首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of feeding modified tall oil (MTO) and creatine monohydrate (CMH) on growing-finishing pig growth performance, carcass characteristics, and meat quality were determined. Eighty cross-bred barrows (initially 45.4 kg) were allotted randomly to one of four dietary treatments by weight and ancestry. The experiment was arranged as a 2 x 2 factorial with two levels of MTO (0 or 0.50%), which were fed throughout the growing-finishing period, and two levels of CMH (0 or 25 g/d), which were fed for the final 10 d before slaughter. The corn-soybean meal diets were fed in two phases (45.4 to 78.9 kg and 78.9 to 117.5 kg BW). When CMH was added to the diet in place of corn, average BW was 107.5 kg. Feeding MTO increased (P < 0.05) ADG and gain:feed ratio (G/F) during the 45.4- to 78.9-kg growth interval and tended to improve (P = 0.10) G/F during the 45.4- to 107.5-kg growth interval. Dietary treatment did not affect (P > 0.15) growth performance during the 78.9- to 107.5-kg growth interval. Modified tall oil increased (P = 0.02) G/F during the 10-d CMH supplementation period, and CMH numerically (P = 0.11) increased ADG and G/F. Supplementation of CMH did not affect (P > 0.20) any measured carcass characteristic or measures of meat quality at 24 h or 14 d postmortem. Feeding MTO reduced average back-fat (P = 0.05) and 10th rib backfat (P = 0.01) but did not affect (P > 0.10) other measured carcass characteristics or measures of meat quality at 24 h postmortem. Modified tall oil increased (P = 0.02) L* values (lightness) and tended to increase (P < 0.10) thawing and cooking losses of longissimus muscle chops at 14 d postmortem. These data demonstrate that MTO improves growth performance and reduces backfat in growing-finishing pigs, but supplementation of CMH, under the conditions of this experiment, was not beneficial for growing-finishing pigs.  相似文献   

2.
Crossbred barrows (n = 72) were used to evaluate effects of diet supplementation with modified tall oil (MTO; 0.0 or 0.50%) and vitamin E (0, 22, or 110 IU/kg) on growth performance, carcass traits, and longissimus muscle (LM) quality traits of finishing pigs. Pigs were blocked by ancestry and initial BW and allotted randomly to treatments in a 2 x 3 factorial. Corn-soybean meal-based diets were fed in two phases: 45.5 to 81.6 (1.00% lysine) and 81.6 to 114.6 (0.75% lysine) kg BW with no added fat. From 45.5 to 81.6 kg, pigs fed MTO had greater ADG (P = 0.03) regardless of added vitamin E; otherwise, treatment did not affect growth performance. Carcasses from pigs fed MTO had reduced (P < 0.05) average backfat (2.76 vs 2.92 cm) and firmer bellies compared to those fed no MTO. Boneless loins were cut into 2.54-cm chops at 7 d postmortem and evaluated for display color, thiobarbituric acid-reactive substance (TBARS), Warner-Bratzler shear force (WBSF), and sensory panel ratings. Visual color was similar (P > 0.05) among treatments at 0 and 1 d of display. At 4 and 6 d of display chops from pigs fed MTO with 110 IU vitamin E/kg had less deterioration (P < 0.05) than chops from pigs fed MTO with 0 IU vitamin E/kg and 0.0% MTO with 22 or 110 IU vitamin E/kg. The CIE L*, a*, b* and spectral values also suggested a delay in color deterioration for chops from pigs fed MTO with 110 IU vitamin E/kg. At 6 and 8 d of display, chops from pigs fed 110 IU vitamin E/kg had lower (P < 0.05) L* values than those from pigs fed 0 or 22 IU vitamin E/kg, and higher (P < 0.05) a* values than those from pigs fed 0 IU vitamin E/kg feed. A higher (P < 0.05) %R630/%R580 (indicator of more oxymyoglobin) was observed for chops from pigs fed MTO with 110 IU vitamin E/kg than those from pigs fed 0.0% MTO with 22 or 110 IU vitamin E/kg and MTO with 0 IU vitamin E/kg. Chops from pigs fed MTO with 110 IU vitamin E/kg had lower (P < 0.05) TBARS values than those from pigs fed MTO with 0 IU vitamin E/kg. No differences (P > 0.05) were detected among treatments for WBSF or sensory evaluations. The addition of MTO in swine diets improved belly firmness and reduced backfat, and feeding MTO with high levels of vitamin E extended display life without affecting palatability of LM chops.  相似文献   

3.
Two experiments were conducted to determine the effect of nonwaxy (amylose and amylopectin starch) or waxy (amylopectin starch) sorghum on growth, carcass traits, and glucose and insulin kinetics of pigs. In Exp. 1 (95-d), 60 crossbred barrows or gilts (initial and final BW of 24 and 104 kg) were allotted to three treatments with five replications of four pigs per replicate pen in a randomized complete block design. The dietary treatments for Exp. 1 were 1) corn-soybean meal (C-SBM) diet, 2) sorghum-SBM (red pericarp, non-waxy), and 3) sorghum-SBM (red pericarp, waxy). In Exp. 2, 28 crossbred barrows (initial and final BW of 24 and 64 kg) were allotted to two treatments with three replications of four or five pigs per replicate pen in a randomized complete block design. Growth data were collected for 49 d, and then 20 barrows were fitted with jugular catheters, and then a glucose tolerance test (500 mg glucose/kg BW), an insulin challenge test (0.1 IU of porcine insulin/kg BW), and a feeding challenge were conducted. The dietary treatments for Exp. 2 were 1) sorghum-SBM (white pericarp, nonwaxy) and 2) sorghum-SBM (white pericarp, waxy). In Exp. 1, ADG (P = 0.10) and ADFI (as-fed basis; P = 0.02) were increased (P = 0.10) and gain:feed was decreased (P = 0.04) in pigs fed the sorghum-SBM diets relative to those fed the C-SBM diet. These responses may have resulted from the lower energy content of sorghum relative to corn. Plasma NEFA concentration (collected after a 16-h fast on d 77) was decreased (P = 0.08) in pigs fed the waxy sorghum-SBM diet relative to those fed the nonwaxy sorghum-SBM diet. Kilograms of carcass fat was decreased (P = 0.07) in pigs fed the waxy sorghum-SBM diet relative to those fed the nonwaxy sorghum-SBM diet. In Exp. 2, there was no effect (P = 0.57 to 0.93) of sorghum starch type on growth performance by pigs. During the glucose tolerance and insulin challenge tests, there were no effects (P = 0.16 to 0.98) of diet on glucose or insulin kinetics. During the feeding challenge, glucose (P = 0.02) and plasma urea N (P = 0.06) area under the response curves from 0 to 90 min were decreased in pigs fed the waxy sorghum-SBM diet. Feeding waxy sorghum had minimal effects on growth and carcass traits relative to pigs fed corn or nonwaxy sorghum. Waxy sorghum vs. nonwaxy sorghum had no effect on glucose or insulin kinetics in pigs.  相似文献   

4.
We conducted two experiments to determine whether the efficacy of chromium picolinate (CrP) on growth performance, carcass composition, and tissue accretion rates is dependent on the lean gain potential of the pigs. In Exp. 1, 40 barrows (20 from each of two genetic backgrounds; two pigs per pen, five pens per treatment) were fed a fortified, corn-soybean meal basal diet (.95% lysine from 19 to 55 kg BW; .80% lysine from 55 to 109 kg BW) without or with 200 microg/kg of Cr from CrP. The addition of Cr had no effect on performance, carcass measurements, or accretion rates of carcass protein or lipid, regardless of the lean gain potential of the pigs. In Exp. 2, 60 group-penned pigs (three pigs per pen; five pens per treatment) were fed a fortified, corn-soybean meal basal diet without or with 200 microg/kg of Cr from CrP from 21 to 104 kg BW. Within the dietary Cr treatments, half of the pigs received daily injections of 3 mg of porcine somatotropin (pST) from 54 to 104 kg BW. The pST administration resulted in faster growth rates (P < .007), improved feed efficiency (P < .001), increased longissimus area (P < .001), and decreased 10th-rib backfat (P < .001). Administration of pST also increased the percentage and accretion rate of carcass protein (P < .001) and decreased the percentage and accretion rate of carcass lipid (P < .001). The addition of CrP to the diet had no effect on any variable measured in either the untreated or pST-treated pigs. In these studies, Cr was ineffective at altering the composition of the carcass and its effects were not dependent on the pig's potential for lean gain.  相似文献   

5.
Two studies were conducted to assess the energy content of low-solubles distillers dried grains (LS-DDG) and their effects on growth performance, carcass characteristics, and pork fat quality in grow-finish pigs. In Exp. 1, 24 barrows (Yorkshire-Landrace × Duroc; 80 to 90 d of age) in 2 successive periods were assigned to 1 of 6 dietary treatments. In individual metabolism stalls, pigs were fed a corn-soybean meal diet (control); control replaced by 30, 40, or 50% LS-DDG; or control replaced by 30 or 40% distillers dried grains with solubles (DDGS) at 3% of their initial BW for 12 d. All diets contained 0.25% CrO(2). During the 5-d collection period, feces and urine were collected from each pig. Feed, feces, and urine were analyzed for DM, GE, and N concentrations, and feed and feces were analyzed for Cr content. The ME content of LS-DDG (2,959 ± 100 kcal/kg of DM) was similar to that determined for DDGS (2,964 ± 81 kcal/kg of DM). In Exp. 2, 216 Yorkshire-Landrace × Duroc pigs were blocked by initial BW (18.8 ± 0.76 kg) and assigned to 1 of 24 pens (9 pigs/pen). Pens within block were allotted to 1 of 3 dietary treatments (8 pens/treatment) in a 4-phase feeding program: a corn-soybean meal control (control), control containing 20% LS-DDG, or control containing 20% DDGS. Treatment had no effect on final BW, ADG, ADFI, or HCW. Pigs fed LS-DDG had similar G:F (0.367) compared with pigs fed DDGS (0.370), but tended (P = 0.09) to have decreased G:F compared with pigs fed the control (0.380; pooled SEM = 0.004). Dressing percent was less (P < 0.01) for pigs fed LS-DDG (72.8%) and DDGS (72.8%) compared with the control (73.8%; pooled SEM = 0.22). Pigs fed LS-DDG (54.8%) had greater (P = 0.02) carcass lean compared with pigs fed DDGS (53.4%), but were similar to pigs fed control (54.1%; pooled SEM = 0.33). Bellies from pigs fed DDGS (12.9°) were softer (P < 0.01) than those from pigs fed control (17.7°; pooled SEM = 1.07) as determined by the belly flop angle test. Feeding LS-DDG (14.1°) tended (P < 0.10) to create softer bellies compared with control-fed pigs. The PUFA content of belly fat was reduced (P < 0.01) by LS-DDG (14.0%) compared with DDGS (15.4%), but was increased (P < 0.05) compared with pigs fed the control (9.4%; pooled SEM = 0.34). In conclusion, LS-DDG and DDGS had similar ME values and inclusion of 20% LS-DDG in diets for growing-finishing pigs supports ADG and ADFI similar to that of diets containing 20% DDGS, and may reduce negative effects on pork fat compared with DDGS.  相似文献   

6.
One hundred ninety-six crossbred barrows of high lean gain potential (21.2 kg BW) were used in an experiment to determine the effect of dietary feather meal (FM) on barrow performance, specifically, the effects of the ingredient on ADG and carcass leanness. Additionally, 28 gilts (26.8 kg BW) were used to compare gender differences on the corn-soybean meal control diets. Treatments were control barrows and control gilts fed corn-soybean meal diets, and barrows fed according to a 2 x 3 factorial arrangement of FM levels (10 or 20%, as-fed basis) and starting weights on the diets (36, 60, or 86 kg BW). All barrow diets were formulated to contain the same apparent digestible lysine and ME. Control barrows ate more feed (2.61 vs. 2.39 kg/d; as-fed), grew faster (0.911 vs. 0.827 kg/d), had greater backfat depth at slaughter (15.6 vs. 11.6 mm), and had lower carcass lean content (P < 0.001), with no difference in daily lean gain (P = 0.848) compared with gilts. There was a linear (P = 0.010) decrease in ADG for barrows fed increasing amounts of FM from 36 kg BW to slaughter, with no effect of FM additions on ADG when initiated at 60 or 86 kg BW. There was a quadratic reduction (P = 0.008) in ADFI and estimated digestible lysine intake with increasing FM for the 36 to 60 kg BW period for barrows fed FM starting at 36 kg BW. There was a linear (P = 0.006) decrease in ADFI for the 60 to 86 kg BW period with increasing FM for barrows started on FM at 60 kg BW. There was no effect of experimental diets or starting weight on barrow 10th-rib backfat depth at slaughter. These results suggest that diets containing 10 and 20% FM were effective in decreasing overall ADG and ADFI by barrows when feeding of FM was initiated at 36 kg BW; however, backfat at slaughter was still greater than for control gilts.  相似文献   

7.
A total of 120 barrows (initial BW = 47.9 ± 3.6 kg; PIC 1050) were used in an 83-d study to determine the effects of dietary iodine value (IV) product (IVP) on growth performance and fat quality. Pigs were blocked by BW and randomly allotted to 1 of 6 treatments with 2 pigs per pen and 10 pens per treatment. Dietary treatments were fed in 3 phases and formulated to 3 IVP concentrations (low, medium, and high) in each phase. Treatments were 1) corn-soybean meal control diet with no added fat (low IVP), 2) corn-extruded expelled soybean meal (EESM) diet with no added fat (medium IVP), 3) corn-soybean meal diet with 15% distillers dried grains with solubles and choice white grease (DDGS + CWG; medium IVP), 4) corn-soybean meal diet with low CWG (medium IVP), 5) corn-EESM diet with 15% DDGS (high IVP), and 6) corn-soybean meal diet with high CWG (high IVP). On d 83, pigs were slaughtered and backfat and jowl fat samples were collected and analyzed. The calculated and analyzed dietary IVP values were highly correlated (r(2) = 0.86, P < 0.01). Pigs fed the control diet, EESM, or high CWG had greater (P < 0.05) ADG than pigs fed EESM + DDGS. Pigs fed the control diet had greater (P < 0.05) ADFI than pigs fed all other diets. Pigs fed EESM + DDGS and high CWG had improved (P < 0.05) G:F compared with pigs fed the control diet or DDGS + CWG. Pigs fed diets with DDGS had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA and less SFA than pigs fed all other treatments. Pigs fed EESM had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA than pigs fed the control diet, low CWG, or high CWG. Pigs fed low CWG or high CWG had greater (P < 0.05) jowl fat IV than control pigs. Feeding ingredients high in unsaturated fatty acids, such as DDGS and EESM, had a greater impact on fat IV than CWG, even when diet IVP was similar. Therefore, IVP was a poor predictor of carcass fat IV in pigs fed diets with different fat sources and amounts of unsaturated fats formulated with similar IVP. Dietary C18:2n-6 content was a better predictor of carcass fat IV than diet IVP.  相似文献   

8.
This study was conducted to determine the effects of dietary crude glycerol and dried distillers grains with solubles (DDGS) on growing-finishing pig performance, carcass characteristics, and carcass fat quality. We hypothesized that because dietary crude glycerol has been observed to increase carcass SFA, it might ameliorate the negative effects of DDGS on fat quality. The 97-d study was conducted at a commercial swine research facility in southwestern Minnesota with 1,160 barrows (initial BW = 31.0 ± 1.1 kg). Pigs were blocked by initial BW, and pens were randomly allotted to 1 of 6 dietary treatments with 7 replications per treatment. Treatments were arranged in a 2 × 3 factorial with main effects of crude glycerol (0, 2.5, or 5%) and DDGS (0 or 20%). All corn-soybean meal-based diets contained 3% added fat (choice white grease). There were no glycerol × DDGS interactions for any response criteria evaluated. Increasing dietary glycerol did not affect finishing pig growth performance. Adding 20% DDGS to the diet did not affect ADG; however, finishing pigs fed diets with added DDGS had greater (2.47 vs. 2.41 kg/d; P = 0.02) ADFI and poorer (0.39 vs. 0.40; P = 0.01) G:F than pigs not fed DDGS. Feeding increasing dietary glycerol or 20% DDGS did not affect carcass characteristics. For carcass fat quality, feeding 20% DDGS resulted in decreased (P < 0.01) palmitic and oleic acids, total SFA and total MUFA, and increased (P < 0.01) linoleic, total PUFA, total unsaturated fatty acids, and iodine value in jowl fat, belly fat, and backfat. Increasing dietary crude glycerol increased myristic acid (linear, P < 0.05) and MUFA (quadratic, P < 0.05) in jowl fat and increased (quadratic, P < 0.05) oleic acid and MUFA in backfat. In conclusion, feeding 20% DDGS to finishing pigs increased ADFI, reduced G:F, and increased carcass fat iodine value, whereas feeding crude glycerol did not influence growth performance, carcass characteristics, and had a minor influence on fatty acids of carcass fat. Both of these biofuel coproducts can be used in combination without affecting finishing pig performance or carcass traits; however, feeding crude glycerol did not fully mitigate the increased unsaturation of carcass fat observed when feeding DDGS.  相似文献   

9.
A total of 144 barrows and gilts (initial BW = 44 kg) were used in an 82-d experiment to evaluate the effects of dietary fat source and duration of feeding fat on growth performance, carcass characteristics, and carcass fat quality. Dietary treatments were a corn-soybean meal control diet with no added fat and a 2 × 4 factorial arrangement of treatments with 5% choice white grease (CWG) or soybean oil (SBO) fed from d 0 to 26, 54, 68, or 82. At the conclusion of the study (d 82), pigs were slaughtered, carcass characteristics were measured, and backfat and jowl fat samples were collected. Fatty acid analysis was performed, and iodine value (IV) was calculated for all backfat and jowl fat samples. Pigs fed SBO tended to have increased (P = 0.07) ADG compared with pigs fed CWG. For pigs fed SBO, increasing feeding duration increased (quadratic, P < 0.01) ADG and G:F. For pigs fed CWG, increasing feeding duration improved (quadratic, P < 0.01) G:F. For pigs fed SBO or CWG, increasing feeding duration increased carcass yield (quadratic, P < 0.04) and HCW (quadratic, P < 0.02). Dietary fat source and feeding duration did not affect backfat depth, loin depth, or lean percentage. As expected, barrows had greater ADG and ADFI (P < 0.01) and poorer G:F (P = 0.03) than gilts. Barrows also had greater last-rib (P = 0.04) and 10th-rib backfat (P < 0.01) and reduced loin depth and lean percentage (P < 0.01) compared with gilts. Increasing feeding duration of CWG or SBO increased (P < 0.10) C18:2n-6, PUFA, PUFA:SFA ratio, and IV in jowl fat and backfat. Pigs fed SBO had greater (P < 0.01) C18:2n-6, PUFA, PUFA:SFA ratio, and IV but decreased (P < 0.01) C18:1 cis-9, C16:0, SFA, and MUFA concentrations compared with pigs fed CWG in jowl fat and backfat. Barrows had decreased (P = 0.03) IV in jowl fat and backfat compared with gilts. In summary, adding SBO or CWG increased the amount of unsaturated fat deposited. Increasing feeding duration of dietary fat increases the amount of unsaturated fatty acids, which leads to softer carcass fat.  相似文献   

10.
An experiment was conducted to test the hypothesis that field peas may replace soybean meal in diets fed to growing and finishing pigs without negatively influencing pig performance, carcass quality, or pork palatability. Forty-eight pigs (initial average BW 22.7 +/- 1.21 kg) were allotted to 1 of 3 treatments with 2 pigs per pen. There were 8 replications per treatment, 4 with barrows and 4 with gilts. The treatments were control, medium field peas, and maximum field peas. Pigs were fed grower diets for 35 d, early finisher diets for 35 d, and late finisher diets for 45 d. Pigs receiving the control treatment were fed corn-soybean meal diets. All diets fed to pigs receiving the medium field peas treatment contained 36% field peas and varying amounts of corn; soybean meal was also included in the grower and the early finisher diets fed to pigs on this treatment. In contrast, no soybean meal was included in diets fed to pigs on the maximum field peas treatment, and field peas were included at concentrations of 66, 48, and 36% in the grower, early finisher, and late finisher diets, respectively. Pig performance was monitored within each phase and for the entire experimental period. At the conclusion of the experiment, carcass composition, carcass quality, and the palatability of pork chops and pork patties were measured. Results showed that there were no effects of dietary treatments on ADFI, ADG, or G:F. Likewise, there were no differences in carcass composition among the treatment groups, but gilts had larger (P = 0.001) and deeper (P = 0.003) LM, less backfat (P = 0.007), and a greater (P = 0.002) lean meat percentage than barrows. The pH and marbling of the LM, and the 10th rib backfat were not influenced by treatment, but there was a trend (P = 0.10) for more marbling in barrows than in gilts. The subjective color scores (P = 0.003) and the objective color score (P = 0.06) indicated that dietary field peas made the LM darker and more desirable. Pork chops from pigs fed field peas also had less (P = 0.02) moisture loss compared with chops from pigs fed the control diet. Treatment or sex did not influence palatability of pork chops or pork patties. In conclusion, field peas may replace all of the soybean meal in diets fed to growing and finishing pigs without negatively influencing pig performance, carcass composition, carcass quality, or pork palatability.  相似文献   

11.
Two experiments were conducted to evaluate the effects of adding fiber sources to reduced-crude protein (CP), amino acid-supplemented diets on N excretion, growth performance, and carcass traits of growing-finishing pigs. In Exp. 1, six sets of four littermate barrows (initial weight = 36.3 kg) were allotted randomly to four dietary treatments to determine N balance and slurry composition. Dietary treatments were: 1) fortified corn-soybean meal, control, 2) as fortified corn-soybean meal with CP lowered by 4 percentage units and supplemented with lysine, threonine, methionine, tryptophan, isoleucine, and valine (LPAA), 3) same as Diet 2 plus 10% soybean hulls, and 4) same as Diet 2 with 10% dried beet pulp. Nitrogen intake, absorption, and retention (g/d) were reduced (P < 0.04) in pigs fed the low- protein diets, but they were not affected (P > 0.10) by addition of fiber sources to the LPAA diet. However, N absorption, as a percentage of intake, was not affected (P > 0.10) by dietary treatment. Nitrogen retention, expressed as a percentage of N intake, was increased (P < 0.02) in pigs fed the low-protein diets, but it was not affected by fiber addition to the LPAA diet. Urinary and total N excretion was reduced (P < 0.01) by 50 and 40%, respectively, in pigs fed the low- protein diets, but it was not affected (P > 0.10) by fiber addition. However, fiber addition to the LPAA diet tended to result in a greater proportion of N excreted in the feces than in the urine. Slurry pH, ammonium N content, and urinary urea N excretion were reduced (P < 0.10) in pigs fed LPAA, and a further reduction (P < 0.06) in slurry ammonium N content and urinary urea N was observed with fiber addition. Also, fiber addition to the LPAA diet increased (P < 0.02) slurry VFA concentrations. In Exp. 2, 72 pigs were blocked by body weight and sex and allotted randomly to three dietary treatments that were similar to those in Exp. 1, with a corn-soybean meal control diet, LPAA diet, and a LPAA diet with 10% soybean hulls. Pigs were fed the diets from 28.6 to 115 kg, and all pigs were killed for collection of carcass data. Growth performance and most carcass traits were not affected (P > 0.10) by dietary treatment. These data suggest that reducing CP with amino acid supplementation markedly decreased N excretion without influencing growth performance. Fiber addition to a LPAA diet had little effect on overall N balance or growth performance, but tended to further reduce slurry ammonium N concentration and increase volatile fatty acid concentrations.  相似文献   

12.
The purpose of this study was to examine the effects of dietary betaine over a range of concentrations (between 0 and 0.5%) on growth and body composition in young feed-restricted pigs. Betaine is associated with decreased lipid deposition and altered protein utilization in finishing pigs, and it has been suggested that the positive effects of betaine on growth and carcass composition may be greater in energy-restricted pigs. Thirty-two barrows (36 kg, n = 8 pigs per group) were restrictively fed one of four corn-soybean meal-skim milk based diets (18.6% crude protein, 3.23 Mcal ME/kg) and supplemented with 0, 0.125, 0.25, or 0.5% betaine. Feed allotment was adjusted weekly according to BW, such that average feed intake was approximately 1.7 kg for all groups. At 64 kg, pigs were slaughtered and visceral tissue was removed and weighed. Carcasses were chilled for 24 h to obtain carcass measurements. Subsequently, one-half of each carcass and whole visceral tissue were ground for chemical analysis. Linear regression analysis indicated that, as betaine content of the diet was elevated from 0 to 0.5%, carcass fat concentration (P = 0.06), P3 fat depth (P = 0.14) and viscera weight (P = 0.129) were decreased, whereas total carcass protein (P = 0.124), protein deposition rate (P = 0.98), and lean gain efficiency (P = 0.115) were increased. The greatest differences over control pigs were observed in pigs consuming 0.5% betaine, where carcass fat concentration and P3 fat depth were decreased by 10 and 26%, respectively. Other fat depth measurements were not different (P > 0.15) from those of control pigs. In addition, pigs consuming the highest betaine level had a 19% increase in the carcass protein:fat ratio, 23% higher carcass protein deposition rate, and a 24% increase in lean gain efficiency compared with controls. Dietary betaine had no effects (P > 0.15) on growth performance, visceral tissue chemical composition, carcass fat deposition rate, visceral fat and protein deposition rates, or serum urea and ammonia concentrations. These data suggest that betaine alters nutrient partitioning such that carcass protein deposition is enhanced at the expense of carcass fat and in part, visceral tissue.  相似文献   

13.
A study of the effects of conjugated linoleic acid (CLA) on the belly firmness and fatty acid composition of genetically lean pigs was conducted. From 75 to 120 kg live weight, 30 gilts were allowed ad libitum access to a corn-soybean meal diet supplemented with either 1% CLA oil (CLA-60) or 1% sunflower oil (SFO) or were fed the sunflower oil-supplemented diet restricted to the amount consumed by pigs fed the CLA-60 diet (RSFO). Conjugated linoleic acid oil consists of 60% positional and geometric isomers of CLA. Pigs fed SFO exhibited higher average daily gains (0.98 vs 0.80 kg/d, P < 0.01) than RSFO-fed pigs, but there were no effects of dietary treatment on feed intake or feed efficiency. Dietary treatment did not affect (P > 0.05) backfat thickness or longissimus muscle area. Bellies of gilts fed CLA-60 were subjectively evaluated to be firmer (2.91 vs 2.43 or 2.07 +/- 0.13, P < 0.01) than those of SFO- or RSFO-fed gilts, respectively. The longissimus muscle of gilts fed CLA-60 contained more saturated fatty acids (39.77 vs. 36.04 or 36.73 +/- 0.74%, P < 0.001) and less unsaturated fatty acids (60.23 vs 63.96 or 63.27 +/- 0.74%, P < 0.001) than that of gilts fed SFO or RSFO, respectively. The belly fat of gilts fed CLA-60 contained more saturated fatty acids (44.45 vs. 37.50 or 36.60 +/- 0.46%, P < 0.001) and less unsaturated fatty acids (54.78 vs. 61.75 or 62.47 +/- 0.46%, P < 0.001), resulting in lower iodine values (57.69 vs 66.37 or 65.62 +/- 0.91, P < 0.001) than that of gilts fed SFO or RSFO, respectively. Gilts fed CLA-60 accumulated more CLA in the longissimus muscle (0.55 vs 0.09 or 0.09 +/- 0.03%, P < 0.01) and belly fat (1.56 vs. 0.13 or 0.13 +/- 0.15%, P < 0.001) than did gilts fed SFO or RSFO, respectively. Dietary treatment did not affect (P > 0.05) 24-h pH, drip loss or subjective quality evaluations of the longissimus muscle. The effect of supplemental CLA to improve belly firmness is of practical significance and may provide a nutritional solution to carcass fat and belly firmness problems, thereby enhancing the overall value of extremely lean carcasses.  相似文献   

14.
Five experiments were conducted to determine the true ileal digestible Trp (tidTrp) requirement of growing and finishing pigs fed diets (as-fed basis) containing 0.87% (Exp. 3), 0.70% (Exp. 4), 0.61% (Exp. 5), and 0.52% (Exp. 1 and 2) tidLys during the early-grower, late-grower, early-finisher, and late-finisher periods, respectively. Treatments were replicated with three or four replications, with three or four pigs per replicate pen. Treatment differences were considered significant at P = 0.10. Experiment 1 was conducted with 27 pigs (initial and final BW of 78.3 +/- 0.5 and 109.8 +/- 1.9 kg) to validate whether a corn-feather meal (FM) tidTrp-deficient (0.07%) diet, when supplemented with 0.07% crystalline l-Trp, would result in growth performance and carcass traits similar to a conventional corn-soybean meal (C-SBM) diet. Pigs fed the corn-FM diet without Trp supplementation had decreased growth performance and carcass traits, and increased plasma urea N (PUN) concentration. Supplementing the corn-FM diet with Trp resulted in greater ADG and G:F than pigs fed the positive control C-SBM diet. Pigs fed the corn-FM diet had similar carcass traits as pigs fed the C-SBM diet, but loin muscle area was decreased and fat thickness was increased. In Exp. 2, 60 pigs (initial and final BW of 74.6 +/- 0.50 and 104.5 +/- 1.64 kg) were used to estimate the tidTrp requirement of finishing pigs. The levels of tidTrp used in Exp. 2 were 0.06, 0.08, 0.10, 0.12, or 0.14% (as-fed basis). Response variables were growth performance, PUN concentrations, and carcass traits and quality. For Exp. 2, the average of the estimates calculated by broken-line regression was 0.104% tidTrp. In Exp. 3, 4, and 5, barrows (n = 60, 60, or 80, respectively) were allotted to five dietary treatments supplemented with crystalline l-Trp at increments of 0.02%. The basal diets contained 0.13, 0.09, and 0.07% tidTrp (as-fed basis) in Exp. 3, 4, and 5, and initial BW of the pigs in these experiments were 30.9 +/- 0.7, 51.3 +/- 1.1, and 69.4 +/- 3.0 kg, respectively. The response variable was PUN, and the basal diet used in Exp. 3 and 4 contained corn, SBM, and Canadian field peas. The tidTrp requirements were estimated to be 0.167% for pigs weighing 30.9 kg, 0.134% for pigs weighing 51.3 kg, and 0.096% for pigs weighing 69.4 kg. Based on our data and a summary of the cited literature, we suggest the following total Trp and tidTrp requirement estimates (as-fed basis): 30-kg pigs, 0.21 and 0.18%; 50-kg pigs, 0.17 and 0.14%; 70-kg pigs, 0.13 and 0.11%; and in 90-kg pigs, 0.13 and 0.11%.  相似文献   

15.
Impact of betaine on pig finishing performance and carcass composition   总被引:2,自引:0,他引:2  
Two experiments were conducted to evaluate the effect of betaine supplementation of finishing diets on growth performance and carcass characteristics of swine. Experiment 1 included 288 pigs in a 2 x 2 x 3 factorial arrangement of treatments consisting of barrows and gilts of two genetic populations fed diets with 1.25 g/kg supplemental betaine from either 83 or 104 kg to 116 kg and control pigs fed betaine-devoid diets. Pigs were housed three pigs per pen with eight replicate pens per treatment. Diets were corn-soybean meal-based with 300 ppm added choline. Genetic populations differed (P < 0.05) in fat depth (2.24 vs 2.93 cm) and longissimus muscle depth (53.8 vs 49.1 mm) at 116 kg. Betaine reduced feed intake (P < 0.05); however, real-time ultrasound measurements were not affected. In Exp. 2, 400 pigs were used in a 2 x 2 x 2 factorial arrangement of treatments to evaluate the effect of sex (barrow or gilts), betaine (0 or 1 g/kg of diet), and crude protein (CP) (0.70% lysine = 12.7% CP or 0.85% lysine = 15.0% CP) when fed from 60 to 110 kg live weight. Pigs had been assigned to either a high- or low-protein feeding regimen at an average initial weight of 11.3 kg and were maintained on their respective protein levels throughout the experiment. For a 56-d period from 61.7 kg to 113.6 kg, pigs were fed diets with 300 ppm added choline. Within each protein level, pigs were randomly assigned to diets containing 0 or 1 g/kg betaine. Pigs were group-housed (four to five pigs per pen). Pig weight and feed intake were recorded every 28 d. Real-time ultrasound measurements were recorded initially and at d 28 on 64 pigs, and on all pigs prior to slaughter. Growth rate was fastest and feed intake greatest for barrows (P < 0.05) and for pigs receiving 12.7% crude protein. A crude protein x betaine interaction (P < 0.05) was observed from d 28 to 56 with pigs fed the 15% CP diet growing fastest when supplemented with 1 g/kg betaine, and pigs receiving the 12.7% CP diet growing fastest when the diets contained 0 g/kg betaine. Gilts more efficiently (P < 0.05) converted feed into body weight gain, as did pigs receiving the 12.7% CP diet (P < 0.05). Longissimus muscle area and fat measurements were unaffected by betaine or dietary protein on d 28. However, by d 56 betaine reduced average fat depth in barrows (P < 0.05; 3.21 vs 3.40 cm), but not in gilts. Betaine may be more effective at altering body composition in barrows than in gilts.  相似文献   

16.
A total of 54 finishing barrows (initial BW = 99.8 ± 5.1 kg; PIC C22 × 337) reared in individual pens were allotted to 1 of 6 dietary treatments in a 2 × 3 factorial arrangement of treatments with 2 levels of ractopamine (0 and 7.4 mg/kg) and 3 levels of dietary energy (high, 3,537; medium, 3,369; and low, 3,317 kcal of ME/kg) to determine the effects of dietary ractopamine and various energy levels on growth performance, carcass characteristics, and meat quality of finishing pigs. High-energy diets were corn-soybean-meal-based with 4% added fat; medium-energy diets were corn-soybean meal based with 0.5% added fat; and low-energy diets were corn-soybean meal based with 0.5% added fat and 15% wheat middlings. Diets within each ractopamine level were formulated to contain the same standardized ileal digestible Lys:ME (0 mg/kg, 1.82; and 7.4 mg/kg, 2.65 g/Mcal of ME). Individual pig BW and feed disappearance were recorded at the beginning and conclusion (d 21) of the study. On d 21, pigs were slaughtered for determination of carcass characteristics and meat quality. No ractopamine × energy level interactions (P > 0.10) were observed for any response criteria. Final BW (125.2 vs. 121.1 kg), ADG (1.2 vs. 1.0 kg/d), and G:F (0.31 vs. 0.40) were improved (P < 0.001) with feeding of ractopamine diets. Feeding of the low-energy diet reduced (P = 0.001) final BW and ADG compared with the high- and medium-energy diets. Gain:feed was reduced (P = 0.005) when the medium-energy diets were fed compared with the high-energy diets. Additionally, G:F was reduced (P = 0.002) when the low-energy diets were compared with the high- and medium-energy diets. Feeding ractopamine diets increased (P < 0.05) HCW (93.6 vs. 89.9 kg) and LM area (51.2 vs. 44.2 cm(2)). The LM pH decline was reduced (P ≤ 0.05) by feeding ractopamine diets. The feeding of low-energy diets reduced (P = 0.001) HCW when compared with the high- and medium-energy diets and reduced (P = 0.024) 10th-rib backfat when compared with the high- and medium-energy diet. These data indicate that feeding ractopamine diets improved growth performance and carcass characteristics, while having little or no detrimental effect on meat quality. Reductions in energy content of the diet by adding 15% wheat middlings resulted in impaired ADG, G:F, and 10th-rib backfat. There were no ractopamine × energy level interactions in this trial, which indicates that the improvements resulting from feeding ractopamine were present regardless of the dietary energy levels.  相似文献   

17.
Two experiments were conducted to determine the effect of soy isoflavones on growth, meat quality, and carcass traits of growing-finishing pigs. In Exp. 1, 36 barrows (initial and final BW, 26 and 113 kg, respectively) were used and each treatment was replicated four times with three pigs each. The dietary treatments were 1) corn-soybean meal (C-SBM), 2) corn-soy protein concentrate (low isoflavones, C-SPC), or 3) C-SPC + isoflavones (isoflavone levels equal to those in C-SBM). Daily gain and ADFI were increased (P < 0.10) in pigs fed the C-SPC relative to pigs fed the C-SPC + isoflavone diet in the late finishing period; otherwise, growth performance was not affected (P > 0.10) by diet. Longissimus muscle area, 10th-rib fat depth, percentage muscling (National Pork Producers Council), 24-h pH and temperature, color, firmness-wetness, marbling, drip loss, and CIE L*, a*, and b* color values were not affected (P > 0.10) by diet. Dressing percentage, carcass length, weight and percentage of fat-free lean in ham and carcass, lean gain per day, lean:fat, and ham weight were increased (P < 0.10), and ham fat and percentage fat in ham and carcass were decreased (P < 0.10) in pigs fed the C-SPC + isoflavone diet compared with pigs fed the C-SPC diet. Pigs fed the C-SPC + isoflavone diet had similar (P > 0.10) carcass traits as pigs fed the C-SBM diet, except carcass length, percentage ham lean and thaw loss were greater (P < 0.10), and total ham fat was less (P < 0.10) in pigs fed the C-SPC + isoflavone diet. In Exp. 2, 60 gilts (initial and final BW, 31 and 116 kg, respectively) were used, and each treatment was replicated five times with four pigs per replicate. The treatments were 1) C-SBM, 2) C-SBM + isoflavone levels two times those in C-SBM, and 3) C-SBM + isoflavone levels five times those in C-SBM. Daily feed intake was linearly decreased (P < 0.10) in the growing phase and increased (P < 0.10) in the late finishing phases as isoflavone levels increased; otherwise, growth performance was not affected (P > 0.10) by diet. Diet did not affect (P > 0.10) carcass traits; however, CIE a* and b* color scores and drip loss were decreased (P < 0.06) as isoflavone levels increased. Soy isoflavones decreased fat and increased lean in barrows when fed within the dietary concentrations found in typical C-SBM diets but not when fed to gilts at concentrations above those present in C-SBM diets.  相似文献   

18.
Twenty-eight barrows were used to investigate the effects of exogenous porcine growth hormone (pGH) administration (0 and 100 micrograms.kg-1.d-1) between 30 and 60 kg on the subsequent and overall performance and carcass composition of pigs grown to 90 kg. The pGH was administered by daily i.m. injection and all pigs were fed one diet. Control animals were pair-fed to the intake noted for pGH-treated pigs between 30 and 60 kg and all pigs were fed ad libitum from 60 to 90 kg. Pigs administered pGH had an improved rate (36%) and efficiency (28%) of gain and an improved protein accretion rate (46%) compared to excipient-treated pigs. Pigs previously treated with pGH continued to exhibit superior (P less than .01) rate and efficiency of gain, and the gain was associated with enhanced protein accretion during the quiescent (postinjection) period compared with excipient counterparts. Administration of pGH between 30 and 60 kg reduced carcass fat and increased carcass protein and water at 90 kg, although fat accretion rate was comparable to that of control pigs. Results indicate that, to varying degrees, the stimulatory effects of pGH on growth performance are sustained following cessation of hormone treatment.  相似文献   

19.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

20.
An experiment was conducted to evaluate the dietary effects of Cr propionate (CrProp) and metabolizable energy (ME) on growth, carcass traits, and pork quality of growing-finishing pigs. One hundred forty-four Cambrough-22 barrows were allotted to four dietary treatments in a randomized complete block design (six replicates of six pigs per replicate; average initial and final body weight were 27 and 113 kg, respectively). The dietary treatments were: 1) corn-soybean meal basal (B; low ME), 2) B + 200 ppb of Cr (as CrProp), 3) B + 200 kcal ME/kg (4.5% added fat; high ME), or 4) B + 200 kcal ME/kg + 200 ppb of Cr. At trial termination, three pigs per replicate were killed to determine dietary effects on carcass traits and pork quality. Overall average daily gain, average daily feed intake, and gain:feed ratio were not affected (P > 0.10) by diet. During the early growing period, average daily gain was increased in pigs fed the CrProp-low-ME diets, but decreased in pigs fed the CrProp-high ME diets (Cr x ME, P < 0.04). Feed intake was increased (P < 0.05) in pigs fed the high-ME diets during the early growing period. Forty-five min and 24 h pH were not affected (P > 0.10) by diet. The CIE L* tended (P = 0.07) to be increased and shear force tended (P = 0.06) to be decreased in pigs fed high-ME diets. Subjective marbling was increased (P < 0.03) and longissimus muscle percentage moisture and thaw loss were decreased (P < 0.04) in pigs fed CrProp. Chromium propionate had no consistent effect on growth and carcass traits in this experiment; however, CrProp did affect some aspects of pork quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号