首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
桂西南米老排人工林单株生物量回归模型   总被引:1,自引:0,他引:1  
通过对桂西南大青山林区28a生米老排(Mytilaria laosensis)人工林林分进行每木检尺和生物量的测定,建立了米老排各器官生物量与胸径、树高和胸径平方乘树高(D2 H)的相关关系;分别选用幂函数等5种模型,用回归分析方法对米老排人工林单株生物量模型进行了拟合。结果表明:树叶和树根生物量分别与胸径和树高的相关关系最显著,而树干、树枝、树皮和全株的生物量都与D2 H的相关关系最为显著。胸径、树高和D2 H与各器官生物量拟合的模型中,全株、树干和树皮的拟合效果最好,树叶和树根的拟合效果中等,树枝的拟合效果较差。除树皮外,各器官均以幂指数模型的拟合效果最好。  相似文献   

2.
为了给塞罕坝人工华北落叶松生物量建模提供依据,采用样木调查法,对不同径阶和树高华北落叶松的树根、树枝、树皮、树叶、树干木质部的含水率进行测定,计算各器官的生物量、总生物量及各器官在单株总生物量中所占的比例,结果表明:华北落叶松单株器官生物量的分配,在胸径达到20cm以前,树干木质部分的生物量所占比例呈逐渐增大的趋势;当胸径在20cm以上,树干木质部分的生物量所占比例相对有所降低,树冠(包括树枝与树叶)生物量与树干(包括树干木质与树皮)的生物量在单株生物量中所占的比例呈现此消彼长的趋势,而树根所占的生物量比例基本趋于稳定,大约占20%左右;此外,应用2种生物量模型W=a(D2 H)b和W=aDb进行拟合,经比较分析发现,W=aDb模型不仅方便而且精度更高,应为首选模型。  相似文献   

3.
以2012年广东连续清查资源数据中木荷的分布为基础,按2 cm、4 cm、6 cm、8 cm、12 cm、16cm、20 cm、26 cm、32 cm、38 cm共10个径阶90株木荷样木,获取树干、树皮、树叶、树枝、树根各器官生物量及含碳率数据,计算90个单株各器官的碳储量。结果表明:(1)广东木荷平均含碳率为0.556 9,各器官含碳率排列顺序为树干(0.565 4)树叶(0.558 4)树枝(0.556 1)树根(0.548 7)树皮(0.508 8),各器官含碳率除树皮外,树干、树叶、树枝、树根差异不显著,树皮含碳率显著低于其它各器官。(2)木荷含碳率与胸径相关性不明显,胸径增加对含碳率的影响较小,天然林的含碳率与人工林差异很小,实际应用中可以忽略其差异。(3)各器官碳储量占全树碳储量的比例从大到小排列顺序为树干树根树枝树皮树叶。(4)随着胸径增加,树干碳储量比例变化趋势为先增加后减少,树枝碳储量比例为先减少后增加,树根碳储量比例上下波动,但变化不大,树皮、树叶碳储量比例减少。(5)拟合出木荷人工林胸径、D2H的碳储量模型依次为Ct=0.007 8D3.164 8,Ct=0.004 3(D2H)1.189 7,R2值依次为0.996 4,0.995 5;天然林胸径、D2H的碳储量模型依次为Ct=1.109 1 D1.511 9,Ct=0.636 3(D2H)0.597 9,R2值依次为0.911 5,0.903 5。  相似文献   

4.
通过对广西黄冕林场7年生黑荆树(Acacia mearnsii De Willd.)人工林林分进行每木检尺和生物量进行测定,建立了黑荆树各器官生物量与胸径(D)、树高(H)及D2 H的相关关系,分别用幂函数等3种模型对黑荆树人工林单株生物量进行拟合。结果表明:慢生和中生类型各组分生物量分配比率大小顺序为干>皮>枝>叶>根,速生类型各组分生物量分配比率大小顺序为干>枝>皮>叶>根;黑荆树各器官生物量及全株生物量与D2 H的相关关系最为显著;各器官生物量的拟合方程拟合效果都较好,所选择的回归模型分别为:树干WS=187.689 9(D2 H)1.099 2、树枝Wb=71.786 1(D2 H)1.593 6、树皮Wtb=36.306 7(D2 H)1.025 8、树叶Wl=4.439 1e-8H7.337 8、树根Wr=e0.248 1+3.359 6D2H和Wr=1.281 6×28.777 1D2H的拟合效果相同、全株生物量Wt=313.978 3(D2 H)1.1237。  相似文献   

5.
西南桦人工林单株生物量的回归模型   总被引:2,自引:0,他引:2  
通过对林分进行每木调查,以D-H曲线进行平均木选择,分径阶伐倒平均木获得生物量数据。以幂指数模型为基础对西南桦人工林的单株生物量模型进行了模拟,以胸径(D)、树高(H)、1/2树高处直径(D1/2)、胸径平方乘树高(D2H)等作自变量,所选择的树干、树枝、树叶、树根的回归模型分别为:Wt=0.563D2.631、Wb=0.0003D3.6499、Wl=0.0022D2.6063、Wr=1.4×10-7H5.9972。以胸径(D)、树高(H)、1/2树高处直径(D1/2)、胸径平方乘树高(D2H)等作自变量的回归模型均可作为全树生物量预测模型。  相似文献   

6.
采用模型分析法研究了山西省辽东栎的胸径(D)、树高(H)与单木总生物量及各器官生物量的相关关系。结果显示,辽东栎全株生物量、树干生物量、树枝生物量、树叶生物量、根生物量均与胸径的平方和树高的乘积之间存在密切的相关关系,且均达到显著水平。  相似文献   

7.
本文采用树干解析方法对贵州野生山桐子生长过程进行了分析,研究结果表明:山桐子胸径、树高和材积随着树龄的增长而增长,山桐子胸径和树高生长的速生期大致在9~20年,20~25年左右进入成熟期,而山桐子材积进入成熟期较晚,这与山桐子胸高形数的变化有关;通过对山桐子各器官生物量的测定,在山桐子生物量结构中,单株山桐子各器官生物量分配呈现出树干>树枝叶的规律。并以山桐子树高(H)、胸径(D)B为自变量,建立了相应的生物量方程。  相似文献   

8.
黑龙江东部地区樟子松人工林单木生物量研究   总被引:2,自引:0,他引:2  
文章研究以黑龙江东部地区不同年龄、不同密度及不同立地条件的樟子松(Pinus sylvestris var. mongolica )人工林作为研究对象,基于 26块标准地中139株标准木的树干解析和生物量数据,以树木各测树因子为自变量建立樟子松人工林单木的树干、树枝、树叶及全树重的生物量预测模型;并研究了不同年龄樟子松林分的生物量结构.研究结果表明:樟子松人工林单木各分量生物量的最优模型形式均为CAR模型,各最优模型的变量主要为胸径(D)和树高(H)因子,D2H能够很好地反映树干的干重,胸径和树高能够很好地反映树枝、树叶及全树重的变化;樟子松单株生物量随着年龄的增大而增加,树干的生物量占全树重的比例随年龄的增大而增大,枝和叶的生物量变化趋势与树干相反,都随着年龄的增大而减小.文中研究的不同年龄阶段樟子松人工林的生物量结构变化规律及相应的预测模型,可为进一步了解樟子松人工林生物量的积累提供依据.  相似文献   

9.
天然麻栎单木地上生物量模型研究   总被引:2,自引:0,他引:2  
通过对铜陵叶山林场麻栎样木地上生物量调查,以胸径、树高为自变量,地上总生物量、树干、树枝、树叶生物量为因变量,选择相对生长式、幂函数式和多项式为生物量回归模型,拟合各模型参数、相关指数、回归剩余离差,并计算生物量估测误差。结果表明:麻栎树干、树枝、树叶和地上总生物量与胸径、树高存在显著幂函数关系,其方程分别为:树干W=6.571×10-4D1.8473H2.411、树枝W=1.163×10-4D2.9497H1.3223、树叶W=0.0032D1.5148H0.8821、总生物量W=9.354×10-4D2.0825H2.1154。树干与总生物量的预估精度均达90%以上。  相似文献   

10.
采用模型分析法研究了雁北地区樟子松的地径(D0)、胸径(D)、树高(H)、枝下高(h)、冠幅(cr)因子与各器官生物量、总生物量的相关关系。结果表明,樟子松各器官及总生物量最优模型为:总生物量ln Wat=-1.65+0.78 ln(D2H);树干生物量ln Wt=-1.15+0.91ln(D2H);树冠生物量ln Wcr=1.24+0.16D;树枝生物量ln Wb=-1.93+1.83 ln D;树叶生物量ln Wl=-1.36+1.28 ln D.  相似文献   

11.
海南木莲人工林生物量及养分分配   总被引:3,自引:0,他引:3       下载免费PDF全文
本文测定并分析了海南尖峰岭地区30年生的热带乡土树种海南木莲人工林生物量及其估算模型,论述了生物量及其养分分配规律。指出:海南木莲各器官及整株生物量模型以幂函数模型W=a(D2H)b比较理想;全林分的总生物量为144.066t/hm2,其中地上部分生物量89.935t/hm2。乔木层生物量占78.81%,林下植物层占21.19%;在乔木层中,树干、树叶、树枝、树皮和树根所占的比例分别是54.127%、2.354%、7.762%、9.370%和26.388%;乔木层中,各器官的养分含量,除Ca外,都是叶比其它器官(枝、皮、干、根)的养分含量高许多,N、P、K、Ca、Mg5个常量养分元素在海南木莲人工林生物体中的总贮量分别为557.754,24.330,599.908,275.557,64.103kg/hm2,各养分贮量在各器官中分布,除P外,从小到大为树叶、树枝、树皮、树干、树根  相似文献   

12.
膏桐人工林单木生物量回归模型研究   总被引:2,自引:0,他引:2  
通过实测膏桐(Jatropha curcas)人工林膏桐的地上和地下生物量,探讨了膏桐各器官生物量与地径、株高和地径平方乘株高(D~2H)的相关关系,并采用回归分析方法建立了不同器官的生物量回归方程,结果表明,以地径平方乘株高(D~2H)因子与叶、干枝、根和全株生物量相关关系最显著,可以用来估算膏桐人工林的生物量和碳储量.  相似文献   

13.
不同坡位8年生厚朴人工林生物量分配格局   总被引:5,自引:0,他引:5  
对不同坡位8年生厚朴人工林地上部分和地下部分生物量及其分配率进行了调查分析。研究结果表明,从生长量来看,不同坡位平均胸径、平均树高及平均木单株总生物量均体现为下坡位〉中坡位〉上坡位;就各器官生物量分配率而言,不同坡位厚朴各器官生物量分配率表现为干〉叶〉枝;从平均木各径级根生物量分配率来看,各坡位均表现为骨骼根〉中根根〉大根〉小根〉细根;地上部分皮的总生物量表现为下坡位〉中坡位〉上坡位,地下部分不同径级根生物量分配率随坡位变化而变化,其中干皮生物量分配率表现为下坡〉上坡〉中坡,枝皮生物量分配率表现为下坡〉中坡〉上坡,大根及中根皮生物量分配率表现为中坡〉上坡〉下坡。  相似文献   

14.
长白落叶松生物量模型的初步研究   总被引:1,自引:0,他引:1  
采用模型分析法研究了长白山地区长白落叶松的地径(D0)、胸径(D)、树高(H)、枝下高(h)、冠幅(cr)等因子与各器官生物量、总生物量的相关关系。结果表明:各器官及总生物量模型以非线性回归为主,最优模型为:树干生物量Wt=3.05e-005D2H+0.008,树冠生物量Wcr=7.35e-005(D2H)0.805,树枝生物量Wb=-1.3e-010(D02H)2+4.13e-005D02H+0.042,树叶生物量Wl=5.09e-005(D2H)0.679;总生物量Wab=9.23e-005(D02H)0.839。  相似文献   

15.
橡胶树生物量估测的数学模型*   总被引:17,自引:1,他引:17       下载免费PDF全文
依据生物体各部分器官与测树因子之间存在着相对生长规律,以树围(G)和D2H为自变量建立橡胶树树叶、树干、小枝、树根、树头、地上、地下部分及全株生物量估测模型,经综合检验,确认以树围为自变量的模型优于以D2H为自变量的模型。并利用此模型对更新橡胶林的生物量进行了估测,同时建立了橡胶树生物量表。  相似文献   

16.
刘化桐 《福建林业科技》2013,40(1):26-28,98
对20年生北美鹅掌楸人工林生产力及碳氮积累研究表明:北美鹅掌楸福建北部生长潜力较大,树高达15.61~24.54m,胸径为21.37~33.31 cm,单株材积为0.259~0.990 m3。北美鹅掌楸对立地条件敏感,Ⅰ类地树高、胸径、材积生长分别比Ⅲ类地增加63.62%、55.90%、281.91%;全树总生物量可达580.27 t.hm-2,各生长器官的生物量大小顺序为树干>树枝>树根>树皮>树叶,分别占到总生物量的58.80%、20.61%、11.94%、5.58%和3.07%;树干、树叶、树皮、树枝、树根碳含量分别为52.13%、50.61%、49.20%、46.85%、45.34%,氮含量分别为0.72%、0.91%、0.96%、0.88%、0.83%;全树碳总积累量可达290.26 t.hm-2,树干、树枝、树根、树皮、树叶分别为177.86、56.02、31.43、15.92、9.03 t.hm-2;全树氮总积累量可达4.56 t.hm-2,大小顺序依次为树干>树枝>树根>树皮>树叶。  相似文献   

17.
对福清灵石山国有林场26年生柳杉人工林生物量及其分配的研究结果表明:26年生柳杉人工林平均树高、平均胸径和林分单位面积蓄积量分别为15.7 m、20.2 cm和668.55 m3.hm-2;林分单位面积总生物量为364.55 t.hm-2,地上部分总生物量为313.86 t.hm-2,其中树干、叶、皮及枝等器官生物量分别占地上部分总生物量的84.79%、6.25%、6.24%及2.72%;地下部分总生物量为50.69 t.hm-2,其中根桩和骨骼根、中根及吸收根生物量分别占根系总生物量的89.21%、9.71%和1.08%。从标准木不同层次生物量分布情况上看,不同层次总生物量、树干及皮生物量随着树高的增加基本呈现出逐渐递减的规律;枝与叶生物量随着树体的升高,其生物量出现先增加后减少的趋势。  相似文献   

18.
四川盆地梁山慈竹地上部分生物量的研究   总被引:3,自引:0,他引:3  
对梁山慈竹地上部分生物量的结构进行了研究,并对其各器官与胸径和竹高的相关模型进行了拟合。结果表明:梁山慈竹各器官含水率大小排列为:竹叶>竹枝>竹杆;在各器官生物量的分配中,竹杆所占比例最大,为地上部分总生物量的68%;梁山慈竹各器官生物量与胸径和竹高均有较高的相关性,其中竹杆与竹高和胸径拟合的最佳模型为:W=0.034(D2H)0.755,单株地上部分生物量拟合的最佳模型为:W=0.092(D2H)0.685。  相似文献   

19.
黄柏、杉木混交林林分生物量及黄檗碱含量   总被引:2,自引:0,他引:2  
为了给黄柏、杉木混交林的营造和经营利用提供理论依据和实践指导,对湘西低山区的黄柏、杉木混交林的生物量和黄檗碱含量进行了研究。结果表明:黄柏、杉木的生物量与胸径、树高均呈正相关,且黄柏、杉木生物量与胸径的相关系数大于与树高的相关系数,因此在经营管理时,应适时间伐以增大其胸径,进而提高林分生物量和生产力;黄柏地上部分干皮和枝皮生物量占68%,根皮生物量占32%,且根皮中黄檗碱含量比干皮高50.7%,在经营时应考虑根皮的利用,以获取最大经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号