首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
水杨酸诱导对玉米大斑病抗性的影响   总被引:6,自引:0,他引:6  
外施水杨酸(SA)可以显著减轻玉米(Zea mays)大斑病的病害症状.外施SA后玉米叶片的病斑数目和病斑大小明显降低和缩小,诱抗效果超过56%.SA诱导玉米抗病机制研究发现,SA预处理减缓了玉米大斑病菌侵染速度,表现为由侵入钉长出新菌丝,菌丝充满侵染细胞以及向邻近细胞扩展的时间延迟;SA预处理加速了病菌侵染过程中侵染点及周围玉米细胞的死亡.SA处理或SA预处理后接菌,明显增强了玉米叶片中苯丙氨酸解氨酶、几丁质酶、β-1,3-葡聚糖酶的活性;增加了玉米叶片内木质素、丁布的含量;SA处理后接菌,增加了玉米叶片内H2O2含量;而单独接菌,这些酶活性及物质含量均无明显改变.  相似文献   

2.
  【目的】  禾谷缢管蚜 (Rhopalosiphum padi) 是危害玉米的主要害虫之一,其生长繁殖严重影响了玉米的产量和品质。分析施硅 (Si) 诱导玉米植株对蚜虫的抗性对玉米正常生长尤为重要。本研究从玉米抗氧化系统、次生代谢和信号传导途径3个方面,探究了施硅提高玉米抗蚜性的生理代谢机制。  【方法】  采用玉米水培试验方法,共设置4个处理:不施硅不接蚜虫 (–Si–A)、不施硅接蚜虫 (–Si+A)、施硅不接蚜虫 (+Si–A)、施硅接蚜虫 (+Si+A)。分别于蚜虫侵染后48、60、72、96、120 h,调查玉米植株蚜虫密度,并取样分析玉米植株抗氧化系统 (CAT、SOD、H2O2和MDA)、次生代谢 (PAL、PPO、LOX和木质素含量) 和信号传导物质 (JA、SA) 含量,以未接虫玉米3个系统中的相关成分含量为组成型抗性,以接虫前后各成分含量的差值为诱导型抗性,讨论了硅对玉米抗蚜组成型和诱导型抗性的影响。  【结果】  随着蚜虫侵染后时间的延长,蚜虫密度增加,与侵染后48 h相比,在–Si处理下,侵染后60~120 h时蚜虫数量显著增加了12.50%~40.18%;+Si处理下,侵染后60~120 h蚜虫数量显著增加了12.36%~49.44%;在侵染后48~120 h相同时间点下,与不施硅处理相比,施硅处理的蚜虫种群密度显著降低了15.29%~20.64%。整个培养时间内,与不施硅处理相比,施硅处理的玉米抗氧化系统中组成型CAT、SOD活性均显著提高,组成型H2O2、MDA含量分别降低了4.41%~15.35%、5.35%~17.95%,诱导型CAT活性显著增加 (除侵染后72 h外),诱导型SOD活性显著降低,诱导型H2O2含量先提高后降低;施硅处理显著提高了次生代谢中组成型PAL、LOX和PPO活性、木质素含量,降低了诱导型PPO活性、木质素含量,诱导型PAL活性表现为先提高后降低,诱导型LOX活性表现为先降低后升高随后又降低;施硅处理显著提高了信号传导中组成型JA、SA含量,增加了诱导型SA含量43.77%~117.48%,降低了诱导型JA含量。同一时间点,无论是否施硅,组成型CAT、SOD活性、H2O2和MDA含量、PAL、LOX和PPO活性、木质素、JA和SA含量均显著高于诱导型。PCA与相关性分析结果表明,组成型和诱导型CAT、SOD活性和诱导型H2O2、SA含量为体现玉米抗蚜虫的组成型和诱导型抗性的较优指标。  【结论】  施硅可显著降低蚜虫的密度,并显著提高玉米抗氧化系统、次生代谢和信号传导途径各物质的组成型与诱导型抗性,因此,施用硅肥为玉米田间蚜虫的生态调控提供了理论基础和科学依据。  相似文献   

3.
植物基因组DNA甲基化的变化是调节基因功能的重要手段,是生物体应对各种胁迫的表观遗传反应.本研究对玉米(Zea mays)高耐纹枯病材料R15和高感纹枯病材料478进行人工接种纹枯病病菌(Rhizoctonia solani Kühn),利用扫描电镜及数码拍照技术观察病菌侵染自交系R15的病理学变化,结果显示,菌丝主要通过叶鞘部位气孔进行侵染,病斑大小的变化表明病菌对寄主的侵染具有一定的梯度性;利用基因组甲基化敏感扩增多态性(MSAP)技术,采用24对选择性扩增引物对两个抗性不同玉米材料接菌0、6、12和24 h的DNA甲基化模式进行分析,结果显示,两个材料中半甲基化水平均呈上升趋势,且R15变化幅度较大,全甲基化水平呈现先上升后下降的趋势.本研究表明,DNA甲基化与玉米纹枯病抗性反应密切相关,在抗性反应调节系统中可能起重要的作用.  相似文献   

4.
采用盆栽实验方法研究了外源水杨酸(SA)对锰污染红壤中玉米的生长、脂质过氧化程度、活性氧水平以及抗氧化酶活性的影响。结果表明,过量锰明显降低玉米植株干重,显著提高了茎叶和根中锰的含量。SA促进锰胁迫下玉米的生长,但对植株中锰的含量与分布无影响。过量锰处理下,玉米叶片超氧阴离子(O.2-)和过氧化氢积累显著增加,脂质过氧化、电解质渗透率和脯氨酸含量显著升高;而SA和过量锰复合处理下,这些指标则显著降低。过量锰诱导超氧化物歧化酶(SOD,EC1.15.1.1)、过氧化物酶(POD,EC1.11.1.7)活性升高,抑制过氧化氢酶(CAT,EC1.11.1.6)和抗坏血酸过氧化物酶(APX,1.11.1.11)活性;SA处理促进锰胁迫下SOD和POD活性进一步升高,减小CAT和APX活性下降的程度。这些结果提示,SA调节抗氧化酶活性,保护组织细胞免遭氧化损伤,是SA缓解过量锰对玉米毒害作用的重要生理原因。  相似文献   

5.
通过对甘薯抗蔓割病品种"金山57"和感病品种"岩薯8-6"接菌处理,研究了甘薯体内酚类物质的代谢规律以及与PAL酶活性的变化关系及其对甘薯抗蔓割病的影响。结果表明,两品种接种蔓割病菌后植株体内总酚、类黄酮、木质素、绿原酸、阿魏酸等含量都有提高,但抗病品种比感病品种酚类物质的积累速度快、保持较高浓度的时间长,从而更有利于抵抗病原菌侵染。同时,接菌后PAL酶活性的提高也与品种抗性呈正相关。  相似文献   

6.
玉米||大豆间作对AMF时空变化的影响   总被引:1,自引:0,他引:1  
为探究农田生态系统中不同种植模式下丛枝菌根真菌(AMF)生长发育及产生孢子和球囊霉素状况,本试验设置两种结构的间作模式(6M6S:6行玉米与6行大豆间作; 3M3S:3行玉米与3行大豆间作)以及单作玉米(CKM)和单作大豆(CKS)4个处理,分析不同种植模式对AMF生长时空变化的影响。结果表明:菌根侵染率、侵染密度和菌丝密度随着AMF与作物共生期延长逐渐增加,丛枝丰度呈现先增加后减少的趋势。两年试验中,玉米乳熟期(大豆鼓粒期), 3M3S处理的菌根侵染率、侵染密度和丛枝丰度,土壤孢子密度、易提取球囊霉素含量和总球囊霉素含量均显著高于单作。在作物生育期内, AMF的孢子密度从269.40个·(100g)~(-1)增加至1 484.20个·(100g)~(-1),易提取球囊霉素含量从430.88μg·g~(-1)增加至600.78μg·g~(-1),总球囊霉素含量从942.59μg·g~(-1)增加至1 304.03μg·g~(-1)。玉米乳熟期,间作边行玉米的菌丝密度、孢子密度、易提取球囊霉素和总球囊霉素含量最高;大豆鼓粒期,间作边行大豆的菌丝密度和易提取球囊霉素含量最高,孢子密度最低。相关性分析表明,总球囊霉素和易提取球囊霉素与菌丝密度呈极显著正相关,相关系数分别达0.71和0.73;孢子密度和菌丝密度与侵染率呈极显著正相关,相关系数分别达0.72和0.75。因此,农田生境中AMF能与根系建立良好的共生关系,并随着季节变化和作物生长呈现周期性变化。间作促进了AMF的侵染,增加了球囊霉素和孢子的产量,间作处理中AMF与各行作物共生表现出边际效应。3M3S处理是最有利于AMF生长的种植模式。  相似文献   

7.
钾素对玉米茎腐病抗性反应中糖类物质代谢的影响   总被引:1,自引:1,他引:0  
通过砂培试验比较人工接种禾谷镰刀菌(Fusarium graminearum)后,不同钾处理对玉米幼根中糖含量及糖代谢关键酶活性和基因表达的影响。结果表明,不施钾处理中,接菌比未接菌处理玉米幼根中蔗糖和葡萄糖含量显著降低,且蔗糖的下降速率高于葡萄糖的下降速率。随着病原菌入侵时间的延长,不施钾处理葡萄糖与蔗糖比值显著升高,接菌8 d后,缺钾幼根葡萄糖与蔗糖的比值是充足供钾幼根的近10倍。此外,钾素有利于病原菌入侵,幼根中蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性提高,ss和sps基因表达量增加; 而缺钾处理中,ss基因的表达量几乎没有发生变化,sps基因的表达量在接菌后6 d才有所增加。说明在病原菌入侵后,钾素可以通过调节受侵染组织糖代谢相关酶的活性,协调受侵染部位糖代谢过程,增强抗病能力。  相似文献   

8.
本试验在实验室条件下,研究大中型沼气工程猪沼和牛沼两种沼液原液及其离心上清液对大豆尖孢镰刀菌、大豆菌核病菌、小麦纹枯病菌、小麦根腐病菌、水稻纹枯病菌、玉米大斑病菌和玉米小斑病菌等7种农作物病原真菌的抑制作用。结果表明:猪沼原液和牛沼原液对其中的大豆尖孢镰刀菌、大豆菌核病菌、小麦纹枯病菌、小麦根腐病菌和水稻纹枯病菌5种病原真菌具有较好的抑制作用,其菌丝生长抑制率均在72%以上,但对玉米大斑病菌和玉米小斑病菌的菌丝生长基本没有抑制作用;相比之下,猪沼和牛沼离心上清液对以上5种病菌的菌丝生长抑制作用明显减弱,除猪沼离心上清液对大豆菌核病菌的菌丝生长抑制率大于70%以外,试验中猪沼和牛沼离心上清液对实验病原菌的菌丝生长抑制率基本都在60%以下。试验结果显示猪沼液和牛沼液对农作物病原真菌具有潜在的植物病害防治作用,为养殖场大中型沼气工程沼液应用新技术的开发提供科学依据。  相似文献   

9.
室内研究了广东省稻瘟病菌优势生理小种之一ZC13(菌株为97-151a)的菌丝细胞胞壁激发子(cell wall elicitor,CWE)诱导玉米体内几种病害防御酶活性的变化。结果表明:各玉米品种幼苗经激发子处理后,其过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)和过氧化氢酶(CAT)活性均明显高于对照和未经激发子处理而直接接种病菌的幼苗,从而证实了该激发子能诱导玉米对玉米小斑病(Helminokosporicum turcicum)产生一定抗病性。  相似文献   

10.
为了研究生防菌株对玉米大斑病菌的抑菌作用,深化对生防菌抗菌机制的认识,本研究从玉米(Zea mays)植株体内分离拮抗玉米大斑病菌(Setosphaeria turcica)的内生细菌,对其抗菌物质及其抑菌机理进行初步研究。结果表明,所分离的内生菌株YY1经形态学观察、生理生化测定及16SrDNA序列分析,鉴定为枯草芽胞杆菌(Bacillus subtilis)。菌株YY1发酵液的硫酸铵沉淀物具有抑菌活性,且在硫酸铵50%饱和度时抑菌活性最强,说明YY1菌株产生的抗菌活性物质可能是蛋白类物质。该菌株及其蛋白粗提液均对禾谷镰刀菌(Fusarium graminearum)、苹果轮纹病菌(Botryosphaeria dothidea)、灰霉病菌(Botrytis cinerea)、玉米弯孢霉叶斑病菌(Curvularia lunata)等7种植物病原真菌有较强的拮抗作用。用蛋白粗提液处理菌丝、分生孢子、原生质体后经显微观察发现,大斑病菌的基内菌丝由丝状畸变为串珠状,当蛋白粗提液浓度为0.78μg/μL时,可完全抑制分生孢子萌发,并导致原生质体裂解。通过抑制孢子萌发过程中信号途径相关基因的半定量RT-PCR分析和玉米大斑病菌不同信号途径相关基因突变体的抑制率统计,初步判定该抑菌过程主要通过cAMP信号转导途径发挥作用。本研究为寻找玉米大斑病菌新的防治方法和途径提供基础资料。  相似文献   

11.
Plant growth promoting effects of Bacillus subtilis EY2, Bacillus atrophaeus EY6, Bacillus spharicus GC subgroup B EY30, Staphylococcus kloosii EY37 and Kocuria erythromyxa EY43 were tested on strawberry cv. ‘Fern’ in terms of fruit yield, growth, chlorophyll reading value, leaf relative water content (LRWC), membrane permeability and ionic composition of leaves and roots under saline conditions. Compared with 0 mM sodium chloride (NaCl) treatment, the average decrease of yield and LRWC were 51.6% and 21.0%, respectively, when 35 mM NaCl was applied. However, EY30, EY37, and EY43 treatments under saline condition (35 mM NaCl) significantly increased fruit yield (54.4%, 51.7% and 94.9%) compared with 35 mM NaCl treatment without plant growth promoting bacteria (PGPB). The LRWC increased from 72.0% in 35 mM NaCl treatment to 88.4%, 86.6%, 84.2%, 83.5%, and 86.2% by EY2, EY6, EY30, EY37, and EY43 applications, respectively. The lowest membrane permeability among the bacterial strains was obtained from EY37 treatment (37) while it was 33 and 58 in 0 mM NaCl and 35 mM NaCl treatments, respectively. The concentration of all plant tissue nutrients investigated [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] with the exception of root phosphorus (P) and Mg concentration significantly decreased with 35 mM salt treatment. Nitrogen content of leaves varied between 3.04 and 3.14% in bacterial treatments under saline conditions while it was 2.71% in 35 mM NaCl treatment. In contrast sodium (Na) and chloride (Cl) of leaves and Cl content of roots were significantly decreased by root inoculation with all bacterial treatments in comparison to 35 mM NaCl treatment with no inoculation. Treatment with Bacillus EY30, Staphylococcus EY37 and Kocuria EY43 to strawberry plants can ameliorative the deleterious effect of salt stress on fruit yield, growth and nutrition. These results demonstrate that PGPB treatment could be offer an economic and simple means to increased plant resistance for salinity stress.  相似文献   

12.
Salinity has deleterious effects on plant growth and development through membrane stability, photosynthetic activity, protein content, and ionic composition; however, salicylic acid (SA) could restore these properties in plants. The objective of this study was to determine the ameliorative effects of SA as foliar pre-treatments on membrane permeability, proline and protein contents, chlorophyll a, b and total chlorophyll and ionic composition of strawberry cv. ‘Camarosa’ under saline conditions. Membrane permeability and proline content significantly increased and protein and chlorophyll contents significantly decreased by 6 mS cm?1 application without SA treatment compared with the control (2 mS cm?1) treatment. Membrane permeability decreased from 6.9 in 0 mM SA treatment to 5.2 by application of 1.0 mM SA under saline conditions and same to the control (5.2). Compared with 0 mM SA treatment, the average increases of proline and protein contents were 66.7% in 0.25 mM SA treatment and 62.2% in 0.1 mM SA treatment in 6 mS cm?1 level, respectively. Chlorophyll b and total chlorophyll significantly increased by 0.25 mM SA treatments under saline conditions. The lowest and the highest chlorophyll b and total chlorophyll were obtained from 0 mM SA treatment (19.6 and 44.5 mg L?1) and 0.25 mM SA treatment (28.6 and 52.9 mg L?1) in 6 mS cm?1 salinity level. Ionic compositions of leaves were significantly affected by salinity and SA treatments. Nitrogen in 1.0 mM SA treatment and P contents of leaves in 0.1 mM SA treatment significantly increased but Na and Cl contents of leaves significantly decreased by SA treatments in 6 mS cm?1 salinity level. The results of this study were clearly indicated that the SA application on strawberry plants could ameliorate the deleterious effect of salt stress on membrane permeability, proline, protein, and chlorophyll contents. Therefore, SA treatment could offer an economic and simple application to salinity stress.  相似文献   

13.
The objective of this study was to determine the effect of foliar salicylic acid (SA) applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. The study was conducted in pot experiments under greenhouse conditions. Cucumber seedlings were treated with foliar SA applications at different concentrations (0.0, 0.25, 0.50, and 1.00 mM). Salinity treatments were established by adding 0, 60, and 120 mM of sodium chloride (NaCl) to a base complete nutrient solution. The SA was applied with spraying two times as before and after transplanting. Salt stress negatively affected the growth, chlorophyll content and mineral uptake of cucumber plants. However, foliar applications of SA resulted in greater shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight as well as higher plants under salt stress. Shoot diameter and leaf number per plant increased with SA treatments under salt stress. The greatest chlorophyll content was obtained with 1.00 mM SA treatment in both saline and non-saline conditions. Leaf water relative content (LWRC) reduced in response to salt stress while SA raised LWRC of salt stressed cucumber plants. Salinity treatments induced significant increases in electrolyte leakage. Plants treated with foliar SA had lower values of electrolyte leakage than non-treated ones. In regard to nutrient content, it can be interfered that foliar SA applications increased almost all nutrient content in leaves and roots of cucumber plants under salt stress. Generally, the greatest values were obtained from 1.00 mM SA application. Based on these findings, the SA treatments may help alleviate the negative effect of salinity on the growth of cucumber.  相似文献   

14.
The effects of exogenous silicon (Si) on key growth parameters and mineral nutrients were investigated in maize grown at high zinc (Zn). Four treatments with three replicates were investigated consisting of a control (basal nutrients with 0.05 mM Zn with or without 1.0 mM Si added), 0.5 mM Zn, and 0.5 mM Zn plus 1.0 mM Si. Plants growing with high Zn alone had a lower chlorophyll (Chl.) content, leaf relative water content (RWC) and produced less biomass than the control plants. Proline content and membrane permeability was higher in zinc-treated plants than in untreated controls. Compared with the plants treated with high Zn alone, added Si significantly increased plant growth, chlorophyll content, and RWC and significantly reduced the membrane permeability and proline content. As expected, added high Zn increased leaf and root Zn, but reduced leaf phosphorus (P) and iron (Fe). Added Si reduced Zn concentration and increased Fe in leaves of maize. It can be concluded that improvement in the key growth parameters tested and mineral nutrition status in maize plants grown at high Zn induced by Si addition may protect membrane permeability under high zinc, thus mitigating Zn toxicity and improving the growth of maize plants. The results of the present experiment support the conclusion that Si may be involved in physiological and nutritional changes in plants grown at high Zn.  相似文献   

15.
Agricultural productivity is worldwide subjected to increasing salinity problems. Various strategies are applied to overcome the deleterious effects of salinity on plants. This study was conducted in order to determine whether drought pretreatment of seedlings or seed pretreatment with NaCl increases the long‐term salinity resistance of tomato (Solanum lycopersicum L.) and whether the adaptive response to salinity is accompanied by physiological changes throughout the plant‐growth cycle. When plants were pretreated at the five‐leaf growth stage, the plant dry weight was significantly higher in drought‐pretreated than in non‐pretreated plants after 50 d of salt treatment. The positive effect of drought pretreatment applied at the five‐leaf stage was maintained throughout the entire growth cycle, as fruit yield of drought‐pretreated plants was 40% higher than that of non‐pretreated plants at the end of the harvest period (150 d of 70 mM NaCl treatment). Moreover, the most productive plants maintained lower Na+ and Cl accumulation in their leaves until the end of the growth cycle, which shows that adaptation is a long‐term response during which the plants adjust their physiology to the environmental conditions. Salt resistance was also improved through seed pretreatment with NaCl. In conclusion, drought pretreatment applied at the five‐leaf stage or seed pretreatment with NaCl provide an alternative way to enhance salt resistance in tomato, and the increase in yield is associated with physiological changes throughout the plant‐growth cycle.  相似文献   

16.
A short-term experiment was carried out to study the effects of exogenous nitric oxide (NO) on some growth parameters and mineral nutrients of maize grown at high zinc (Zn). Maize seedlings were planted in pots containing perlite and subjected to 0.05 or 0.5 mM Zn in nutrient solution. Nitric oxide (0.1 mM) was sprayed to the leaves of maize seedlings. High Zn reduced total dry matter, chlorophyll (Chl.) content and leaf relative water content (RWC), but increased proline content and membrane permeability. Foliar application of NO significantly increased chlorophyll content, RWC and growth of plants treated with high Zn, and significantly reduced their membrane permeability and proline contents. High Zn resulted in increased leaf and root Zn, but lower concentrations of leaf phosphorus (P), and iron (Fe). Foliar application of NO lowered leaf and root Zn and increased leaf and root nitrogen (N) and leaf Fe in the high Zn plants. These results clearly demonstrated that externally-applied NO induced growth improvement in maize plants was found to be associated with reduced membrane permeability under high zinc. Results can be concluded that NO may be involved in nutritional and physiological changes in plants subjected to high Zn.  相似文献   

17.
The postinfection activities of copper hydroxide [Cu(OH)2] and copper sulfate (CuSO4) against apple scab (Venturia inaequalis) were evaluated in an in vitro study. Our intention was to support the aim of reducing copper application rates by appropriate timing of applications. Experiments were conducted at 20 degrees C with leaf disks and isolated cuticular membranes (CM) of Malus x domestica 'Gloster' and 'Elstar'. Conidia of V. inaequalis were used as the inoculum. In untreated controls, 7.9 and 33.2% of germinated conidia formed primary stromata 24 and 48 h after inoculation, respectively. Treatments with copper compounds were applied 24 and 48 h after inoculation, which was 16 and 40 h after infection had occurred. When working with CM and using fluorescein diacetate as a vital stain, vital and dead stromata could be distinguished. Treatment effects were assessed 72 h after inoculation by counting vital (fluorescing) primary stromata. With leaf disks, the number of stromata was counted using KOH-aniline blue fluorescence staining. Cu(OH)2 and CuSO4 showed postinfection activity and killed primary stromata, provided that the surface of the CM was kept wet. Cu(OH)2 was more effective than CuSO4 and was able to kill all primary stromata 24 h after inoculation at concentrations of 116 and 231 mg L(-1). When Cu(OH)2 was applied at 116 mg L(-1) to leaf disks 24 h after inoculation, the number of primary stromata did not significantly differ from the control. Results indicate different modes of action for the highly water soluble CuSO4 and the slightly soluble Cu(OH)2. This supports the hypothesis that spore exudates react with insoluble copper compounds and form highly toxic copper complexes. Application of Cu(OH)2 to dry CM did not kill primary stromata. Hence, for Cu(OH)2 to exert postinfection activity, leaves must be wet. In the field, this cannot be guaranteed and a postinfection application of Cu(OH)2 cannot be recommended.  相似文献   

18.
This study aimed to investigate the response of vegetative growth, yield, and some metabolic constituents of maize grains cv. Single Cross 124 to foliar applications of salicylic acid (SA; 100, 200, and 400 mg L?1) and thiourea (TU; 500, 1000, and 1500 mgL?1), two bioregulators, either alone or in combination. The foliar application of SA and TU alone significantly increased stem diameter, number of leaves?/?plant, leaf area, total dry weight?/?plant, leaf area index, net assimilation rate, specific leaf weight, and yield (i.e., ear length, ear diameter, number of grains?/?row, number of rows?/?ear, 100-grain weight, grain yield?/?plant, grain yield?/?fed (1 feddan = 4200 m2), harvest index, and shelling percentage) by increasing SA or TU concentrations up to 200 and 1500 mg L?1, respectively. Salicylic acid and TU, when applied alone, significantly improved the nutritional value and quality of maize grains by increasing crude protein, total soluble sugars, total free amino acids, and total soluble phenols.  相似文献   

19.
Two field experiments were carried out in Northern Argentina, during the 1989–1990 and 1990–1991 growing seasons, on Argentinian and Brazilian maize genotypes. The inoculant consisted of a mixture of four Azospirillum brasilense strain isolated from surface-sterilized maize roots in Argentina and three A. lipoferum strains isolated from surface-sterilized maize or sorghum roots in Brazil. Establishment of the inoculated strains was confirmed by the antibiotic resistance of the strains in the highest dilution vials. In all treatments, numbers of Azospirillum spp. were increased and the inoculated strains were found in the highest dilutions. While grain yields of the different genotypes varied between 1700 and 7300 kg ha-1, total N accumulation was much less variable. Significant inoculation effects on total N accumulation and on grain yields were consistently negative with one Argentinian genotype and positive with four Argentinian and two Brazilian genotypes. Significant inoculation effects on leaf nitrate reductase activity at the flowering stage, observed in the range-55% to +176%, indicated the presence of various interactions between the plant NO inf3 sup- metabolism and Azospirillum spp. Three Brazilian and one Argentinian maize genotype showed significant decreases in leaf nitrate reductase due to inoculation while four Argentinian genotypes showed significant increases in leaf nitrate reductase activity. The results of the present study, were consistent over the two field experiments and strongly indicate that more detailed plant genotype-Azospirillum spp. strain interaction studies, taking the entire N metabolism in the plant into account, are needed to allow better inoculation results of cereal crops.  相似文献   

20.
The accumulation of total soluble and cell wall-bound phenolics and total soluble proteins in Zea mays plants exposed to drought stress and foliar spray of salicylic acid (SA) at 10?4?mol/L and 10?5?mol/L was investigated. Drought stress was imposed at the four-leaf stage for 10 days (30–35% field capacity). Dehydration of maize leaves was accompanied by the accumulation of both total soluble and cell wall-bound phenolics, reduction in leaf relative water content (LRWC), and shoot and root growth attributes. Foliar spraying of SA further augmented the content of total soluble and cell wall-bound phenolics and total soluble proteins content under drought stress. SA ameliorated the adverse effects of drought stress on LRWC, shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, root length and root area. The accumulation of both soluble and cell wall-bound phenolics by foliar spray of SA may be a mechanism related to SA-induced drought stress tolerance in maize. It was concluded that foliar spraying of SA at 10?5?mol/L can be highly economical and effective for modifying the effects of drought stress on maize at the four-leaf stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号