TLCV) was studied in the progenies derived from interspecific crosses between TLCV resistant Lycopersicon hirsutum f. glabratum line B 6013 and five susceptible cultivars (HS 101, HS 102, HS 110, Pusa Ruby and Punjab Chhuhara) of L. esculentum. P1, P2, F1, F2, B1 and B2 progenies of the five crosses were artificially inoculated with local strains of TLCV by means of the vector whitefly, Bemisia tabaci (Genn.). and the disease reaction was studied in all the crosses. Reaction of parents, F1, F2 and backcrosses suggests that resistance derived from L. hirsutum f. glabratum B 6013 is based on two epistatic genes, one from the wild parent and one from the cultivated one, resulting in a 13:3 segragation in the F2.  相似文献   

2.
Summary Tomato spotted wilt virus (TSWV) causes significant economic losses in the commercial culture of tomato (Lycopersicon esculentum Mill.). Culture practices and introgression of natural sources of resistance to TSWV have only been marginally effective in controlling the TSWV disease. Recently however, high levels of protection against TSWV have been obtained by transforming tobacco with a chimaeric gene cassette comprising the TSWV nucleoprotein gene. This report demonstrates the successful application of this newly-created TSWV resistance gene in cultivated tomato. Transformation of an inbred tomato line with the TSWV nucleoprotein gene cassette resulted in high levels of resistance to TSWV that were maintained in hybrids derived from the parental tomato line. Therefore, transformant lines carrying the synthetic TSWV resistance gene make suitable progenitors for TSWV resistance to be incorporated into the breeding programmes of tomato.  相似文献   

3.
J. W. Scott  J. P. Jones 《Euphytica》1989,40(1-2):49-53
Summary Resistance to fusarium wilt, incited by Fusarium oxysporum (Schlecht.) f. sp. lycopersici (Sacc.) Snyder & Hansen race 3 in tomato (Lycopersicon esculentum Mill.) was discovered in LA 716, a L. pennellii accession. A resistant BC1F3 breeding line, E427, was developed from LA 716. E427 was crossed with the susceptible cv. Suncoast and F1, BCP1, BCP2 (to Fla 7155, a susceptible parent) F2, F3, and BCP2S1 seeds were obtained. Segregation for resistance following root dip inoculation over three experiments indicated a single dominant gene controlled resistance. Five of the 12 BCP1S1's segregated more susceptible plants, whereas one of the 12 segregated more resistant plants than expected (P<0.05). Three of 23 F3 lines segregated more susceptible plants than expected while 1 of the 23 had more resistant plants than expected (P<0.05). Segregation in all other lines fit expected ratios. Five of the 23 F3's were homozygous resistant which was an acceptable fit to expectations (P=0.1–0.5). The gene symbol I 3 is proposed for resistance to race 3 of the wilt pathogen. Deviations from expected ratios in data reported here and for other breeding lines indicate an effect of modifier genes and/or incomplete penetrance. Plant age at inoculation and seed dormancy did not affect results.Florida Agricultural Experiment Station Journal Series No. 8101.  相似文献   

4.
Summary Potato virus Y (PVY) infects most Solanaceous crops grown in Mediterranean countries in open fields and in greenhouses. Necrogenic strains, which have been isolated from diseased tomatoes in France since the 1980's, seriously cause yield and quality loss of tomato fruits. Lycopersicon hirsutum PI 247087 was found to be resistant to PVY. Virus could not be detected in inoculated leaves by ELISA and/or by back-inoculation on susceptible plants. This resistance was efficient against the 16 tested isolates or strains. Temperature and inoculum concentration did not affect its expression. All the F1 plants of (Momor × PI 247087), (PI 134417 × PI 247087) and (PI 247087 × PI 134417) had symptom scores and ELISA values similar to those of the susceptible parents. The mechanism of resistance could be immunity-like or inhibition of virus migration from cell to cell. The resistance of L. hirsutum PI 247087 appeared to be governed by two independent recessive genes. In a few F2 plants of (PI 134417 × PI 247087) and F2 (Momor × PI 247087), virus was able to multiply in the inoculated leaves but could not establish a systemic infection. This finding may suggest a mechanism which interfers with the long distance migration of the virus in the plant.  相似文献   

5.
Inheritance of black leaf mold resistance in tomato   总被引:1,自引:0,他引:1  
Summary Inheritance of black leaf mold (BLM) (caused by Pseudocercospora fuligena) resistance was studied in four crosses involving two resistant Lycopersicon accessions (PI134417, L. hirsutum and PI254655, L. esculentum) and four susceptible Asian Vegetable Research and Development Center tomato lines (CLN657BC1F2-267-0-3-12-7, CL143-0-10-3-0-1-10, CLN698BC1F2-358-4-13 and CL5915-93D4-1-0-3). For each cross, six generations, i.e. P1, P2, F1, F2, BC1F1 and BC1F2 were evaluated following inoculations with isolate Pf-2 of P. fuligena. Chi-square analyses of the data based on the ratio of resistant to susceptible plants in the F2 in three of four crosses gave a good fit to a segregation ratio of 1 R : 15 S, and BC1F2 data in three of four crosses gave an acceptable fit to the segregation ratio of 1 R : 63 S. The results indicate that resistance to BLM may be conditioned by two recessive genes acting epistatically in both PI134417 and PI254655.  相似文献   

6.
Summary Tomato spotted wilt virus (TSWV) was obtained from infected tomatoes in commercial fields in Arkansas in 1985. A greenhouse screening procedure for identifying tomatoes resistant to TSWV was established using an enzyme-linked immunosorbent assay (ELISA) to detect infected plants. Symptom expression was variable and symptom expression was not reliable for identifying infected plants. Germplasm evaluated for resistance to one typical Arkansas isolate (85–9) of TSWV included: twenty cultivars and breeding lines of Lycopersicon esculentum Mill, 52 accessions of L. pimpinellifolium (Jusl.) Mill and 8 accessions of L. peruvianum (L.) Mill. All cultivated accessions and breeding lines evaluated were susceptible. Some individual plants in several accessions of L. pimpinellifolium were resistant and nearly all plants of the L. peruvianum accessions that were evaluated were resistant to isolate 85–9.Dept. of Plant Pathology  相似文献   

7.
Summary Inheritance studies were conducted to determine the genetic basis of resistance in pepper against one Tospovirus isolate classified as tomato spotted wilt virus (TSWV). F1, backcrosses and F2 populations were developed using the resistant parent Capsicum chinense PI 159236 (CNPH 679) and the susceptible parent C. annuum Magda (CNPH 192). Segregation ratios strongly indicated that the resistant response (a localization, hypersensitive-like reaction) to TSWV fits a single-dominant gene model. Under our experimental conditions, the penetrance of this gene was very high. This gene (tentatively named Tsw) is highly effective only against TSWV isolates. The resistance governed by the Tsw gene was not effective against isolates belonging to tomato chlorotic spot virus (TCSV) and groundnut ring spot virus (GRSV), two other previously described Tospovirus species.  相似文献   

8.
Summary One hundred eighty-eight accessions of Lycopersicon cheesmanii, L. chilense, L. chmielewskii, L. hirsutum, L. parviflorum, L. pennellii, and L. peruvianum were screened for resistance to three isolates of tomato spotted wilt virus (TSWV). All plants in an accession were initially screened for resistance to TSWV using isolate 85–9 from Arkansas. Visual symptoms were used to cull obviously infected plants, followed by enzyme-linked immunosorbent assay (ELISA) to identify uninfected plants. Cuttings were taken from uninfected plants in the first screening and the resulting plants were inoculated with isolates Glox and T-2 from Texas and Hawaii, respectively. No resistance was identified in L. cheesmanii, L. chmielewskii, L. hirsutum, L. parviflorum, and L. pennellii. However, 33 of 63 L. chilense accession produced 91 of 1268 plants that were uninfected with isolate 85–9 and 20 accessions that produced 40 of 257 plants that were not infected with any of the isolates. After screening with isolate 85–9 9 of 12 L. peruvianum accessions tested had 38 plants uninfected and 8 accessions had 25 plants that were not infected with any of the isolates.  相似文献   

9.
Severe outbreaks of bipartite begomoviruses (family Geminiviridae) have been observed on tomatoes after the introduction of the whitefly Bemisia tabaci (biotype B) in Brazil. The Lycopersicon esculentum line ‘TX 468-RG’ was identified as one of the best sources of broad-spectrum resistance to species comprising the tomato-infecting Begomovirus complex in Brazil. The genetic basis of resistance to one Begomovirus isolate was investigated using populations from the cross between ‘TX 468-RG’ (P1) and the susceptible line ‘Ohio 8245’ (P2). Parental lines, F1, backcross (BC) to P1 and BC to P2 and F2 generations were inoculated at the two true-leaf stage using 20 viruliferous whiteflies per plant. Assessment was done two weeks after inoculation based upon visual analysis of symptom expression. The ratio of resistant to susceptible plants closely fit to a single recessive gene (locus) model. The sequence analysis indicated that the Begomovirus isolate used in this assay was closely related to the bipartite Tomato chlorotic mottle virus. Therefore, this gene/locus, was tentatively named tcm-1 (tomato chlorotic mottle virus resistance-1). This locus has been transferred to distinct tomato cultivars and levels of resistance similar to that of ‘TX 468-RG’ were observed in advanced (F8 and F9) generations. In addition, breeding lines carrying the tcm-1 locus were also resistant to other Brazilian bipartite tomato-infecting Begomovirus species.  相似文献   

10.
Summary Bell pepper suffers considerable losses from a strain of potato virus Y (PVYo-sbp). Crosses were attempted between two resistant lines Perennial and S41-1 and two highly susceptible bell pepper commercial cultivars California Wonder and Yolo Wonder. Studies of F1's, F2's, back crosses and F3's indicated that Perennial and S41-1 carry a recessive gene imparting resistance to potato virus Y.  相似文献   

11.
The genetic nature of early blight resistance in tomato was studied in three crosses at seedling and adult plant stages. A six generation mean analysis of the cross Arka Saurabh (susceptible) × IHR1939 (resistance) and its reciprocal cross revealed that the resistance to early blight was conferred by recessive polygenes at both seedling and adult plant stages. This polygenic early blight resistance revealed the importance of additive and additive × additive gene effects at seedling stage and higher magnitude of dominance and dominance× dominance gene effects at adult plant stage. Evaluation of parents, F1, F2 and backcross generations of IHR1816 (resistance) × IHR1939 (resistance) revealed that the early blight resistance genes in IHR1816 (Lycopersicon esculentum NCEBR-1) and IHR1939 (Lycopersicon pimpinellifolium L4394) are independent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Sesquiterpene carboxylic acids (SCA) from Lycopersicon hirsutum f. typicum Humb, & Bonpl, accession LA 1777 confer host‐plant resistance to Helicoverpa zea (Boddie) and Spodoptera exigua (Hübner), two Lepidopteran (Noctuidae) insect pests of the cultivated tomato. L. esculcntum Mill. Hybrids were made between LA 1777 and two accessions of insect‐susceptible tomatoes that do not produce SCA, L. hirsutum LA 1033 and the L. L. esculentum cultivar Chico III, F2 and backcross progeny of both crosses were evaluated for variation in amounts of total SCA in replicated field and greenhouse plantings. Analysis of variance of total SCA in a set of F2 plants of the cross LA 1033 × LA 1777 demonstrated significant variation in SCA attributable to genotype, environment and their interaction. Segregation for high levels of SCA in the populations suggests polygenic inheritance. Broad sense heritability was 0.84, which indicates that phenotypic selection for plants with high SCA is feasible in a backcross‐breeding programme for the introgression of SCA‐mediated insect resistance into tomato cultivars.  相似文献   

13.
Summary Tomato accessions (Lycopersicon sp.), along with commercial cultivars and breeding lines were grown in a field infested with the brown root rot (BRR) organism, Pyrenochaeta lycopersici and evaluated for resistance. Three L. esculentum Mill. accessions, P.I. 260397, P.I. 262906 and P.I. 203231, were resistant and were used as male parents in crosses designed to transfer resistance to tomatoes of fresh market type. Through analysis of parental generations and F1 and F2 progenies from three crosses the heritability of resistance in the broad sense was estimated to range from 25 to 43 percent. The minimum number of genes influencing resistance was estimated to be from 4 to 8.Florida Agricultural Experiment Stations Journal Series Paper no. 317.  相似文献   

14.
The results of extensive crosses between the non-tuberous species Solanum brevidens and S. etuberosum on the one hand and ten tuber-bearing Solanum species on the other are presented. Three crosses gave rise to viable progeny. Two progenies consisted of diploid plants only of the strictly self-incompatible species of the mother parent. One cross, viz. S. etuberosum × S. pinnatisectum, produced highly vigorous but fully male sterile F1 hybrids.It is suggested that this hybrid together with those between the tomato, Lycopersicon esculentum, and S, pennellii and S. lycopersicoides constitute piers of a bridge between tomato and potato species which in the future might enable gene transfer between these two crops via their wild relatives. However, such idea has to be treated with all proper reserve.The production of this new hybrid is the first step in making accessible to potato breeding the valuable genes which have been detected in S. brevidens and S. etuberosum, viz. the genes for high resistance to frost, leafroll and Y-virus.  相似文献   

15.
Summary The levels of the naturally occurring insecticide 2-tridecadone (2TD) were measured in leaves of Lycopersicon hirsutum f. glabratum, L. esculentum, the interspecific F1 hybrid, the F2 and backeross generations. The wild species contains 50 times more 2TD than the cultivated tomato and the frequency distribution of the substance indicates that there is dominance for low levels of the compound. The genotype of F2 plants was determined with respect to 6 codominant isozyme markers and 4 dominant/recessive markers. Significant associations were detected between 5 of the marker genes and the level of 2TD. We interpret these results as implying linkage between marker genes and genes that control the level of 2TD. The behavior of the gene for the determinant growth habit of the plants suggests that it has a pleiotropic effect on the level of 2TD.  相似文献   

16.
Two transgenic Bt rice lines, KMD1 and KMD2, both containing a synthetic cry1Ab gene from Bt, were crossed with conventional rice varieties. The inheritance of resistance to SSB of KMD1 and KMD2was investigated through LSB and field examination of their progenies, e.g. F1, BC1 and F2 populations. In LSBs, 100.0% of newly hatched SSB larvae died on the second day after feeding on leaf tissues of F1 and GUS positive BC1 plants, of which the area of leaf tissues consumed by SSB is also similar to that of transgenic parents. These results imply that the resistance of Bt rice to SSB is dominantly controlled and could be easily exploited in hybrid rice production. Field evaluation showed that segregation ratios for SSB resistance to susceptibility in BC1 populations fit the ratio of 1:1, which was also confirmed by LSBs. However, in F2 populations, the ratio was significantly smaller than 3:1 for resistant to susceptible plants in all 6 indica × japonica (KMD1 and KMD2) crosses, though it fitted 3:1 in all 4 japonica × japonica crosses. The results implied that the resistance of Bt rice to SSB was controlled by a dominant gene which was present in a homozygous condition in both KMD1 and KMD2, but the inheritance could be affected by other factors. Assays for Cry1Ab protein showed that, in most crosses, the content of Cry1Ab is significantly higher in leaves of GUS positive F1, BC1 and F2 plants than that in transgenic Bt parent plants, which accounts for the high resistance observed in these plants to SSB. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The genetics of resistance to Phomopsis stem blight caused by Diaporthe toxica Will., Highet, Gams & Sivasith. in narrow-leafed lupin (Lupinus angustifolius L.) was studied in crosses between resistant cv. Merrit, very resistant breeding line 75A:258 and susceptible cv. Unicrop. A non-destructive glasshouse infection test was developed to assess resistance in the F1, F2, selected F2-derived F3 (F2:3) families, and in selfed parent plants. The F1 of Unicrop × 75A:258 (and reciprocal cross) was very resistant, and the F2 segregated in a ratio of 3:1 (resistant: susceptible), which suggested the presence of a single dominant allele for resistance in 75A:258. In Merrit × Unicrop (and reciprocal), the F1 was moderately resistant, and the F2 segregated in a ratio of 3:1 (resistant: susceptible). Thus Merrit appeared to carry an incompletely dominant resistance allele for resistance. The F1 of Merrit × 75A:258 (and reciprocal) was very resistant and the F2 segregated in a ratio of 15:1 (resistant: susceptible), which supported the existence of independently segregating resistance alleles for resistance in 75A:258 and Merrit. Alleles at loci for early flowering (Ku) and speckled seeds (for which we propose the symbol Spk) segregated normally and independently of the resistance alleles. Resistant F2 plants gave rise to uniformly resistant or segregating F2:3 families, whereas susceptible F2 plants gave rise only to susceptible F2:3 families. However, the variation in resistance in the F2 and some F2:3 families of crosses involving 75A:258, from moderately to extremely resistant, was greater than that expected by chance or environmental variation. We propose the symbols Phr1 to describe the dominant resistance allele in 75A:258, and Phr2 for the incompletely dominant resistance allele in Merrit. Phr1 appears to be epistatic to Phr2, and expression of Phr1 may be altered by independently segregating modifier allele(s). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The Lycopersicon hirsutum var. hirsutum accession PI 127826 is recognized as a good source of resistance to arthropod pests due to the action of the allelochemical zimgiberene, a sesquiterpene present in its glandular trichomes. Five genotypes were selected from the F2 generation of the interspecific cross Lycopersicon esculentum ‘TOM-556’ × Lycopersicon hirsutum var. hirsutum ‘PI 127826’, based on their low levels (BPX-368-clone#56) or high levels(BPX-368-clone#92, BPX-368-clone#105,BPX-368-clone#179, BPX-368-clone#250) of zingiberene. The five F2 genotypes were tested for resistance to the South American tomato pinworm Tuta absolutaalong with accession L. esculentum ‘TOM-556’ (pinworm susceptible), and the accessions L. hirsutum var. hirsutum ‘PI 127826’ and L. pennellii ‘LA716’ (resistant). The F2 clones selected for high foliar zingiberene levels showed lower scores for leaflet lesion type(LLT), percent leaflets attacked (PLA) and overall plant damage (OPD) than the low zingiberene genotypes. The results indicated that zingiberene mediates resistance to the South American pinworm, based on feeding and on ovipositing deterrence, in populations derived from the interspecific cross between Lycopersicon. esculentum and Lycopersicon hirsutum var. hirsutum. Indirect selection for high foliar zingiberene content is suggested as an efficient technique for breeding tomatoes for resistance to the South American tomato pinworm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Ietje W. Boukema 《Euphytica》1982,31(3):981-989
Summary The inheritance of the resistance to Didymella lycopersici was studied on F3- and Bc1-lines from interspecific crosses of L. esculentum with L. hirsutum and with L. hirsutum glabratum. The resistance is not monogenic and is inherited in dominant fashion. The high h2 values based on line means offer possibilities to seleet efficiently for enhanced levels of resistance.  相似文献   

20.
This study estimated the heritability (h 2) of early blight (EB) resistance in filial progeny of a cross between a susceptible (`NC84173';mid-season maturity) and a resistant (`NC39E'; late-season maturity)tomato breeding lines. It addition, it examined the potential of identifying progeny with mid-season maturity and EB resistance. A total of 162F2 plants were grown under field conditions in 1998 and evaluated for disease symptoms three times during the season, and the area under the disease progress curve (AUDPC) and final percent defoliation (disease severity) were determined. The F2 plants were self-pollinated and F3 seeds produced. The 162 F3 progeny families, consisting of 20 plants per family, were grown in a replicated field trial in 1999 and evaluated for EB resistance (final percent defoliation) and plant maturity(days to 50% ripe fruit). The distributions of the final percent defoliation values in the F2 and F3 generations indicated that resistance from `NC39E' was quantitative in nature. Estimates of h 2 for EB resistance, computed as the correlation coefficients between F3progeny family means and F2 individual plant values, ranged from0.65 to 0.71, indicating that EB resistance of `NC39E' was heritable. Across F3 families, a negative correlation (r = –0.46, p< 0.01) was observed between disease severity and earliness in maturity, indicating that plant maturity affected disease severity. However, several F3 families were identified with considerable EB resistance and mid-season maturity, indicating that resistance from `NC39E' might be useful for the development of commercially acceptable EB resistant tomato cultivars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号