首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naptalam applied to yellow nutsedge (Cyperus esculentus L., var leptostachvus Boeck.) plants through nutrient culture, as a foliar spray or to the soil surface significantly stimulated the transformation of rhizomes into new shoots when the plants were grown under a 20-h photoperiod. Applications of naptalam to plants grown under short-day conditions inhibited tuber production. Applications of glyphosate to yellow nutsedge foliage at 0·3 and 0·6 kg ha resulted in 57 and 68% dormant tubers respectively, compared to 27% in untreated plants. These lower rates did not significantly increase the number of nonviable tubers. The application of 1·1 and 2·2 kg ha resulted in 47 and 52% dormant tubers, respectively and approximately 40% nonviable tubers. When production of new shoots of yellow nutsedge was induced by soil treatment with napialam and followed later with glyphosate significantly greater control of the nutsedge was observed than from either herbieide alone. Effets du naptalame sur la crossance du experus aune et efficaeite ulterieure du glyphosate. Le naptalame appliquè sur des plantes de cypérus jaune (Cyperus esculentus L. var leptostachyus Boeck) a vee des éléments nutritifs, en pulvérisation fobaire ou à la surface du sol a significativement stimulé la transformation des rhizomes en nouvelles pousses forsque les plantes ont été soumises à une photopériode de 20 h. Les applications de naptalame aux plantes pousant dans des conditions de jours courts ont inhibe la production des tubercules. Des applications de glyphosate sur le feuillage du cypérus jaune à 0.3 et 0.6 kg ha ont donné respectivement 57 et 68% de tubercules dormants contre 27% chez les plantes non traitées. Ces doses plus faibles n'ont pas augmente significativement le nombre de tubercules nonviables. L'application de 1.1 et 2.2 kg ha a donné respectivement 47 et 52% de tubercules dormants, et approxativement 40% de tubercules non viables. Lorsque la production de nouvelles pousses de cypérus jaune a été induite par un traitement du sol au naptalame. suivi ulterieurement d'une application de glyphosate. l'efficacite observée sur le cypérus a été significativement meilleure qu'avee l'un ou l'autre de ces herdicides employé soul. Der Einfluss von Naptalam auf das Wachstum von Cyperus esculentus L. und nachfolgender Bekämpfung mit Glyphaxate Wird Naptalam in die Nähelösungskultur oder auf das Blatt von Cyperus esculentus var leptostachyus Boeek, sowj?e auf die Bodenoberfläche appliziert so stimulieri es die Bildung von neuen Trieben aus Rhizomen, wenn die Pflazen einer Photoperiode von 20 Std. ausgesetzt werden. Unter Kurztagshedingungen hemmt Napralam die Bildung von Knollen Wurde Naptalam auf die Blätter mít 0.3 und 0.6 kg ha appliziert so stieg die Zahl der dormanten Knollen von 27% bei unbehandelt auf 57% und 68% bei behandelt. Diese niedrigen Aufwandmengen steigerten die Zahl der keimfähigen Knollen nicht significant. Die Applikation von 1.1 und 2.2 kg ha resultiere in 47 und 52% dormanten und 40% nicht keimfähigen Knotlen. Wenn die Bildung von Trieben durch eine Behandlung mit Naptalam über dem Boden induziert wurde und diese nachfolgend mit Bekämpfungserfolg als wenn jades Herbizid allein angewandt wurde.  相似文献   

2.
Absorption, translocation and distribution of 14C-glyphosate were examined in Agropyron repens (L.) Beauv. plants growing under field conditions in the autumn. Glyphosate absorption did not increase beyond 3 days after application, whereas translocation to the rhizomes continued up to 7 days after application. The translocated glyphosate accumulated more in new rhizomes than in older parts of the rhizomes. Ten per cent of the glyphosate translocated out of the treated shoot was recovered in younger shoots 7 days after application. Plants harvested the following spring contained less than 20% of the glyphosate originally applied. Although a growth cabinet experiment indicated that 34% of the glyphosate in the rhizomes of treated plants could be remobi-lized into new aerial shoots, considerably less was recovered in new, aerial shoots in the spring in the field-grown plants. Freezing experiments showed that glyphosate translocation to the rhizomes was only prevented when cold treatment caused visible damage to A. repens foliage.  相似文献   

3.
Imperata cylindrica and Cyperus rotundus were grown under three different light regimes; unshaded, 50% shade, and 75% shade and no shade plus 75% shade before and after spraying, (temporary shade) in a heated greenhouse. Six weeks after the start of the experimenis, glyphosate was applied to the plants at 0·2, 0·4 and 0·8 kg/ha (for Imperata) or 0·3, 0·6 and 1·2 kg/ha (for Cyperus). Glyphosate toxicity was enhanced as shade increased. In Imperata, all shade regimes at all rates of glyphosate eaused greater damage to the plants than the unshaded regime. The reduction in shoot dry weight, rhizome dry weight and total carbohydrate content of Imperate rhizotties at 75% continuous and temporary shaiie conditions, with the lowest rate of glyphosate, was almost twice as much as the reduction in the same features m the unshaded plants caused by the highest rate of glyphosate. In Cyperus. glyphosate at the intermediate and highest rates decreased the shoot dry weight at 75% continuous shade by 79% and 98% respectively. Plants in 50% shade were significantly affected only at the highest rate of glyphosate. Sprouting ability of the tubers al 75% continuous shade was inhibited when the tubers were replanted for recovery. Enhanced toxicity of glyphosate in reduced light intensity was attributed to the morphological changes in the nature of the leaves caused by shade.  相似文献   

4.
Research conducted in El Salvador, Central America, demonstrated that an interval of 3 days between application of glyphosate and tillage was sufficient to cause 90% reduction in purple nutsedge (Cyperus rotundus L.) plants, while delays of 11–23 days generally gave slightly less reduction. à second application to the same plots 35 days following tillage resulted in more than 90% reduction with all intervals. Approximately 3 months after the initial treatment, tuber numbers had been reduced to half the original population. Germination of the remaining tubers was reduced by more than 50%. Glyphosate applied during the dry season caused an average of 79% reduction in plant numbers compared with 88% in the rainy season. However, in the dry season, the remaining plants had no competition from other weeds and after 5 months there was only à 40% reduction in nutsedge population. During the rainy season, 1, 2 and 3 kg/ha were equally effective, but 1 kg/ha was not sufficient in the dry season.  相似文献   

5.
Foliar sprays of potato plants with phosphonic acid (partially neutralised with potassium hydroxide to pH 6.4) substantially reduced infection of the tubers by Phytophthora infestans, the cause of late blight, in glasshouse and field experiments over a 4-year period. Healthy tubers of blight-susceptible cultivars removed from treated plants and artificially inoculated by spraying with sporangial/zoospore suspensions of P infestans did not develop disease symptoms, demonstrating that the phosphonate applications had directly reduced the susceptibility of tubers to infection, probably as a result of translocation into tuber tissue. In contrast, foliar application of fosetyl-aluminium did not significantly reduce tuber blight development following inoculation. Five to six sprays of partially neutralised phosphonic acid (2 kg ha-1) applied at 10-14 day intervals resulted in the least tuber infection, but such a treatment regime may not be economic. In trials where the effect of timing and rate of application of 2-4 kg phosphonic acid ha-1 was examined, a single treatment of 4 kg ha-1 applied mid- or late-season proved the most effective. A spray programme in which one or two applications of phosphonic acid are combined with use of a non-systemic or systemic fungicide to enhance foliar protection offers the possibility of controlling both foliage and tuber blight and could have a major impact in reducing overwinter survival of P infestans in tubers.  相似文献   

6.
Zebra chip, an emerging disease of potatoes, has recently been associated with ‘Candidatus Liberibacter solanacearum’ in New Zealand. The phloem-limited bacterium is known to be vectored by the tomato potato psyllid (Bactericera cockerelli). In this study, the role of tuber transmission in the spread of Ca. L. solanacearum was investigated by re-planting potato tubers infected with Ca. L. solanacearum in the absence of the psyllid. Nested PCR demonstrated that Ca. L. solanacearum could be transmitted from the mother tubers both to the foliage of growing plants and to progeny tubers, resulting in symptomatic and asymptomatic plants. Of 62 Ca. L. solanacearum-infected tubers four did not sprout symptomatic of zebra chip. A further two plants developed foliar symptoms associated with zebra chip during the growing season and died prematurely. Fifty-six of the infected tubers produced asymptomatic plants, although Ca. L. solanacearum was detected in the foliage of 39 of them indicative of transmission into asymptomatic progeny plants. At harvest, Ca. L. solanacearum was found in the daughter tubers of only five of the 39 asymptomatic plants, and only one of these plants was found to have zebra chip symptoms in the daughter tubers. Our results show that tuber transmission of Ca. L. solanacearum could play a role in the life cycle of this pathogen, providing a source for acquisition by Bactericera cockerelli and for movement of the pathogen to other regions of New Zealand via transport of seed tubers.  相似文献   

7.
Glyphosate has been associated with control failures for Spermacoce verticillata in some Brazilian States. The objective of this work was to evaluate and determine the possible causes of this and propose alternative herbicides to use. Glyphosate was applied at three plant stages of development (2–4 leaves, 4–6 leaves and full bloom) where foliar absorption and translocation of glyphosate to various plants parts and time were analysed using the 14C technique. Data were submitted to nonlinear regressions and analysis of variance, where means were compared by a Tukey test at 5% probability. Plant control by the application of different herbicides (19) in the same three stages of development of weed was evaluated. Twenty‐one days after herbicide application, control was visually evaluated and data analysed and means were compared. Due to absorption and/or translocation problems, S. verticillata plants were not controlled by glyphosate. Plants with 4–6 leaves showed lower absorption and translocation of the herbicide to the leaf/root regions compared with plants at the beginning of their development. Plants at full bloom showed lower translocation of the herbicide to the root. In addition to the application of glyphosate at early stages of development, the application of paraquat, flumioxazin and mixtures of glyphosate with flumioxazin or cloransulam is recommended. Late applications could result in poor control, principally if glyphosate is used. Therefore, early applications are strongly recommended for control of this species.  相似文献   

8.
In three experiments, glyphosate (1.0 kg/ha) and aminotriazole (1.5 kg/ha) killed volunteer potatoes. Glyphosate (0.5 kg/ha) gave acceptable control in the field but not in the two pot experiments; in these latter, addition of ammonium sulphate to glyphosate improved its performance. Field applications of both herbicides at the end of May were less effective than those in June and July, because not all the sprouts had emerged in May. Aminotriazole killed those daughter tubers already pre sent, whilst glyphosate affected sprout viability and hence their ability to produce new plants. The practical potential of these two herbicides for the control of volunteer potatoes is discussed. Activité du glyphosate el de l'aminotriazole contre les repousses de pommes de terre et leurs tubercules fils Dans trois expériences, le glyphosate (1,0 kg/ha) et l'aminotria-zole (1,5 kg/ha) ont tue les repousses de pommes de terre. Le glyphosate (0,5 kg/ha) a fait preuve d'une efficacité acceptable au champ mais pas dans les deux expériences en pots; dans celles-ci, I'addition de sulfate d'ammonium au glyphosate a amélioré ses performances. Les applications au champ des deux herbicides à la fin de mai ont été moins efficaces que celles effectuées en juin et juillet parce que toutes les repousses n'étaient pas sorties en mai. L'aminotriazole a tué les tubercules fils déjà présents, alors que le glyphosate a affecté leur germina tion et par suite leur capacitéà produire de nouvelles plantes. La valeur pratique de ces deux herbicides pour lutter contre les repousses de pommes de terre est discutée. Die Wirkung von Gtyphosat und Aminotriazot auf Unkraut-Kar-toffelpflanzen und deren Tochterknollen In drei Versuchen wurden durch Glyphosat (1,0 kg/ha) und durch Aminotriazol (1,5 kg/ha) Unkraut-Kartoffeln abgetotet. Glyphosat (0,5 kg/ha) ergab unter Feldbedingungen eine brauchbare Bekampfung, nicht jedoch in zwei Gefassver-suchen; in letzteren wurde die Wirkung von Glyphosat durch den Zusatz von Ammoniumsulfat verbessert. Die Feldbehan-dlung Ende Mai war bei beiden Herbiziden weniger wirksam wie im Juni und Juli, weil im Mai das Kraut noch nicht voll entwickelt war. Durch Aminotriazol wurden alle bereits vor-handenen Tochterknollen getötet, wogegen Glyphosat das Kraut schädigte und damit auch die Bildung neuer Pflanzen beeinflusste. Es werden die Möglichkeiten diskutiert, die sich durch die beiden Herbizide für die Bekämpfung von Unkraut-Kartoffeln ergeben.  相似文献   

9.
Summary. Single tubers of Cyperus rotundus L. were planted at intervals over the year. Plant growth was slow and sprouting of tubers was inhibited at temperatures below 20°C, but tubers overwintered at temperatures above freezing point. In the warm season, plant growth and tuber formation rate closely followed air temperature and tubers were forming within 1 month from planting. No inflorescence appeared during the cool season. In autumn-planted C. rotundus grown in containers, the ratio of aerial to subterranean weight decreased from 1·1 in December to 0·2–0·4 in summer. The weight of tubers in mid-summer was about 10 times more than that present in December. Tubers formed at ail times of year and at various locations on plants sprouted readily in laboratory tests (76–100% sprouting). C. rotundus planted in March at wide spacings was grown in field conditions free of other plant competition for 20 months. Within 2 months the plants had spread to 90 cm. At the end of the first and the second summer of growth, the mean area of one plant was 7·6 m2 and 56·7 m2, respectively, and patches had expanded then by 2·8 m and 5·4 m, respectively, from the initial shoot. After 20 months of growth all tubers were present within the 0–40 cm soil depth, 60–70% of them in the 0–20 cm layer. About 30% of the tubers were within 1 m and 60% within 2 m of the plant centre. Under the patch centre there were about 1000 tubers per m2 with 0·3 kg dry weight; in the upper 20 cm more than 3500 tubers weighing 0·9 kg were present per m3 of soil. Croissance, formation de tubercules et propagation de Cyperus rotundus L. issu de tubercules uniques  相似文献   

10.
Purple nutsedge ( Cyperus rotundus L.) tubers remain viable for several years and serve as its principal means of survival. The maintenance of high moisture content is essential to tuber survival. Apical dominance influences bud dormancy within a tuber and in a chain of tubers, and dormancy increases with tuber age. Several growth inhibitors were identified in tubers, but their role in tuber dormancy has not been established. Moisture levels in soil must increase to a critical level before sprouting occurs, but excess soil moisture deters sprouting. Oxygen may be a limiting factor for tuber sprouting in waterlogged soils. Although light is not a requirement for sprouting, it has promoted sprouting. Temperature regulates sprouting; no sprouting occured below 10°C and above 45°C. Optimum sprouting occurred between 25 and 35°C when provided with constant temperatures. However, daily alternating temperatures greatly stimulated sprouting. A daily short duration (0.5 h) of high temperature increased sprouting to nearly 100%, whereas less than 50% sprouting occurred without the daily high temperature pulse. Bud break occurred readily for most tubers at 20°C and in nearly 100% of the tubers with a single 0.5 h exposure to a high temperature (35°C) pulse. However, most buds did not elongate if the tuber remained at 20°C. Bud elongation occurred at higher temperatures, and daily alternating temperatures stimulated shoot elongation up to eightfold greater than at the respective mean constant temperatures. Daily soil temperature fluctuation may be a major signal for purple nutsedge emergence, such as when the plant canopy is removed, or when soils are solarized. Future research is needed to determine tuber sprouting for different ecotypes, and on the role of the rhizome chain. Systems to manipulate sprouting may provide new strategies for purple nutsedge management.  相似文献   

11.
Weed populations with resistance to glyphosate have evolved over the last 7 years, since the discovery of the first glyphosate‐resistant populations of Lolium rigidum in Australia. Four populations of L. rigidum from cropping, horticultural and viticultural areas in New South Wales and South Australia were tested for resistance to glyphosate by dose–response experiments. All populations required considerably more glyphosate to achieve 50% control compared with a known susceptible population, indicating they were resistant to glyphosate. Translocation of glyphosate within these resistant populations was examined by following the movement of radiolabelled glyphosate applied to a mature leaf. All resistant plants translocated significantly more herbicide to the tip of the treated leaf than did susceptible plants. Susceptible plants translocated twice as much herbicide to the stem meristematic portion of the plant compared with resistant plants. These different translocation patterns suggest an association between glyphosate resistance in L. rigidum and the ability of glyphosate to accumulate in the shoot meristem.  相似文献   

12.
The mechanism involved in systemic acquired resistance (SAR) can be non-specifically induced in susceptible plants. In response to pathogens, plants' natural defence mechanisms include the production of lignin and phytoalexins and the induction of plant enzymes. The aim of this research was to study the induction of SAR mediated by the chemical activator DL-3-aminobutyric acid (BABA) and the fungicide fosetyl-aluminium in potato cultivars with different levels of resistance against Phytophthora infestans (Mont) de Bary. To study the chemical induction of the resistance, the foliage of several potato cultivars was sprayed with BABA, fosetyl-aluminium or water (as a control treatment). After 3 days the foliage was inoculated with P. infestans. Seven days after inoculation, development of disease symptoms in the foliage was assessed. In postharvest tuber samples, evidence for enhancement of the defence response was evaluated by measuring the protein content of several hydrolytic enzymes as well as the phenol and phytoalexin content. The highest level of protection against late blight was observed when the chemicals were applied at early stages of crop development. An increase in resistance to late blight was also detected in tubers after harvest. There was also an increase in the protein level of beta-1,3-glucanase and aspartic protease as well as in the phenol and phytoalexin content of potato tuber discs obtained from postharvest tubers of treated plants. Thus the protective effect seemed to persist throughout the whole crop cycle. This treatment may offer the possibility of controlling both foliage and tuber blight and could have a major impact in reducing over-winter survival of P. infestans in tubers.  相似文献   

13.
Levin A  Baider A  Rubin E  Gisi U  Cohen Y 《Phytopathology》2001,91(6):579-585
ABSTRACT The ability of Phytophthora infestans, the causal agent of potato and tomato late blight, to produce oospores in potato tuber tissue was studied in the field and under laboratory conditions. In 1998 and 2000 field experiments, the canopy of potato cvs. Alpha and Mondial, respectively, were coinoculated with A1 + A2 sporangia of the fungus, and the infected tubers collected at harvest were examined for the presence of oospores. In 1998, only 2 of 90 infected tubers had oospores, whereas none of the 90 tubers examined in 2000 had any oospores. In the latter experiment, infected tubers kept in storage up to 12 weeks after harvest had no oospores. Artificial co-inoculations of whole tubers with A1 + A2 sporangia resulted only rarely in the formation of oospores inside the tubers. Co-inoculations of potato tuber discs taken from dormant tubers 0 to 16 weeks after harvest failed to support any oospore production, whereas discs taken from sprouting tubers of >/=18 weeks after harvest allowed oospores to form. Tuber discs showed enhanced oospore formation when treated before inoculation with either sugars, amino acids, casein hydrolysate, beta-sitosterol, or chloroethylphosphonic acid. In contrast, reducing airflow into the petri dishes where potato tuber discs were incubated reduced the number of oospores produced. The number of oospores produced in tuber tissue was lower compared with that in leaf tissue regardless of the origin of isolates used. The data show that the ability of Phytophthora infestans to produce oospores in potato tuber tissue is very limited and increases with tuber aging.  相似文献   

14.
Anaerobic soil disinfestation (ASD) is a cultural technique primarily targeted for control of soilborne plant pathogens, but can also impact weed propagules. A repeated pot study was conducted to evaluate ASD treatment impact on sprouting and growth of introduced Cyperus esculentus (yellow nutsedge) tubers using dry molasses‐based and wheat bran‐based amendment mixtures at four carbon‐to‐nitrogen (C:N) ratios (from 10:1 to 40:1) and compared with a non‐amended control. The mean percentage of sprouted tubers recovered after ASD treatment was lower for wheat bran‐based (42%) than dry molasses‐based (65%) amendments, and tuber production was 1.6‐fold higher in dry molasses‐based than wheat bran‐based treatments. The highest percentage of sprouted tubers (79%) and the highest mean production of large tubers (threefold higher than wheat bran‐based and 1.7‐fold higher than molasses‐based amendments) were observed for the non‐amended control. Tuber sprouting was significantly lower from all ASD treatments (regardless of amendment C:N ratio) compared with the non‐amended control at a 15 cm burial depth. New tuber production was lowest at C:N ratios of 10:1 and 20:1 and more than twofold higher in the non‐amended control. Wheat bran‐based amendments reduced above‐ground C. esculentus biomass compared with the non‐amended control and ASD treatments with molasses‐based amendments, and reduced below‐ground biomass compared with molasses‐based amendments. Above‐ground biomass was highest at amendment C:N ratio of 10:1, and below‐ground biomass was highest at amendment C:N ratio of 40:1 and the non‐amended control. ASD treatment with wheat bran‐based amendments at lower C:N ratios reduced tuber sprouting and reproduction compared with the non‐amended control, but not at rates high enough to use as a primary weed management tactic.  相似文献   

15.
Application of small amounts of glyphosate and aminotriazole to the top 2–3 leaves of potato stems killed those stems. Untreated stems attached to the same plant did not die, although they showed symptoms of herbicide damage. Glyphosate caused the death of the apices of the untreated stems, growth of axillary buds and sometimes aerial tuberization. Concentrations of glyphosate between 025 and 8% a.i. and of aminotriazole between 1 and 4% a.i. achieved equally good control of treated stems, although the higher concentrations worked more quickly and generally resulted in more symptoms on the untreated stems. The more stems that were treated on a particular plant, the greater the symptoms on the untreated ones. When all the stems were treated, no healthy tubers were produced; when only some were treated, both healthy and deformed tubers were found at harvest. The effects on the untreated stems are examined in relation to the translocation of glyphosate and the anatomy of the potato plant.  相似文献   

16.
BACKGROUND: In a large cropping area of northern Argentina, Sorghum halepense (Johnsongrass) has evolved towards glyphosate resistance. This study aimed to determine the molecular and biochemical basis conferring glyphosate resistance in this species. Experiments were conducted to assess target EPSPS gene sequences and 14C‐glyphosate leaf absorption and translocation to meristematic tissues. RESULTS: Individuals of all resistant (R) accessions exhibited significantly less glyphosate translocation to root (11% versus 29%) and stem (9% versus 26%) meristems when compared with susceptible (S) plants. A notably higher proportion of the applied glyphosate remained in the treated leaves of R plants (63%) than in the treated leaves of S plants (27%). In addition, individuals of S. halepense accession R2 consistently showed lower glyphosate absorption rates in both adaxial (10–20%) and abaxial (20–25%) leaf surfaces compared with S plants. No glyphosate resistance endowing mutations in the EPSPS gene at Pro‐101–106 residues were found in any of the evaluated R accessions. CONCLUSION: The results of the present investigation indicate that reduced glyphosate translocation to meristems is the primary mechanism endowing glyphosate resistance in S. halepense from cropping fields in Argentina. To a lesser extent, reduced glyphosate leaf uptake has also been shown to be involved in glyphosate‐resistant S. halepense . Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Suspected Dickeya sp. strains were obtained from potato plants and tubers collected from commercial plots. The disease was observed on crops of various cultivars grown from seed tubers imported from the Netherlands during the spring seasons of 2004–2006, with disease incidence of 2–30% (10% in average). In addition to typical wilting symptoms on the foliage, in cases of severe infection, progeny tubers were rotten in the soil. Six strains were characterised by biochemical, serological and PCR-amplification. All tests verified the strains as Dickeya sp. The rep-PCR and the biochemical assays showed that the strains isolated from blackleg diseased plants in Israel were very similar, if not identical to strains isolated from Dutch seed potatoes, suggesting that the infection in Israel originated from the Dutch seed. The strains were distantly related to D. dianthicola strains, typically found in potatoes in Western Europe, and were similar to biovar 3 D. dadanti or D. zeae. This is the first time that the presence of biovar 3 strains in potato in the Netherlands is described. One of the strains was used for pathogenicity assays on potato cvs Nicola and Mondial. Symptoms appeared 2 to 3 days after stem inoculation, and 7 to 10 days after soil inoculation. The control plants treated with water, or plants inoculated with Pectobacterium carotovorum, did not develop any symptoms with either method of inoculation. The identity of Dickeya sp. and P. carotovorum re-isolated from inoculated plants was confirmed by PCR and ELISA.  相似文献   

18.
Phosphites (Phi) are alkali metal salts of phosphorous acid, with the ability to protect plants against different pathogens. In this research, the effect of Phi applied to potato plants on severity of three important potato diseases in Argentina was assessed. Seed tubers and foliage of potato cvs Shepody and Kennebec were treated with Phi to assess effects on resistance against Phytophthora infestans, Fusarium solani and Rhizoctonia solani. Protection resulting from Phi treatment in seed tubers was high against P. infestans, intermediate against F. solani, and low against R. solani. In addition, seed tubers treated with calcium or potassium phosphites (CaPhi and KPhi, respectively) at 1% of commercial product emerged earlier than untreated ones. When Phi were foliarly applied two or four times at different doses, high levels of protection against P. infestans were achieved in both cultivars. Higher protection was observed in Kennebec when CaPhi was applied, while in Shepody this was true for KPhi. Expression of β-1,3-glucanases was induced at different times after treatment but no correlation between β-1,3-glucanases expression and foliar protection level was found. On the other hand, Phi positive protection effects did not produce negative effects in plant growth. Leaves from CaPhi-treated plants showed a darker green colour than leaves from control plants; also an increase in Rubisco protein and a delay in crop senescence was observed.  相似文献   

19.
Glyphosate is one of the most commonly used broad‐spectrum herbicides over the last 40 years. Due to the widespread adoption of glyphosate‐resistant (GR) crop technology, especially corn, cotton and soybean, several weed species have evolved resistance to this herbicide. Research was conducted to confirm and characterize the magnitude and mechanism of glyphosate resistance in two GR common ragweed ( A mbrosia artemisiifolia L.) biotypes from Mississippi, USA. A glyphosate‐susceptible (GS) biotype was included for comparison. The effective glyphosate dose to reduce the growth of the treated plants by 50% for the GR1, GR2 and GS biotypes was 0.58, 0.46 and 0.11 kg ae ha?1, respectively, indicating that the level of resistance was five and fourfold that of the GS biotype for GR1 and GR2, respectively. Studies using 14 C‐glyphosate have not indicated any difference in its absorption between the biotypes, but the GR1 and GR2 biotypes translocated more 14 C‐glyphosate, compared to the GS biotype. This difference in translocation within resistant biotypes is unique. There was no amino acid substitution at codon 106 that was detected by the 5‐enolpyruvylshikimate‐3‐phosphate synthase gene sequence analysis of the resistant and susceptible biotypes. Therefore, the mechanism of resistance to glyphosate in common ragweed biotypes from Mississippi is not related to a target site mutation or reduced absorption and/or translocation of glyphosate.  相似文献   

20.
The phytotoxicity of glyphosate(N-(phosphonomethyl glycine) to seedlings of white mustard (Sinapis alba) cultivated indoors was studied. Yellowing and wrinkling of leaves was observed, necrotic spots appeared and the elongation of the seedlings was significantly reduced at doses 0–49 kg ai/ha and above. Only when sprayed at 4–97 kg ai/ha was the effect of glyphosate 100% lethal (5–7 days after spraying) At the highest concentration of herbicide a marked decrease in chlorophyll content was found but with 0–49 kg ai/ha the chlorophyll content was found to be higher than that in the leaves of control plants. Two and fourteen days after spraying with glyphosate and the commercial product samples of leaf and stem were harvested for electron microscopy. Cellular defects in the leaves ranging from slight swelling to complete disruption of the chloroplasts were detected at the two highest herbicide doses 48 h after spraying. These defects were intensified with time und in addition other sub-morphological changes occurred: decrease in starch grain content, an increase in the number of dictyosomes and mitochondria, disruption of tonoplasts and increase of plastoglobuli In the more central parts of stem segments the commercial product resulted in greater cellular effects than did glyphosate. It is suggested that the differences may be due to the surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号