首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Summary Yield data were collected for soybean (Glycine max (L.) Merr.) lines in maturity groups III and IV in 14 environments from 1985 to 1989. The lines in each maturity group were subdivided into three different groups based on the mean yield over all environments, and the genotype × environment interactions were studied for each group. Yield stability of the lines was determined. Effectiveness of selection based on different types of environments was examined.Productivity level of the environment did not influence the relative ranking of the lines. Significant rank correlations occurred between mean yields in most environments and the overall mean yield, but few similarities occurred in the line rankings among individual environments. High-yielding lines contributed a significantly smaller proportion to the genotype × environment interaction than medium- and low-yielding lines.A small proportion of the lines were below or above average stability. Significant correlations occurred among stability, overall mean yield, and mean yield in high- and low-yielding environments. However, few significant correlations occurred between individual environment yields and stability in high- or low-yielding environments. Maturity groups differed in yield and stability relationships. Stability in high- and low-yielding environments did not adequately predict stability for each other.Contribution No. 93-445-J from the Kansas Agricultural Experient Station  相似文献   

2.
Summary Fifty lines of oats (Avena Sativa L.) with a broad range of nitrogen harvest indexes (NHI) and nine check lines were evaluated in 15 environments to study the association between NHI and adaptability of oat lines to soils with different productivity levels due primarily to different amounts of N. Three yield characteristics (i.e., mean across environments, regression response to improving environments, and stability of response) were used to measure adaptability. The lines were significantly variable for means of grain and straw yield, for responsiveness to improving environments, and for stability of yield. Among the yield characteristics, only the mean of grain yield was significantly correlated with NHI.Journal Paper No. J-13336 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, Iowa, 50011. Project 2447.  相似文献   

3.
Summary The paper addresses the general question of identifying the optimum environment for selection in plant breeding programs for low input agricultural systems. After defining low-yielding and high-yielding environments based on the average grain yield of large numbers of barley genotypes in different cropping seasons, we examined: 1) the phenotypic relationships between the highest yielding genotypes in low- and high-yielding environments, and 2) the genetic correlation coefficients between grain yield in low- and high-yielding environments. The results indicate that the alleles controlling high grain yield in low-yielding conditions are at least partially different from those controlling high grain yield in high-yielding conditions. Therefore, selection in high-yielding environments is expected to produce a negative response or no response in low-yielding environments. This may explain why crop varieties bred under high-yielding conditions failed to have an impact in low-yielding agricultural systems. The results may be extrapolated to systems where environmental concern suggests a reduction of inputs by raising the question of whether crop breeding programs based on selection under high inputs are likely to generate the right type of germplasm for an environmentally friendly agriculture.  相似文献   

4.
Carrie Young  K. J. Frey 《Euphytica》1994,76(1-2):63-71
Summary Four selection strategies were used on four sets of oat lines to select for grain yield. Two of these used uniform environments whereby sequential selection of the high-yielding lines occurred in continuous high- or continuous low-productivity environments. These are referred to as high and low uniform selection strategies, respectively. The other two selection strategies were conducted by sequential selection of the high-yielding lines in alternating high- and low-productivity environments. They are referred to as high and low shuttle selection strategies, respectively, with high and low designating the productivity of the first environment in the sequence. After three or four cycles of selection, the surviving lines and a random sample from each set were evaluated for mean grain yield, grain yield response to improving environments, and stability of grain yield, in a range of environments typical of oat production on Iowa farms.Grain yield and regression response for all selection strategies, when calculated across all sets of lines, were significantly greater than corresponding values for random samples. Stability was unchanged. The uniform-high and uniform-low strategies gave the greatest and the smallest gains in mean grain yield, respectively, with the shuttle strategies giving intermediate gains. Shuttle selection in predominantly high-productivity environments increased grain yield more than shuttle selection in predominantly low-productivity environments. The uniform-strategy followed by the shuttle-high strategy identified entries with superior performance in high productivity environments. Increased gain in mean grain yield across all environments was associated with increased number of selection cycles conducted in high-productivity environments.Journal Paper No. J-15252 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, Iowa 50011, USA. Project No. 2447.  相似文献   

5.
Triticum tauschii (Coss.) Schmal. is an ancestor of bread wheat (T. aestivum). This species has been widely used as a source ofsimply-inherited traits, but there are few reports of yield increases due tointrogression of genes from this species. Selections from F2-derivedlines of backcross derivatives of synthetic hexaploid wheats (T.turgidum / T. tauschii) were evaluated for grain yield in diverseenvironments in southern Australia. Re-selections were made in theF6 generation and evaluated for grain yield, yield componentsincluding grain weight, and grain growth characters in diverse environmentsin southern Australia and north-western Mexico. Re-selection was effectivein identifying lines which were higher yielding than the recurrent parent,except in full-irrigation environments. Grain yields of the selectedderivatives were highest relative to the recurrent parent in thelowest-yielding environments, which experienced terminal moisture deficitand heat stress during grain filling. The yield advantage of the derivativesin these environments was not due to a change in anthesis date orgrain-filling duration, but was manifest as increased rates of grain-filling andlarger grains, indicating that T. tauschii has outstanding potential forimproving wheat for low-yielding, drought-stressed environments.  相似文献   

6.
Summary Groups of 10 barley genotypes were selected for high grain yield under either high yielding (two groups) or low yielding conditions (two groups). The genotypes had a similar average grain yield across a wide range of yielding conditions, but differed in their linear response over environments (environmental sensitivity). The genotypes selected for high grain yield under low yielding conditions were less sensitive to changing environments than genotypes selected for high grain yield under high yielding conditions. The higher stability of genotypes selected under low yielding conditions was shown by both the linear regression analysis and the comparison of coefficients of variation. The use of a safety-first index showed that the probability of a crop failure of genotypes selected for high grain yield under high yielding conditions was between 1.8 and 2.7 times higher than for genotypes selected for high grain yield under low yielding conditions. The development of new cultivars for areas where a large proportion of the crop is grown by subsistence farmers should therefore be based on selection under low yielding conditions.  相似文献   

7.
黄淮地区不同粳稻品种株型、产量与品质的比较分析   总被引:23,自引:2,他引:23  
杜永  王艳  王学红  孙乃立  杨建昌 《作物学报》2007,33(7):1079-1085
对黄淮稻区的129个粳稻品种(品系)进行了株型、产量和品质的观察测定。通过产量聚类分析,将供试品种分成超高产、高产、中产、中低产及低产5种类型。超高产类型品种占3.1%,低产类型品种占14.7%,其他3类品种占82.2%。超高产水稻品种多为半直立大穗型、叶片挺立,具有较高的干物质生产能力、较高的粒重、结实率和经济系数。优质米品种在高产和中高产类型中较多,在超高产和低产类型中很少。垩白米率高是超高产品种米质的主要问题。提出了黄淮地区超高产(>12 t hm-2)中粳水稻品种的株型和产量构成指标,即株高1.00~1.08 m,全生育期150~155 d,穗型半直立,有效穗320~340个 m-2,穗长0.17~0.18 m,一次枝梗12~15个,二次枝梗30~38个;每穗160~180粒,结实率>85%,千粒重26~27 g;倒1、2、3叶叶长分别为0.26~0.28、0.35~0.40和0.32~0.38 m,剑叶角度<20º,收获指数>0.50。  相似文献   

8.
Summary The objective of this study was to evaluate traits which can facilitate and improve selection for grain yield of spring barley. Five experiments were conducted in different environments to measure grain yield and yield related traits of breeding lines and exotic varieties. Differences for rate of canopy expansion were significant and offer the opportunity to select for a high weed suppressing potential but there was no relation to grain yield. Dry matter yield/m2 at anthesis and its water-soluble-carbohydrate content were not correlated with grain yield/m2 and number of grains/m2. Variation in biomass among breeding lines with a similar development and plant height was small. Biomass standardized for plant height was stable across environments and showed a good correlation with number of grains and grain yield. The contribution of pre-anthesis assimilation to grain yield was only important under low yielding experimental conditions, but the differences among the genotypes for this trait were inconsistent. It may be difficult to select genotypes with a high potential contribution of pre-anthesis assimilation to grain yield.  相似文献   

9.
K. N. Rai  A. S. Rao 《Euphytica》1991,52(1):25-31
Summary A d2 dwarfing gene in pearl millet [Pennisetum glaucum (L.) R. Br.] is currently being extensively used for the development of hybrid parents. Its effect on grain yield and yield components is poorly understood. Twelve pairs of tall and dwarf near-isogenic lines developed in the diverse genetic background of three composites were evaluated for grain yield and yield components for 2 years at two locations in southern India. The d2 gene or the genes linked to it, on an average, reduced plant height by 42%, grain yield by 14%, and head girth by 8% but increased head length and number of tillers per plant by about 5–6%. Large variations were observed among pairs (genetic background) for the difference between tall and dwarf near-isogenic lines for all of the above yield components resulting in no significant difference in five pairs and 17–35% less yield in dwarfs as compared to their tall counterparts in six pairs. Days to 50% flowering and seed weight were least affected by the d2 gene with the average difference between tall and dwarf groups of near-isogenic lines being of the order of 1–2%. These results indicate that the advantageous effects of d2 dwarfing gene can be effectively exploited by manipulating the genetic background. The difference between the average grain yields of tall and dwarf groups of near-isogenic lines showed considerable variation across environments with the dwarfs yielding as much as tall group in one environment and up to 30% less than the tall group in the other, thus, indicating that the d2 gene effect may be substantially modified by the environments.Submitted as JA No. 979 by the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

10.
To determine the level of gametoclonal variation among doubled-haploid lines (DHLs) of Triticum aestivum L. developed using anther culture techniques and its effect on agronomic performance, 70 anther culture-derived DHLs of ‘Kitt’ were compared for 7 agronomic traits to 50 single-seed descent-derived lines (SSDLs) of ‘Kitt’ and to the cultivar ‘Kitt’. In a second experiment, 26 DHLs of ‘Chris’ were compared for 7 agronomic traits to 29 SSDLs of ‘Chris’ and to the cultivar ‘Chris’. Each experiment was grown as a randomized complete block design with three replications in three environments. For ‘Kitt’, the DHLs averaged significantly lower grain yields than the comparable SSDLs. For ‘Chris’, the DHLs averaged lower, but not significantly lower, grain yield than the SSDLs. In both ‘Kitt’ and ‘Chris’, the genetic component of variance for yield of the DHLs was significantly larger than that of the SSDLs indicating the presence of gametoclonal variation. The lower average grain yield of the DHLs was explained by a larger group of low-yielding DHLs than was present in the SSDLs. Six ‘Kitt’ DHLs and 3 ‘Chris’ DHLs were lower yielding than the lowest yielding SSDL, respectively. Elite DHLs and SSDLs were similar for mean grain yield performance. Though the DHLs and SSDLs were significantly different for some yield components, the affected yield component changed with the cultivar and there was no consistent effect. Significant genotype × environment interactions were detected for some traits which were caused by changes in the magnitude of differences, rather than reversals in ranking, indicating that low yielding DHLs could be culled on the basis of visual selection or single-environment testing. Hence, gametoclonal variation was induced by the anther culture techniques used in this study, tended to be deleterious for grain yield, and was sensitive to the growing environment. However, as the DHLs and SSDLs had similar expected population means based upon expected gains from selection, this gametoclonal variation should not be a major hindrance to wheat breeding.  相似文献   

11.
Summary Yield stability and the genetic improvement of maize (Zea mays L.) grain yield in the humid pampas of Argentina were evaluated.Stability parameters were computed for 15 varieties grown in 35 environments. To analyze genetic improvement of grain yield, data were obtained from trials grown in four locations and twelve years. Two locations represented the typical maize area, while the remaining two were considered marginal. Simple correlation and linear regression coefficients were computed to study the relationships between yield, stability parameters, number of days to 50% tassel emergence, and year of release. Genetic improvement of grain yield was analyzed from linear regression of the average yield of the three highest-yielding varieties (as percentage of the average yield of five common checks) on year of trial.Yield differed significantly among varieties. Significant variety x environment (linear) interaction was also detected. Significant linear relationships were found between regression coefficient for yield (stability parameter 1) and days to tassel emergence, stability parameter 1 and yield, year of release and days to tassel emergence, and year of release and stability parameter 1. Thus, newer maize varieties tended to flower later and had greater responsiveness to favorable environments than did older varieties. Yields have increased for both the typical and marginal areas, with average yearly increases of 114 and 182 kg/ha, respectively.Breeding programs with nurseries located in the typical maize area have raised yield potential in both areas studied. However, if present trends continue, future releases could prove inadequate in low-yielding or short season environments.  相似文献   

12.
Summary The effectiveness of the honeycomb selection method for yield in spring wheat (Triticum aestivum L.) was evaluated using progenies from two wheat crosses, Glenlea x NB131 and Glenlea x Era. Honeycomb selection was carried out in the F2 and F3 generations, grown at the University of Manitoba in the summers of 1980 and 1981, respectively. In both generations, divergent selection was made for both high and low yield. Plants selected in the F3 generation were entered in an F4 yield test in the summer of 1982. Results of the experiment showed that honeycomb selection for yield in the F2 and F3 generations was effective in identifying parents of high- and low-yielding lines. F3 plants from highyielding F2 selections gave higher yields than those from low-yielding F2 selections by 11.5% and 13.0% for Glenlea x NB131 and Glenlea x Era crosses, respectively. The F4 yield test showed that high yielding selections from both crosses significantly outyielded by 8.9% low yielding selections and by 14.4% the unselected composite lines. It is concluded that the honeycomb selection method can be used for early generation selection in spring wheat.  相似文献   

13.
Summary Thee groups consisting of 332, 243 and 280 barley breeding lines (entries) of known selection history were evaluated in 10, 9 and 8 environments, respectively, to determine the relationship between grain yield in low yielding (LYE) or high yielding (HYE) environment, and selection history and type of germplasm. One cycle of selection in LYE produced on average five times more entries outyielding the best check in LYE than selection in HYE. A retrospective analysis indicated that the highest yielding lines in LYE were lower yielding (15%–28%) in HYE when compared with the best check, and by 20% and 38% compared with the best entries in HYE. In contrast, the highest yielding lines in HYE were lower yielding (4%–33%) in LYE when compared with the best check, and by 33% and 40% when compared with the best entries in LYE. The highest yielding lines in LYE did not differ consistently from the highest yielding lines in HYE for a number of morphological and developmental traits including days to heading. This suggests there are many paths to high yield in LYE and that analytical breeding based on individual traits may not be appropriate for variable environments. Only 0.07% of the highest yielding entries in LYE was selected for high yield in HYE conditions confirming previous results indicating that selection for high yield in HYE is an inefficient strategy for improving yield in low yielding conditions. This frequency is 28 times lower than the frequency of high yielding entries in LYE selected from landraces or crosses with landraces in low yielding conditions. The results imply that the most cost-effective strategy for barley breeding in low yielding conditions is to select repeatedly in low yielding conditions and to include adapted germplasm (landraces) in the breeding material.  相似文献   

14.
Recombinant inbred lines (RILs) of the tef cross Kaye Murri × Fesho were evaluated for nine quantitative traits at three locations in the central highlands of Ethiopia during the 1998/99 main season in order to estimate the genetic coefficient of variation (GCV), heritability and genetic advance expected from selection. Highly significant differences were obtained among the RILs for all traits studied. Grain yield, panicle weight and yield per panicle showed a relatively high GCV (12–16%). A comparatively high heritability was obtained from days to heading (31%) followed by panicle length (25%) and grain yield (23%). Moderate amounts of heritability values were obtained for panicle weight and yield per panicle. High genetic advance as percent of the mean were obtained from grain yield (16%), yield per panicle (12%) and panicle weight (10%) at5% selection intensity, which indicated the possibility of improving these traits. Several RILs were identified that have exceeded the better yielding parent at all locations. Grain yield showed a strong positive association (r = 0.26–0.70) with shoot biomass, lodging index, panicle length, plant height, panicle weight and yield per panicle. Overall, the present results showed a) the availability of genetic variance for some useful traits in the RILs for exploitation through selection, b) the existence of significant genotype × location interaction that indicated the need to test inbred populations in more environments, and c)the availability of superior inbred lines for further breeding work. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
This study was conducted to determine the stability of grain yield, harvest index, plant height, and panicle length and to determine the association of grain yield with these traits in winter white oat ( Avena sativa L.) genotypes. The genotypes were grown in replicated tests in Ankara in 1985–1991. Each experiment year was regarded as an environment, and entry mean of each year was used as the environmental index. Stability parameters were estimated from the regression analysis as linear regression coefficient (b), deviations from regression (S2d) and coefficient of determination (r2).
Genotypes differed significantly for all traits and significant genotypes X environment interactions occurred for these traits. On the basis of estimates of stability parameters, A-24 genotype was stable for grain yield. Correlation coefficients between traits were inconsistent in good and poor environments except between grain yield and panicle length. The study suggested that these traits are differently affected by environmental changes and selection for panicle length might be effective as selection for grain yield in improving oats with high grain yield for diverse environments.  相似文献   

16.
Summary Relationships among the traits protein percentage, grain yield, and protein yield of oats were studied with F2-derived lines in F3 and F4 from 27 matings obtained by crossing high-protein with high-yield oat lines. High-protein parents were (a) selections from an Avena sativa bulk, (b) selections from three-way matings in which an initial parent was A. sterilss, and (c) cultivars. High-yield parents were derived from backcross populations involving A. sterilis accessions as donor parents.Significnnt genetic variation existed among F2-derived lines for grain and protein yield in all matings and for protein percentage in all but one mating.Protein percentage had a highly significant negative correlation with grain yield (r=–0.33**) when pooled over all matings, but in five, these two traits were not correlated. Overall, protein percentage showed a small negative correlation with protein yield (r=–0.09*), and protein and grain yields had a high positive association (r=0.98**). F2-derived lines with both high protein percentage and high grain yield were obtained.High transgressive segregates for protein percentage occurred in two matings, for grain yield in nine, and for protein yield in 14. Most high transgressive segregates for protein yield were high because of high grain yield only, but in four matings, lines were found where protein yield was increased by concurrent increases in both protein percentage and grain yield.Only a few specific parental combinations between high-protein and high-yield parents produced segregates in which increased protein percentage contributed materially to high-protein yields.Journal Paper No. J-11264 of the Iowa Agriculture and Home Economics Experiment Stn., Ames, Iowa 50011. Project 2447.  相似文献   

17.
Summary Yield data obtained from a comparative small grain cereals trial, grown for five consecutive growing seasons at a total of 23 environments in Cyprus, were subjected to regression analysis. Within each environment, yield trials consisted of a standard set of three cultivars or elite lines of barley, triticale, durum and bread wheat. The regression coefficient (b) of crop mean on the environmental index (I) and the mean square deviation from regression (sd2) were calculated for each crop. Each crop tended to have its own characteristic value of sd2 and its magnitude was an excellent indicator of specific crop-environment interaction. The causes of large sd2, for two of the four crops, were the susceptibilith of barley to lodging, when favourable conditions were encountered at high yielding environments, and triticale dependence on late season precipitation. Durum wheat and triticale had an average response to different yielding environments (b>1.19) and both were significantly different from those of bread wheat (1.08) and barley (0.54). Hence, barley, bread and durum wheat are specifically adapted to low, average and high yielding Mediterranean environments, respectively. The cultivation of triticale at the expence of durum wheat is not feasible. Furthermore, interactions between crops and environments demonstrated by the regression parameters, should constitute the basis for decision making, regarding crop adaptation in a region. The average yield in all environments should not be considered as a proper criterion for adaptation. In this study, triticale had a similar mean grain yield (3,842 kg/ha) to that of bread wheat, but was significantly higher yielding than barley or durum wheat (5 and 7%, respectively).  相似文献   

18.
A set of 20 accessions of durum wheat (Triticum turgidum L., durum group), which mostly included exotic landraces from various Mediterranean countries, and four Italian improved varieties were evaluated for grain yield in five environments and for quality traits in two environments of Sicily. Glutenin composition was also assessed electro-phoretically on six seeds per entry. The cultivars differed (P ≤ 0.01) for yield, protein content and sodium dodecyl sulphate (SDS-sed) sedimentation volume, in the presence of significant (P ≥ 0.001) genotype-environment interaction effects. These effects were large for yield and moderately large for protein content relative to genotype main effects following estimation of variance components. Most exotic cultivars yielded comparably with, and some of them showed greater stability than, the best yielding Italian variety 'Simeto. Some exotic cultivars combined outstanding yield, protein content and SDS-sedimentation values and represent therefore extremely valuable germplasm sources to broaden the local genetic base. The glutenin composition LMW-2 and HMW 7 + 8 was positively associated with gluten quality. Six entries showed heterogeneous electrophoretic patterns, suggesting the presence of different genotypes within the cultivar.  相似文献   

19.
Summary Yield data from the 5th–12th international mungbean nursery (IMN) trials conducted at 23 sites in 15 countries were analyzed by conventional stability analysis—regression of genotype mean on the environmental index, and by segmented regression analysis—fitting separate linear regressions in low yielding and high yielding environments. The gene pool base concept allows comparison of genotypes from different IMN trials grown in different years and sites. A very high positive linear relationship was observed between the regression coefficient and the average yield of cultivars, indicating that high yielding cultivars were less stable across environments. When data points of the regression of genotype mean and site mean for VC 1973A, a high yielding and widely adapted cultivar, were examined, the relationship appeared not to be linear. The segmented regression analysis improved the coefficient of determination (r2) and the genotypes were grouped based on regression coefficients in high yielding and low yielding environments. Different categories of genotypes suitable for high input environments, widely adaptable genotypes, and highly stable genotypes were identified.Texas Agricultural Experiment Station Technical Article 23208.  相似文献   

20.
K. Takeda  K. J. Frey 《Euphytica》1977,26(2):309-317
Summary Improved grain yields in lines of oats from matings of Avena sativa x A. sterilis were found to be due to increased plant growth rate. Growth rates of oats were quantitatively inherited, with the minimum number of effective factor pairs segregating in the interspecific matings ranging from 3 to 9. Heritability values for this trait averaged 0.4. Growth rate was highly and positively correlated with bundle weight, straw yield, grain yield, and unit straw weight, but it was uncorrelated with heading date and harvest index. Correlations with plant height were low. Thus, it should be possible for oat breeders to combine the high growth rates from A. sterilis with any combination of agronomic traits.Journal Paper No. J-8608 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project 1752. Supported in part by a grant from the Graduate College.Hirosaki University, Hirosaki, Japan (formerly Visiting Scientist at Iowa State University).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号