首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小型大蒜联合收获机设计与试验   总被引:2,自引:0,他引:2  
徐文艺  张华  张志起  周进  崔中凯 《农机化研究》2016,(11):186-189,203
针对大蒜收获难、劳动强度高、各地种植模式不统一的问题,设计了一种适合中小地块的小型大蒜联合收获机,并阐述了该机的总体配置及主要部件的结构。该机主要由行走底盘、传动系统、扶禾装置、挖掘装置、夹持装置、蒜秧定位装置、切割装置、横向输送装置、集蒜箱及液压系统等组成,可一次完成大蒜挖掘、夹持输送、切茎、蒜头收集和蒜秧抛送等工作。田间试验表明:收净率达到98.4%,损伤率0.65%,总损失率2.25%,生产率为0.035hm2/h;具有体积小、结构紧凑、操作方便、损伤率小等特点,为提高大蒜机械化收获水平提供了参考。  相似文献   

2.
分置式大蒜收获机设计与仿真   总被引:2,自引:0,他引:2  
邢立冉  李汝莘  王铁新  张姬 《农业机械学报》2012,43(Z1):137-140,111
针对大蒜收获的农艺要求,设计了一种分置式大蒜收获机,主要由蒜秧剪切和蒜头挖掘两部分组成,分别配置于小四轮拖拉机的前后两端,可一次完成蒜秧剪切、蒜头挖掘及蒜土分离.蒜秧和蒜头分别铺放,便于收集和运输.蒜头用网兜收集后直接晾晒,避免漏收、节省工时和场地.采用偏心连杆机构实现挖掘铲的振动,减小了牵引阻力,降低了能耗.运用Pro/E软件对偏心振动机构和挖掘铲进行运动仿真及分析,使整机结构和运动参数得到了优化,为样机试制奠定了基础.  相似文献   

3.
半喂入自走式大蒜联合收获机   总被引:3,自引:0,他引:3  
针对国内大蒜种植特点,在已有设计研究的基础上研制了一种适合于中国大蒜主产区收获作业的半喂入自走式大蒜联合收获机。整机侧向配置,采用450型半喂入稻麦联合收获机底盘,并配有液压无级变速系统,作业组件包括分禾装置、扶禾装置、挖掘装置、夹持输送装置、清土装置、对齐切秧装置和集果系统等。该机采用挖拔组合式工作原理,保证了大蒜收获中挖掘效果,提高了整机的作业质量和稳定性。通过田间检测表明:果实损失率不大于1.8%,破损率不大于2.1%,含土率不大于12.8%,各项性能指标均达到设计要求。  相似文献   

4.
2垄4行夹持归集装置安装在2垄4行全喂入花生联合收获机上。该装置主要是将挖掘出来的两路花生进行夹持、抖土,然后将两路花生归集到一处,方便后续作业。该装置的研制大幅度提高了花生收获的工作效率。经试验分析,夹持喂入率在98%以上,去土率大于70%,掉果率不大于0.1%,作业效率在0.2hm2/h以上,夹断率几乎为0,花生秧果在归集过程中没有发生堵塞现象,各项指标都能够达到设计要求。  相似文献   

5.
分段式大蒜收获机的设计与试验   总被引:1,自引:0,他引:1  
针对目前国内大蒜收获强度大、收获效率低及收获成本高等问题,设计了分段式大蒜收获机。该机主要由挖掘装置、限深装置及夹持装置、打捆装置等组成,采用手扶拖拉机作为动力源和安装平台,夹持装置采用链条设计,打捆装置可实现收获后大蒜的打捆作业。该机可一次完成三行大蒜的挖掘、夹持输送、打捆等收获作业,省时省力,高效低耗。应用CAD、SolidWorks等软件进行图样的设计和三维模型的建立,并对挖掘装置、夹持装置等关键装置进行重点设计。在山东兰陵县神山镇进行了大蒜种植田间试验,结果表明:该机器生产率0.1 hm~2/h,漏蒜率为1.9%,伤蒜率为0.58%,损失率为1.9%,挖掘深度为8cm。研究结果可为大蒜收获机械的研究提供参考。  相似文献   

6.
针对山东省大蒜种植农艺多样性和大蒜收获机械收获模式单一的现状,创新设计了大蒜打捆收获机。为此,阐述了大蒜打捆收获机的整体结构和各部分的工作原理。该机可一次完成多行大蒜的对行、挖掘、大蒜秧蔓夹送、侧向归集输送及打捆等工序。运用Solid Works建立样机的三维模型,并利用Workbench对关键部件进行静力学分析。通过对整机田间试验和数据采集,得出了大蒜打捆收获机作业参数。当前进速度为0.013 8m/s、挖掘深度为0.10m、夹持高度为0.035m、夹送速度为0.018m/s时,样机获得最优的结构参数配比。  相似文献   

7.
目前,我国部分区域仍采取人工作业方式进行收获,劳动强度大,生产效率低,难以满足当前花生产业发展的要求。花生收获对农时要求较高,每年的八九月降水较多,抢收对提高花生质量尤为重要。针对这一现象,设计一款采用拖拉机牵引,通过捡拾装置对花生秧果捡拾,经摘果装置进行秧果分离,并利用风机和振动筛进行清选除杂,把花生果和秧分别收集的花生捡拾收获机。对捡拾收获机关键装置进行设计,并进行田间性能试验~([1])。结果表明:牵引式花生捡拾收获机的秧果捡拾率为97.48%,花生荚果含杂率为1.66%,花生荚果破碎率为1.77%,整机的捡拾效果和清选效果比较好。  相似文献   

8.
马铃薯收获是马铃薯产业全程机械化的关键环节之一,目前我国收获机械化程度较低。虽然国内的马铃薯收获机械种类繁多,但是大部分机具仍需人工辅助完成整个收获过程,作业成本较高、劳动强度大。为此,研究开发了一种2垄4行牵引式马铃薯联合收获机,可一次作业完成挖掘限深、土薯分离、秧草除杂及输送归集装车等多项工艺联合作业。上车输送归集装置由3级升运机构共同组成,采用液压驱动实现马铃薯薯块的输送归集,结构简单,调整方便,解决了传统收获模式下仍需人工捡拾的作业过程,大大降低了劳动强度。增设光电传感器检测,与液压传动系统结合可以有效反馈控制落薯的高度与位置,大大降低了伤薯率。田间试验表明:该机作业效果良好,各项性能指标均符合《马铃薯·收获机质量评价技术规范》标准要求。  相似文献   

9.
针对目前花生捡拾联合收获机捡拾台螺旋喂入与升运输送过程中秧果易拥堵而造成荚果破碎高等问题,设计了一种花生捡拾联合收获机喂入输送装置。通过动力学与运动学的秧果喂入和输送过程分析,开展花生秧果与搅龙输送装置、花生秧果与链靶升运装置的互作关系研究;通过理论分析与计算,确定秧果喂入和输送关键部件的结构和运动参数,并进行集成研究。以田间自然晾晒3~5天的花生植株为材料,以输送率、荚果破碎率为试验指标,以喂入量、喂入搅龙转速、喂入口输送间隙为因素进行台架试验,结果表明:当喂入量3kg/s、喂入搅龙转速150r/min、喂入口输送间隙90mm时,作业性能达到最优,输送率为99.83%,荚果破碎率为0.28%,输送过程稳定可靠,未发生堵塞现象,满足花生联合收获机的作业要求。  相似文献   

10.
针对大蒜联合收获作业过程中根系切净率低与损伤率高的问题,设计了一种按压式切根装置,阐述了其主要结构与工作机理。通过理论计算确定了夹持输送与切割机构作业参数,构建大蒜夹持运动方程和拨轮组动力、变形及切割力学模型。以链轮、拨轮和圆盘刀转速为试验因素,伤蒜率和切净率为试验指标,利用Design-Expert 8.0.5软件进行回归与响应面分析,构建三元二次回归模型,得到各因素对指标值的影响顺序。结果表明,当链轮、拨轮和圆盘刀转速为107、52、197 r/min时,装置性能最优,伤蒜率和切净率分别为0.63%和97.07%。对比鳞茎顶端定位“浮动切根装置”的最优参数组合,结果表明,所提出的装置伤蒜率降低2.15个百分点,切净率提高3.9个百分点。对优化因素进行试验验证,验证与优化结果基本一致,满足大蒜机械化收获高效切根作业要求。  相似文献   

11.
针对大蒜收获劳动强度大和成本高,结合目前我国大蒜收获的机械化和全自动化程度低的现状,设计了一款大蒜全自动联合收获机,可实现大蒜挖掘、夹持输送、变排传输、根茎切除和蒜头自动装袋全自动一体化收获。首先,阐述了大蒜全自动联合收获机的整体设计结构和各部分工作原理,并对仿形定位料杯和浮动柔性弹簧切根刀具等关键结构进行数值计算分析;其次,通过三维建模分析收获机整体结构尺寸的合理性;最后,制作样机进行多指标正交试验,并综合分析收获机重要部件的作业参数。田间试验计算收获效率为0.04 hm2/h,相较于人工收获效率提高87.5%。   相似文献   

12.
针对我国花生主产区种植模式的特点,成功研制了4SHWZ-1800自走型分段式花生收获机。其主要由底盘、传动系统、挖掘装置、清土输送装置、果秧铺放装置、落果清选装置和输送升运集果装置等部件组成,一次作业可完成挖掘、松碎土壤、秧土分离、秧果成条铺放、落果清选和集果等作业。该机在分段收获的基础上,采用了复收技术;设计了箭式挖掘铲,降低了挖掘阻力,提高了碎土效果;采用挖抖组合技术,实现花生宽幅收获,提高了工作效率;采用筛网输送带式果土分离技术,有效降低机收损失。田间试验表明:该机操控灵活、简单,作业顺畅,性能稳定;埋果率为0.1%、破碎率为0,各性能指标均符合国家花生收获机作业质量(NY/7502-2002)检测标准,符合设计要求。  相似文献   

13.
多功能根茎类作物联合收获机设计与试验   总被引:14,自引:1,他引:13  
简述了多功能根茎类作物联合收获机的整体结构配置、工作过程、技术特点以及关键部件结构设计等.整机主要由动力底盘、扶禾装置、挖掘装置、清土装置、夹持输送装置、摘果装置、清选系统和集果系统等组成.摘果装置采用可互换的滚筒式分离机构和圆盘割刀式分离机构,可用于花生、大蒜、洋葱等多种根茎类作物的联合收获,实现一机多用.花生、大蒜试验结果表明:花生果实损失率2.3%,埋果率0.3%,摘果破损率0.4596,果实清洁度99%,漏摘损失率0.4%,整机可靠性系数96.2%;大蒜果实损失率3.0%,漏收损失率0.5%.果实碰伤率1.5%.  相似文献   

14.
模块化大蒜联合收获机设计与试验   总被引:2,自引:0,他引:2  
为提高大蒜收获机对不同种植模式、不同行距大蒜机械化收获的适应性,设计了集扶禾、破土、输送、断秧、集果于一体的大蒜联合收获机,并对其关键功能部件进行了深入研究。将扶禾、起送蒜、破土、齐蒜断秧等大蒜收获所必需的功能集中设置,构建相对独立的收获单元功能模块。用户可根据需要加挂收获单元功能模块,配合输送单元,实现1~n行大蒜联合收获机的自由组合。同时,收获单元功能模块之间间距可在0~300mm或更大范围内无级调整,实现70~420mm之间不同行距大蒜的机械化收获。建立了大蒜拉拔力理论分析模型,在对影响因素研究的基础上,得到了结构参数对拉拔力影响的规律。试验表明,拉拔力随大蒜假茎包角增加而增大;当同步带张紧力超过2800N时,同步带所提供的拉拔力大于松土后大蒜所需拉拔力,可保证大蒜拉拔收获顺利完成。建立了破土力理论分析模型,得到了箭铲入土角、箭铲入土深度、整机前进速度等参数对破土力的影响规律。正交试验结果表明:入土深度、土壤湿度对箭铲破土力影响显著;当土壤湿度为30%、入土深度为80mm时,破土力为520N。样机田间试验结果表明,大蒜联合收获机的各项技术指标均满足设计预期效果,大蒜收净率为98.3%、总损失率为3.5%、生产率为0.14hm2/h。  相似文献   

15.
4HBL-2型花生联合收获机复收装置设计与试验   总被引:2,自引:0,他引:2  
针对4HBL-2型花生联合收获机果土分离及输送中花生果实的漏果、掉果问题,设计了花生联合收获机复收装置。在花生联合收获时,对土壤中遗漏的果实和夹持输送过程中掉落的果实进行复收、清选、集果等作业。并对复收装置进行了设计与试验研究,确定了该装置的最优结构参数和工作参数:复收装置安装角度为20°,复收链输送速度1.2 m/s,复收链杆条间隙10 mm。在机组前进速度为0.6 m/s时,实现收获花生平均净果率为90.16%,平均漏果率为0.12%,提高了花生的收获质量,减少了花生二次复收的劳动强度和作业成本。  相似文献   

16.
为解决大蒜正芽播种问题,设计了弧形鸭嘴式型大蒜正芽播种机,主要由单粒取种装置、鳞芽方向控制装置、直立下栽装置、传动系统以及机架、地轮等部分组成,可一次完成取种、换向、直立栽种和镇压作业。根据大蒜鳞芽外形尺寸参数,对播种机关键零部件进行了优化设计,设计了符合大蒜鳞芽外形尺寸分布的大、中、小3级取种勺;设计了弧形开口换向器,使芽尖弯曲大蒜鳞芽芽尖尽可能露出换向器;设计了中间轴随驱动圆盘同时旋转的直立下栽机构,实现11行下栽鸭嘴同时稳定作业,与弧形换向器配合实现芽尖不小于6mm大蒜鳞芽的正芽。以苍山四六瓣蒜和金乡杂交蒜为试验对象,进行田间播种性能试验,结果表明:行走速度在0.14~0.19m/s范围内,金乡杂交蒜的正芽率达到85%左右,苍山四六瓣蒜的正芽率达到90%左右,单粒率均达到93%以上,整体满足大蒜播种农艺要求。  相似文献   

17.
针对大蒜联合收获机拉拔收获特点与鳞茎定位要求,为提高输送成功率、降低鳞茎损伤率,设计了一种浮动式夹持装置,阐述了其主要结构与工作机理。通过茎秆受力变形与植株运动分析,明确了试验台浮动轮弹性系数、间距及链条输送速度等关键作业影响参数的取值范围。构建了茎秆流变模型,并根据不同载荷下的茎秆蠕变曲线拟合了茎秆的粘弹性参数,明析了关键作业参数与输送装置夹持力、输送损失及鳞茎损伤的关系。以浮动轮弹性系数、间距及链条输送速度为试验因素,以成功率和损伤率为试验指标,用Design-Expert软件进行试验数据分析,由Origin软件生成3D响应曲面,得到各因素对指标的影响次序。结果表明,当浮动轮弹性系数、间距及链条输送速度分别为2 N/mm、83 mm和520 mm/s时,装置性能最优,夹持成功率和损伤率分别为97.42%和1.36%。对优化因素进行试验验证,试验与优化结果基本一致,满足大蒜联合收获浮动夹持高成功率与低损伤率的作业要求。  相似文献   

18.
针对黏性土壤种植的马铃薯,存在机械收获泥土分离不净、薯秧分离不净、病薯伤薯分离不彻底的问题,根据收获拣选农业技术要求,研制开发出一款分离、输送等为一体的马铃薯田间分选机,适用于马铃薯联合收获机的田间配合作业。该分选线主要由集成分选机、接收料斗、装车机构成,集成分选机主要由分离输送装置、秧薯分离装置、传动系统、机架及地轮等各部分组成。该分选机额定电压为380 V,额定处理能力20~80 t/h,可以完成土薯、茎秆、杂草和病薯的分离,以及薯块输送等作业,大幅度减少用工,缩短收获周期。田间收获分选试验表明:该分选线在田间地头与马铃薯联合收获机配合作业效果好,减少沃土的流失,土薯分离、分级及茎秆分离良好,除秧率和除净率分别高于90%和99%,伤薯率低于1.23%。适用于机械化清选黏性土壤种植的马铃薯,对已收获的马铃薯进行二次分离清选作业。  相似文献   

19.
为实现秧草机械化收获,提高收获效率,避免汽油机动力作业时带来的二次污染问题,在研究秧草的种植模式、生长特性和秧草力学切割性能基础上,设计的4GDS-1.0型秧草收获机采用清洁能源锂电池为动力,可一次性完成秧草的收割、拨禾、输送、收集等作业工序。田间试验结果显示,样机的收获效率达0.17hm2/h,最小漏剪率1.9%,满足秧草的收获收集一体化作业要求,同时,也为其他叶菜类作物机械化收获作业机具研制提供参考。  相似文献   

20.
针对国内大蒜收获现状及大蒜收获机机械落后的情况,研制了打捆式大蒜联合收获机。介绍了打捆式大蒜联合收获机的主要结构、工作原理和技术参数等。运用Solid Works建立样机的三维模型,对挖掘装置、柔性夹持输送装置、定量打捆装置等关键部件进行了进一步研究。通过对整机的田间试验,结果表明,打捆式大蒜联合收获机的损失率为2.3%,伤蒜率为0.4%,成捆率为97%,均满足技术要求,同时确认了样机的结构合理性与质量可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号