首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
生物炭对农业土壤及作物生长影响的研究进展   总被引:1,自引:0,他引:1  
生物炭是一种高效利用废弃生物质材料,在缺氧或厌氧条件下经过高温炭化得到的多孔富碳黑色固态物。生物炭的研究推广不仅可以促进废弃生物质资源再利用,且对土壤固碳培肥有巨大潜力。本文综合前人研究成果,探究了生物炭对土壤物理性质、化学性质及生物性质的改良作用和对作物生长的促进效果,同时对生物炭需要进一步研究的科学问题和应用前景提出了展望,旨在为废弃生物质资源化利用提供思路,为广泛应用生物质炭化技术提供借鉴和参考。  相似文献   

2.
生物炭成为近年来农林、环境及能源等诸多研究领域关注的焦点,为废弃生物质利用、生物能源生产、土壤改良培肥、肥料创新、温室气体的减排等提出了综合解决方案。通过对近年文献资料的搜集与整理,对生物炭技术发展历程、生物炭特性、土壤改良及作物增产理论等方面进行论述,旨在为生物炭在农业领域中更广泛的应用提供思路,并对我国开展生物炭的应用研究提供依据。  相似文献   

3.
生物质炭对农田土壤磷有效性的影响研究进展   总被引:1,自引:0,他引:1  
从3个角度综述了生物质炭对土壤磷素调控的相关研究进展,包括生物质炭处理下土壤对磷素的吸附固定特性,生物质炭对土壤稳定态磷的活化机制,以及生物质炭对土壤磷素的长效调控机制及其影响因素。目前生物质炭对土壤磷有效性影响的调控机制认识不足,,需要系统性的研究生物质炭-土壤-作物之间的互作及其非生物与生物调控过程,同时综合考虑土壤性质和生物质炭原料等影响因素,为农业生产中的合理利用生物质炭保障农业可持续发展提供理论基础。  相似文献   

4.
新疆地区是我国农业经济作物的主要产区,农业生物质秸秆资源十分丰富,大部分生物质秸秆焚烧/粉碎还田,未能实现农业固体生物质废弃资源的高效回收利用。近年来,越来越多的学者开始关注农业生物质秸秆在生态修复和环保领域的创新应用。目前,应用农业生物质秸秆制备阴/阳离子吸附剂、生物炭和生物炭复合材料成为研究者关注的重点。本文通过综述生物质秸秆吸附剂作为污染物强化吸附材料在修复水体环境、治理水体环境有机和无机污染方面的具体应用现状,在此基础上提出生物质吸附剂修复水环境污染的研究方向,以期为新疆地区农业生物质秸秆的工程应用提供参考。  相似文献   

5.
生物质炭是一种友好的环境功能材料,由于具有良好的环境效应及生态效应,已成为环境科学及土壤学的研究热点。为促进生物质炭的研究,综述了生物炭的基本性质及其在土壤肥效改良、碳的增汇减排、作物生长等方面的作用,并探讨其在热带地区的应用,对热带地区农业生产和环境保护提供借鉴和参考。  相似文献   

6.
生物炭也称生物质炭,是生物质原材料如植物组织、果园枝条、农作物废弃物、动物骨骼等在厌氧或缺氧的条件下,高温裂解炭化而成的一种富碳产物。生物炭技术作为新兴的综合技术,已成为全球农业、生态和碳减排等领域研究的前沿热点。介绍了生物炭的基本特性,并对其在农业生产和生态环境方面的应用研究进行了综述,最后分析了生物炭研究中存在的问题并提出了相应的对策,希望为生物炭技术的应用和推广提供一定的参考。  相似文献   

7.
生物炭对作物的生长效应及机理研究进展   总被引:1,自引:0,他引:1  
不同生物质类型和炭化条件所制备的生物炭,理化性质的不同产生了不同的农业应用效果。已有的研究结果表明,生物炭对作物生长的影响变异较大,既有促进作用,亦有抑制作用或没有作用,这不仅与生物炭能提升土壤肥力、保持土壤容量、转变微生物群落等有关,也可能是其本身含有的挥发性物质对作物生长产生的直接效应。本文综述了生物炭对作物的生长效应及可能的机理研究进展,为生物炭的科学制备标准提供了理论依据,同时也利于农业生产上更好地利用生物炭促进作物生长。  相似文献   

8.
生物质炭钝化农田土壤镉的若干研究进展   总被引:4,自引:0,他引:4  
利用生物质炭治理农田镉污染是农业和环境界关注的热点。本文综述了近年来生物质炭对污染土壤中镉的生物有效性以及对作物镉吸收的影响等方面的研究进展,阐述了生物质炭钝化土壤中镉的多作用机制,分析探讨了影响镉钝化效应的生物质炭性质、土壤和管理因素,提出了提升钝化材料性能并改善管理以提高生物质炭钝化的高效性和持效性机制,建议未来该领域应加强生物质炭大田长期定位试验研究,以进一步为生物质炭污染治理提供科学依据。  相似文献   

9.
农田施用生物炭的固碳减排效应及其影响因素综述   总被引:1,自引:0,他引:1  
全球气候变暖,土壤肥力下降,农业生产面临的问题日益严峻,如何保障粮食安全已成为人类可持续发展的重要课题之一.生物炭因其碳含量高、稳定性强的特殊性质,已成为多学科领域研究的热点,将其应用于农业领域也表现出巨大的潜力,可在减少温室气体排放的同时培育土壤碳库、改善土壤理化性质及生物学特性,进而提高作物产质量,取得较高的生态环境效益.本文在前人大量研究的基础上总结了生物炭在农业生产上的应用,系统归纳分析了生物炭固碳减排的作用机理及影响因素,提出了适用于农田土壤固碳减排的生物炭制备原料、制备温度、施用量,在未来发展方向上,需要进一步优化炭化技术、加强生物质炭性质与土壤类型互作对固碳减排的研究.  相似文献   

10.
本文通过研究总结了不同生物质在不同的热解温度下得到的生物质炭的理化性质的变化,以分析热解温度对生物炭理化性质的影响效果。研究结果表明,不同生物质通过热解得到的生物炭的产率随着热解温度的升高而降低,而其pH值、灰分含量以及比表面积随着热解温度的上升而显著增加,说明,热解温度是影响生物炭理化性质变化的主要因素。  相似文献   

11.
生物炭对杉木人工林土壤碳氮矿化的影响   总被引:3,自引:2,他引:1  
为探讨杉木生物炭输入到土壤中后对土壤碳、氮矿化的影响和机制,通过室内培养实验,研究了单独施用生物炭、凋落物及其配合施用下土壤碳、氮矿化的特征以及可溶性有机碳(DOC)和微生物生物量的变化。结果表明,生物炭单独施用或与凋落物同时添加到土壤中,均增加了土壤有机碳含量且抑制了土壤有机碳和/或凋落物的矿化。生物炭对DOC的吸附效应导致土壤可利用态碳显著降低,且单独添加生物炭后,土壤微生物生物量碳含量在培养初期显著降低,故这种吸附效应可能是生物炭抑制土壤有机碳矿化的重要原因之一。生物炭单独添加到土壤中在培养结束后(90 d)并未改变土壤氮的矿化量,但在培养过程中,却降低了土壤氮的矿化;然而,无论是否存在生物炭,添加凋落物均显著降低了土壤氮的矿化并增加了微生物生物量氮。这说明,无凋落物存在的情况下,生物炭的固氮效应呈现出短期效应。  相似文献   

12.
生物质炭施用对不同深度稻田土壤有机碳矿化的影响   总被引:1,自引:0,他引:1  
本文旨在揭示生物质炭施用下不同深度稻田土壤有机碳矿化特征的变化,为提高稻田土壤生物质炭施用下的固碳效应提供参考。以太湖地区施用生物质炭2 a后的水稻土为研究对象,采集了7个不同土壤深度的土壤样品,通过室内培养试验,分析了生物质炭施用下不同深度土壤有机碳分布及矿化特征。结果表明,生物质炭仅显著增加了表层(0~10 cm)土壤总有机碳含量,而对深层土壤无显著影响。然而,与对照相比,施用生物质炭显著降低了土壤0~40 cm有机碳矿化强度,0~10、10~20、20~30、30~40 cm土层的降幅分别为23.74%、37.57%、37.62%和15.95%,并降低了10~40 cm土层的微生物生物量碳和0~40 cm土层微生物代谢熵,同时表层(0~10 cm)土壤微生物生物量碳显著增加11.3%,而以上各指标在40 cm以下土层未因生物质炭添加而产生显著变化。因此,生物质炭在2 a尺度上提高了稻田土壤0~40 cm有机碳的稳定性,有助于增加深层土壤固碳潜力。  相似文献   

13.
农业废弃物是指在农产品生产、再生产过程中,由于资源的投入和产出的差异,导致资源利用中物质和能源的流失。农业废弃物产量日益增多,但没有得到合理利用,对环境造成污染。利用农业废弃物制备生物炭是一种有效的资源化利用方式,已成为国内外研究热点。本文主要归纳总结了农业废弃物制备生物炭的4种方法及其优缺点,并对生物炭在土壤改良、环境修复和气候变化的应用进行了分析,以期为生物炭在农业领域的应用开发提供依据。  相似文献   

14.
生物炭具有改良土壤、固碳减排、吸附重金属和有机污染物等方面的有益作用,但其农业和环保应用面临着成本过高这一瓶颈问题.在田间直接将生物质转化为生物炭,可节省原材料收集与炭品运输等环节的费用,降低使用成本.可通过喷雾技术在田间限氧条件下实现生物炭的制备,其工艺如下:物料在槽内经逐层压实后,采用单向引燃、逐次喷雾的方式辅助竹柳和棉秆成炭;采用多位点引燃、逐层喷雾的方式辅助芦苇成炭.制炭期间,土槽中的侧壁开孔方管起通气和限氧作用以控制适燃,铁质密网起限氧、防尘和提供喷雾通道等作用以控制成炭.采用该技术制备的生物炭表现出了较好的同槽均质性和异槽同质性,成炭率达30%,制备得到的炭含有丰富的羧基(0.71~1.43 mol/kg)、酚羟基(0.43~1.09 mol/kg)官能团,且具有较大的比表面积(45.5~83.2 m~2/g).田间"限氧喷雾"技术为生物炭的制备提供了新的思路和技术选项,也为其农业和环保应用创造了条件.  相似文献   

15.
采用盆栽试验,探究了添加不同比例(0, 1%, 2%, 4%)玉米秸秆炭和商陆根生物炭对铜污染红壤中小油菜生长与铜有效性的影响。结果表明,与对照相比,添加两种生物炭均能够增加铜污染红壤上小油菜的生物量。在低铜污染水平下,4%玉米炭和商陆炭处理小油菜生物量分别增加了21.2倍和67.9倍;高铜污染水平下,4%玉米炭和商陆炭处理小油菜生物量分别增加了8.6倍和109.6倍。商陆炭的添加能够显著提高土壤pH值,在低铜污染水平下,商陆炭处理土壤pH值升高了0.4~1.66个单位,较玉米炭处理土壤pH值多升高了0.25~1.35个单位;在高铜污染下,商陆炭处理土壤pH值升高了0.33~1.52个单位,较玉米炭土壤pH值多升高了0.3~1.25个单位。向污染土壤中添加两种生物炭均能够显著降低土壤有效态铜的含量。其中,在低铜污染土壤中,4%玉米炭和商陆炭处理土壤有效态铜含量分别降低了21.9%和45.2%;在高铜污染土壤中,4%玉米炭和商陆炭处理土壤有效态铜含量分别降低了41.9%和53.8%。两种生物炭均能够显著降低小油菜铜累积量,向低铜污染土壤中添加4%的玉米炭和商陆炭,小油菜地上部铜含量下降了21.2%、67.8%。高污染土壤中添加4%的玉米炭和商陆炭小油菜地上部铜含量下降了19.9%、66.8%。两种生物炭均可以改良红壤的酸度,降低土壤铜有效性,并提高小油菜的生物量,降低小油菜铜累积量,但是商陆炭的效果更为明显。  相似文献   

16.
【目的】研究不同秸秆转化生物炭对红壤性水稻土养分含量及微生物群落结构的影响差异,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以水稻和玉米秸秆300℃、400℃和500℃裂解得到的生物炭为添加材料,以发育于第四纪的红壤性水稻土为供试土壤,通过135 d室内培育试验,研究秸秆生物炭添加对红壤性水稻土pH、有机碳和养分含量、土壤微生物生物量碳(MBC)的影响,及其对磷脂脂肪酸(PLFA)表征的微生物群落结构的影响。试验共设7个处理:对照(CK)、添加水稻秸秆炭300℃(RB300)、400℃(RB400)、500℃(RB500)和添加玉米秸秆炭300℃(CB300)、400℃(CB400)、500℃(CB500)。【结果】物料类型和制备温度因素显著影响裂解得到生物炭材料的养分含量和化学性质。培育试验表明,两种秸秆生物炭的添加,平均提高土壤pH值0.16个单位;土壤有机碳、速效磷和速效钾水平,分别比对照增加26.1%、20.6%和281.8%。水稻秸秆炭对土壤速效钾水平促进作用较大,而玉米秸秆炭则主要增加速效磷含量。低温裂解秸秆炭(300℃)的添加,并没有显著影响土壤碱解氮和无机氮含量;而添加RB500和CB500处理的碱解氮分别比对照低10.4%和8.1%,硝态氮含量分别比对照高63.6%和100.7%(P<0.05)。添加生物炭处理,微生物生物量碳和磷脂脂肪酸总量平均比对照增加63.4%和47.5%,但添加300℃秸秆炭处理与对照差异不显著;两种秸秆炭的输入均可以增加革兰氏阴性细菌(G-)、革兰氏阳性细菌(G+)、放线菌和真菌的含量,且不同制备温度处理间的差异表现为300℃<400℃<500℃。主成分分析表明,水稻秸秆炭对土壤微生物群落结构的影响较玉米秸秆炭更为显著;不同温度水稻秸秆炭间,群落结构差异明显,而不同温度玉米秸秆炭间没有区分开来。典范对应分析结果表明,生物炭添加可以通过改变土壤性质,间接影响微生物群落结构;其中,土壤速效磷、有机碳和速效钾含量与土壤微生物群落分布显著相关。【结论】水稻和玉米秸秆炭均可以改良红壤性水稻土的酸度,提高土壤养分含量和微生物量水平;两种秸秆炭的添加均改变了土壤微生物群落结构,其中以水稻秸秆炭的影响更为明显。  相似文献   

17.
生物炭施用下土壤微生物量碳氮的动态变化   总被引:1,自引:0,他引:1  
为了研究生物炭施用量对整个玉米生育期内土壤微生物量及玉米产量的影响,采用田间定位试验,生物炭施用量设置0(BC0)、10(BC1)、20(BC2)和30(BC3) t·hm-2共4个处理,测定不同处理下土壤微生物量碳、氮及其动态变化和收获后玉米的籽粒产量。结果表明,玉米生育期内各土层土壤微生物量碳随生物炭施用量的增加而增加;与BC0相比,施用生物炭对播种前土壤微生物量碳的影响最为显著,其中,BC3处理在0—10、10—20和20—30 cm土层的微生物量碳较对照分别增加103.2%、91.8%和158.5%。土壤微生物量氮和微生物量碳氮比的变化则与玉米生育期有关。从整个生育期来看,土壤微生物量碳、氮含量在播种前最低,在拔节期达到峰值,之后缓慢降低并保持相对稳定。在播种前,BC3处理土壤微生物商增幅最大,较BC0增加了59.5%,其他生育期土壤微生物商无显著变化。玉米籽粒产量随生物炭施用量的增加而增加,BC2和BC3分别较BC0显著增产11.2%和14.1%。因此,在土壤中施用生物炭可在一定程度上增加土壤微生物量,提高土壤肥力,增加作物产量,为该地区生物炭的合理施用提供理论依据。  相似文献   

18.
采用室内培养实验研究了生物炭对中性水稻土养分、微生物量和磷脂脂肪酸(PLFA)特征的影响。试验采用玉米秸秆生物炭(炭化温度500℃),分别按照炭土质量比0(CK)、1%(T1)、2%(T2)和4%(T3)施用于土壤中,进行好气培养。结果表明:从时间尺度变化规律来看,土壤中铵态氮和硝态氮以及微生物量碳氮呈现波动性变化规律,在培养第21 d达到最低值,随后又呈现增加趋势,这与土壤中可利用态碳氮养分消耗有关。从生物炭的添加效果来看,与CK相比,生物炭的添加能够提高土壤p H值、有机质、全氮含量,降低铵态氮、硝态氮含量;生物炭的添加能够提高土壤微生物量碳氮含量,与CK相比,T1~T3处理微生物量碳、氮含量分别提高5.5%~14.3%、4.8%~25.7%;生物炭的添加降低了土壤PLFA含量,但土壤中各微生物类群PLFA含量在处理间差异不明显,表明其对土壤微生物群落结构影响不显著。总之,施用生物炭在一定程度上可以改善中性水稻土养分状况,提高土壤微生物量含量,改善土壤肥力水平。  相似文献   

19.
生物炭对不同氮水平下植烟土壤碳氮转化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]通过大田试验,探索不同氮水平下配施生物炭对植烟土壤碳氮转化及养分含量的影响,筛选最佳氮肥施用量。[方法]试验设5个处理:在磷肥和钾肥施用量相同的基础上,除对照处理不施生物炭与氮肥外,其余4个处理皆添加1600 kg/hm2的生物炭,施氮量分别为0 kg/hm2(N0),37.5 kg/hm2(N1),52.5 kg/hm2(N2),67.5 kg/hm2(N3),研究生物炭与氮肥交互对植烟土壤碳氮转化相关酶活性及活性养分含量的变化特征。[结果]结果表明,植烟土壤在生物炭的改良作用下施用不同量的氮肥可以显著提高土壤脲酶与蔗糖酶的活性;对土壤碱解氮含量也有显著提高作用,其中N3处理土壤碱解氮含量最高为261.86 mg/kg;但对土壤速效磷含量影响不显著;施氮量在烤烟移栽后60天时提高了土壤速效钾含量,且速效钾含量随施氮量的增加呈先上升后降低的趋势。生物炭配施氮肥提高了土壤微生物量碳与微生物熵,N3和N2处理最大值分别达到355.00 mg/kg和3.01%。[结论]综上所述,在豫中烟区生物炭配施氮肥量67.5 kg/hm2措施下最有利于提高土壤养分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号