首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an analysis on the breaking elongation mechanism of the polyester/viscose blended open-end rotor spun yarns has been carried out. In addition, a back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. In conclusion, ANN and statistical model both have given satisfactory predictions; however, the predictions of ANN gave relatively more reliable results than those of statistical models. Since the prediction capacity of statistical models is also obtained as satisfactory, it can also be used for breaking elongation (%) prediction of yarns because of its simplicity and non-complex structure. In addition, it is also found in this study that yarn count, rotor speed and breaking elongation of polyester-viscose fibers and the blend ratios of these fibers in the yarn have major effects on yarn breaking elongation.  相似文献   

2.
The present paper is concerned with the influence of opening roller speed, drum speed difference and suction air pressure on properties of polyester and acrylic open-end friction spun yarns. The results shows that the opening roller speed and the suction air pressure have considerable influence on the characteristics of polyester and acrylic open-end friction spun yarns. In case of polyester yarns the unevenness, imperfection and hairiness decreases and the yarn tenacity increases with the increase in opening roller speed and suction air pressure. However for acrylic yarns the unevenness and imperfections decreases and tenacity increases with the increase in opening roller speed and suction air pressure.  相似文献   

3.
Microorganisms can lead to functional, hygienic and aesthetic (e.g. deterioration, staining) problems on textile products. Natural fibers especially cotton are more easily affected by microorganisms. Blending of cotton fibers with antimicrobial fibers can enhance the protective properties of products against microorganisms. Demand of antimicrobial performance from the products changes depending on the application area. Therefore determination of suitable antimicrobial fiber quantity for the desired application is important. In this study the spinning performance of SeaCell Active/cotton blended open end rotor yarns and antibacterial activities of fabrics produced by these blended yarns were investigated. Five different cotton/SeaCell Active blended slivers with SeaCell Active content from 3 % up to 53 % were prepared on drawframe machine and all slivers were spun into yarns on open end rotor spinning machine at a yarn count of 20 tex with αTt=3827 twist coefficient. The effects of rotor speed, opening roller speed, rotor, opening roller and navel type on the quality parameters of SeaCell Active/cotton blended yarns were investigated. Tensile properties, hairiness, unevenness and IPI values of the yarns were reported. All types of cotton/SeaCell Active blended yarns were knitted on a circular knitting machine. Antibacterial activity of the fabrics was analyzed quantitatively. Antibacterial tests showed that good antibacterial activity can be achieved after several washings even with 3 % of SeaCell Active fibers in fabrics.  相似文献   

4.
Study on the characteristics of blended ring and rotor spun yarns is a topic of major interest to the researchers. The overall properties of these blended yarns are affected by the relative proportion, properties of the components and their interactions. The main focus of this work is on comparing and analyzing effects of blend ratio on tensile properties of the yarns produced in different spinning systems using concept of hybrid effects that has not received enough attention from researchers. Various blends of cotton-polyester ring and rotor spun yarns were prepared. Tensile properties of the samples were examined as well. Interactions between cotton and polyester fibers was evaluated through predicting strength and elongation at break of the yarns using simple rule of mixtures (ROM) and hybrid model. Experimental results showed that, the effect of different blend ratios on tensile properties of the samples is different. In comparison with 100 % cotton yarn, promotion in braking strength of the ring and rotor spun samples occurred after increasing fraction of the polyester fiber to 50 and 66.5 % respectively. The prominent finding of the present work is that the trend of change in tensile properties of different yarns versus blend ratio is predictable via hybrid model and migration behavior of the constituent fibers. Coefficients representing the intensity of the interaction and migration index of the fibers were calculated and all results were discussed based on these calculated factors.  相似文献   

5.
In this paper, we report on predicting the strength of polyester/viscose spun yarns made on ring, rotor and air-jet spinning systems. A system has been developed to measure the weavability of yarns. Hamburger’s fibre bundle theory is modified to predict the strength of blended yarns from the strengths of single-fibre component yarns. The modified model predicts blended yarn strength more accurately than the original Hamburger’s model emphasizing the importance of yarn structure on blended yarn strength. The weavability of blended yarns is measured on a CTT instrument incorporating a shedding device which addresses the stresses viz., cycle extension, flex abrasion and beat up occur during weaving. The measured weavability compared well with that obtained on a commercial Sulzer Ruti Reutlingen Webtester. Yarn structure and strength and cohesion of fibres affect the strength and weavability of yarns.  相似文献   

6.
In the field of yarn spinning engineering, the importance of the processing parameters taken depends directly on the quality characteristics of the yarn. This study aimed to find the optimal processing parameters for an open-end rotor spinning frame at work to identify its multiple quality characteristics for yarn. In this study, Bamboo charcoal and cotton 70 %/polyester 30 % (CVC) blended fibers were adopted as the materials, and the open-end rotor spinning frame was used to spin the yarn. In order to identify optimal conditions of an open-end rotor spinning frame, the Taguchi experimental method was applied to design open-end rotor spinning experiments, and the L9 orthogonal array was chosen in accordance with nine sets of experiments and contained four control factors and three levels. Furthermore, a response surface methodology (RSM) was used to obtain the models of significant processing parameters for the strength, unevenness, I.P.I, and hairiness. Based on experiments designed to obtain an open-end rotor spun yarn Ne 30, the strength, unevenness, imperfection indicator/km (I.P.I) and hairiness were then chosen as the quality characteristics. In addition, grey relational analysis integrated the optimal processing parameter of multiple quality characteristics, and a confirmation experiment was performed. In conclusion, the optimal processing parameters under steady spinning conditions were a rotor speed of 88000 rpm, a feed speed of 0.392 m/min, and a winding speed of 39.466 m/min.  相似文献   

7.
This paper discusses the inter fiber cohesion in man made and blended yarns. The fiber parameters such as fiber length and fineness influence the cohesion. Studies have been focused on polyester and viscose spun yarns. Though polyester and viscose yarns show similar trend in cohesion, viscose yarns exhibit better cohesion due to their serrated cross section. Studies on the effect of blend proportion of polyester cotton and polyester viscose yarns reveal that increase of polyester and viscose in the respective blends improve the inter fiber cohesion.  相似文献   

8.
Murata vortex spinning system is based on the air jet spinning system. The vast majority of previous works deal with the properties of vortex spun (VS) yarn and the spinning system. In this study, we investigated knitted fabrics from VS yarn in comparison with fabrics from ring (RS), compact (CS) and open-end rotor (OES) spun yarns made from viscose. The effect of yarn spinning system on dimensional and physical properties of knitted fabrics was explained with specific attention to fabrics from VS yarn. Shrinkage of fabrics from VS yarn has the lowest at widthwise direction, while having the highest at lengthwise direction. It is shown that the order of fabric spirality and twist liveliness for yarns from different spinning systems are quite similar. However, relation between loop shape factor and angle of spirality is inconsistent. Angle of spirality of fabrics from VS yarn is higher than fabrics from OES yarn, but lower than that of others. The bursting strength of fabrics from VS yarn is lower than that of those from RS and CS yarns and higher than that of those from OES yarn. From this study, it is also evident that fabrics from VS yarn have the lowest pilling tendency and highest resistance to abrasion.  相似文献   

9.
In this study, the tensile strength and elongation of polyester/viscose blended needle-punched nonwovens were analyzed. For this purpose, five different blend ratios of polyester/viscose webs were produced, cross-lapped and needled in four different mass per unit areas and three different needling/punching densities. The tensile properties of the nonwovens were determined by performing the standard test methods and the data obtained from tests were statistically analyzed in Design Expert software. In addition, a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (fabric mass per unit area and needling density) was developed to analyze the tensile strength and elongation of polyester/viscose blended needled nonwovens. In conclusion, the regression model indicated that the tensile strength of the needle-punched nonwovens decreases with the increase of polyester proportion in the mixture and increases with the increase in mass per unit area and punching density.  相似文献   

10.
The mechanical and physical properties of spun yarns and fabrics depend not only on properties of constituent fibers, but also the yarn structure characterized by geometrical arrangement of fibers in the yarn body. Although there are many studies related to analyzing the migratory properties of spun yarns, there are no studies available about predicting yarn migration parameters. Therefore, the main aim of this research is to introduce a new approach to predict migratory properties of different kinds of spun yarns, namely siro, solo, compact and conventional ring-spun yarns. To achieve the objectives of the research, general physical and mechanical properties of spun yarns together with existing standards were thoroughly studied. Spun yarn migratory properties were predicted using intelligent technique of artificial neural network (ANN). Results signified that the ANN models can predict precisely the yarn migratory properties on the basis of a series of yarn physical and mechanical properties.  相似文献   

11.
In this work, the effect of optimum drafting condition on the drafting behavior and yarn quality of the bamboo charcoal-modified fiber blended spun yarns were studied. We measured the drafting force and drafting force variance, CV% of the bamboo charcoal-modified Polyester/Cotton (BCP/C) blended roving and bamboo charcoal-modified Rayon/Cotton (BCR/C) blended roving to examine the influence of the roller gauge and drafting ratio on drafting behavior and yarn quality. We understand that the drafting force of the bamboo charcoal-modified fiber blended roving follow the same trend as that for the regular P/C and R/C blend roving. However, the drafting force presents some difference in characteristics between these bamboo charcoal-modified fiber blended rovings. To correlate the drafting force variation, CV% and the bamboo charcoal-modified fiber blended spun yarn properties, we evaluated the yarn quality and investigate the yarn quality index in conjunction with the break drafting ratio. Therefore, in this work, we can obtain the best optimum drafting conditions for bamboo charcoal-modified fiber blended spun yarns; for the 19.7 tex of BCP70/C30 blend spun yarn was under the roller gauge of 54 mm at the draft ratio of 1.3, whereas, for the 19.7 tex of BCR40/C60 blend spun yarn was under the roller gauge of 54 mm at the draft ratio of 1.2.  相似文献   

12.
Coconut fibres were subjected to chemical treatment to obtain softer and finer fibres, suitable to blend with other finer fibre like jute. The chemical softening recipe was optimized using Box-Behnken design of experiments as 40 % Na2S, 10 % NaOH and 6 % Na2CO3, which notably reduced the fineness (33 %) and flexural rigidity (74 %) and improved tensile property of coconut fibre. Effect of softening of coconut fibre on its process performance was studied in high speed mechanized spinning system at different blend ratios with jute. Blending with jute assists in spinning of coconut fibre to produce yarn of 520 tex at production rate of 5-6 kg/h, as compared to 15 kg/day for hand spun 5300 tex raw coconut fibre yarn in manual system. Analysis of blended yarn structure in terms of packing density, radial distribution of fiber components (SEM) and mass irregularity were investigated. SEM shows yarns made from softened coconut fibre -jute blends are more compact than raw coconut fibre -jute blend yarns. Coconut fibres were preferentially migrated to core of the yarn. Major yarn properties viz., tensile strength, and flexural rigidity of raw and chemically softened blended yarns were compared against their finest possible 100 % coconut fibre yarn properties. Yarn made up to 50:50 chemically softened coconut fibre-jute blend showed much better spinning performance, and having superior property in terms of reduced diameter, higher compactness, strength, initial modulus and less flexural rigidity than 100 % raw, 100 % chemically softened coconut fibre rope, and raw coconut fibre-jute blend yarns.  相似文献   

13.
This paper demonstrates the application of two soft computing approaches namely artificial neural network (ANN) and neural-fuzzy system to forecast the unevenness of ring spun yarns. The cotton fiber properties measured by advanced fiber information system (AFIS) and yarn count have been used as inputs. The prediction accuracy of the ANN and neural-fuzzy models was compared with that of linear regression model. It was found that the prediction performance was very good for all the three models although ANN and neural-fuzzy models seem to have some edge over the linear regression model. The linguistic rules developed by the neural-fuzzy system unearth the role of input variables on the yarn unevenness.  相似文献   

14.
Blending of nylon filament with viscose can overcome the drawbacks of these yarns. Thermoplastic and thermoset filament yarns can be blended in air-jet texturising method. The characteristics of nylon/viscose blended filament yarns are required to be understood in order to convert them in to useful products. Therefore, nylon/viscose blended yarns in different proportions were produced using nylon 6 and viscose filament yarns in air jet texturising machine. The textured yarns were also produced in dry and pre-wet conditions to understand the effect of water on textured yarn characteristics. It was found that the loops frequency, bulkiness of nylon/viscose blended textured yarns increase with increase in viscose proportion. The Loops stability, tenacity and breaking elongation decrease with increase in viscose proportion. Pre-wet textured yarn show higher loops, bulkiness, and good loop stability than their corresponding dry textured yarns.  相似文献   

15.
This study reports on the analysis of tenacity and breaking elongation of ring-, rotor- and air-jet-polyester/viscose spun yarns measured using static- and dynamic tensile testers. The weavability, a measure of performance of these yarns in post spinning operations is quantified. The yarn diameters and helix angles of fibres in these yarns are measured in order to analyze the effect of types of spun yarn and blend proportion on yarn elongations. The dynamic tenacity is highly correlated with the weavability than the average static tenacity measured at 500 mm gauge length. The minimum static tenacity obtained from 100 tests has high correlation with the dynamic tenacity. The present study indicates that it is appropriate to evaluate the performance of spun yarns in winding, warping and weaving based on the dynamic yarn tenacity measured while running a 200 m length of yarn in a constant tension transport tester or the minimum static yarn tenacity obtained using any conventional constant rate extension (CRE) tensile testers corresponding to a total test length of 50 m.  相似文献   

16.
Biodegradable products are parts of a natural cycle. The biopolymers and the fibers that can be produced from them are very attractive on the market because of the positive human perception. Therefore, PLA being a well known biodegradable fiber and some conventional fibers were selected for the current study to examine the differences between them and to emphasize the importance of biodegradability beside fabric performance. 14.8 tex (Ne 40/1) combed ring spun yarns produced from biodegradable fiber PLA, new generation regenerated fibers Modal and Tencel, synthetic and blends 50/ 50 % cotton/polyester and 50/50 % viscose/polyester, polyester were selected as yarn types and by using these yarns, six knitted fabrics were produced and some important yarn and fabric properties were compared. In this context, moisture and the tensile behavior of yarns and pilling, bursting strength, air permeability and moisture management properties of the test fabrics are discussed.  相似文献   

17.
In this study artificial neural network (ANN) models have been designed to predict the ring cotton yarn properties from the fiber properties measured on HVI (high volume instrument) system and the performance of ANN models have been compared with our previous statistical models based on regression analysis. Yarn count, twist and roving properties were selected as input variables as they give significant influence on yarn properties. In experimental part, a total of 180 cotton ring spun yarns were produced using 15 different blends. The four yarn counts and three twist multipliers were chosen within the range of Ne 20–35 and α e 3.8–4.6 respectively. After measuring yarn tenacity and breaking elongation, evaluations of data were performed by using ANN. Afterwards, sensitivity analysis results and coefficient of multiple determination (R2) values of ANN and regression models were compared. Our results show that ANN is more powerful tool than the regression models.  相似文献   

18.
This study was focus on the influence of filament and roving location on yarn properties during embeddable and locatable spinning (ELS). ELS composite yarns were produced with various filament and roving locations on an experimental ring spinning frame. Besides yarn formation zone configurations, ELS yarn properties were compared including yarn hairiness, unevenness and tensile properties. Results showed that spinning triangles became larger; however, the reinforced composite spinning strand length kept constant. With a constant filament-roving spacing on each side of ELS, Filament spacing variations caused no significant changes of spun yarn hairiness, tenacities, imperfections and unevenness CV. For roving location variations with constant filament spacing, the reinforced strand length became longer as the roving spacing increased. Hairs exceeding 3 mm were lower for ELS yarn spun with 4 mm and 10 mm roving spacings than that spun with 6 mm, 8 mm and 12 mm roving spacings. Roving spacing variations had a trivial influence on ELS yarn unevenness; whereas, yarn tensile index variation coefficients fluctuated dramatically due to hairiness variations for different roving spacings.  相似文献   

19.
This paper provides preliminary results on the relative performance of the adaptive neuro-fuzzy system inference (ANFIS) model versus linear multiple regression method, when applied to the use of cotton fiber properties to predict spun yarn strength obtained from open-end rotor spinning. Fiber properties and yarn count are used as inputs to train the two models and the output (dependent variable) would be the count-strength-product (CSP) of the yarn. The predictive performances of the two models are estimated and compared. We found that the ANFIS has a better average prediction successful in comparison with linear multiple regression model.  相似文献   

20.
In the paper, one kind of super draft ring spinning frame with four drafting rollers and corresponding three drafting zones were introduced. The yarn qualities spun by the super draft ring spinning frame were analyzed by studying the shape of spinning triangles. Using the high speed camera system OLYMPUS i-speed3 and one kind of transparent front top roller, the spinning triangles were captured, and the geometry size of spinning triangle were measured. Then, according to the theoretical model of fiber tension in the spinning triangle, fiber tension distributions in the spinning triangles were presented by using Matlab software. Using the combed roving of 350 tex as raw material, three kinds of cotton yarns, 27.8 tex (21S), 18.2 tex (32S) and 14.6 tex (40S), were spun in the common ring spinning frame with three different suitable spindle speeds, travelers and twist factors. Using the combed roving of 350 tex and 500 tex as raw material, 14.6 tex cotton yarns were spun in the super draft ring spinning frame with three different drafting ratios at back zone. It is shown that with the increasing of spindle speed, a more asymmetric shape of spinning triangle would be produced, and lead to worsen yarn evenness. With the decreasing of traveler weight, the height and horizontal deviation of the spinning triangle is decreased, and may lead to better yarn evenness and less long hairiness. By taking suitable large yarn twist factors, the comprehensive qualities can be improved. Comparing with the common ring spinning, the spinning triangle is larger in the super draft ring spinning. That is, in the super draft ring spinning, the fibers in the strand in the front roller nip are more dispersed, and not benefit for yarn qualities. Therefore, the compact device was introduced into the super draft ring spinning, and the cotton pure yarns and blend yarns were spun, and the yarn qualities were measured and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号