首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为抑制软体驱动器弯曲过程中的不必要变形,提高软体机械手抓取能力,提出一种限制层材料为PDMS和PTFE混合制备的软体机械手。通过调整PDMS和PTFE之间的质量比来改变限制层刚度,进而改变软体机械手的弯曲角度。考虑到软体机械手工作时,应变层变形远大于限制层,采用Yeoh和Neo-Hookean形式的应变能方程表述应变层和限制层材料力学行为。基于模型和力矩平衡原理建立软体驱动器弯曲角度数学模型,进而研究限制层材料和结构参数对软体机械手弯曲性能的影响。利用单轴拉伸试验获取不同质量比的PDMS和PTFE混合制备的限制层样品应力应变曲线,并拟合获取Yeoh模型材料参数,进而进行有限元仿真分析,确定限制层材料的最佳比例。对不同限制层材料制成的驱动器进行弯曲角度测试,试验结果与理论分析偏差在5%以内,验证了数学模型的准确性。同时,驱动器的末端力测试结果表明,限制层PDMS/PTFE质量比为8∶1的驱动器明显优于纯硅胶软体驱动器,最大末端力可达2.45 N。使用软体机械手对多种物品进行抓取试验,其最大抓取质量达420 g。  相似文献   

2.
软体机械手在易损物品抓取方面具有其独特的优势,近年来成为机器人领域的研究热点。为便于评价软体机械手的整体性能,实现其精确抓取控制,需要对软体机械手进行建模分析与试验研究。本文设计了四指软体机械手,每个手指单元内置用于实时检测机械手弯曲角的柔性应变传感器;建立了不同气压作用下的弯曲角和末端输出力特性的数学模型,并分析限制层刚度变化对软体手指输出特性的影响;设计了软体机械手控制系统,在此基础上开展软体手指的弯曲角和末端输出力特性试验,试验结果表明调节限制层刚度可有效改善输出力,理论分析与试验结果吻合,验证了数学模型的正确性。对几种不同质量的常用水果(如草莓、橘子、梨、苹果)的抓取试验结果表明,软体机械手能够实现对易损物体的无损抓取,其包络抓取力最大为11.89N,指尖抓取力最大为2.81N。  相似文献   

3.
针对目前软体抓手的制造方式(如软体平板印刷、失蜡铸造等)存在成型工艺复杂、粘结不牢靠、接缝处易撕裂等问题,设计了一种光固化成型软体采摘抓手一体式结构,通过正、负压驱动,可实现果蔬的自适应抓取。首先,基于Yeoh模型,研究了软体驱动器弯曲变形运动中的非线性力学特性,得出腔体内部压强与驱动器弯曲角度之间的非线性关系模型。然后,通过Abaqus有限元软件分析软体驱动器的弯曲特性,得到各主要结构参数对弯曲角度的影响规律,并结合正交试验法得到最佳的结构参数组合:软体驱动器的腔体壁厚为1.6 mm、腔体个数7、腔体间隙3 mm、底层厚度3 mm。最后,根据最佳的结构参数组合制造软体采摘抓手样机,并将其安装在试验平台上进行果蔬抓取试验,验证了光固化一体成型软体采摘抓手的实用性。  相似文献   

4.
细长果蔬采摘软体气动抓手设计与参数优化   总被引:4,自引:0,他引:4  
为实现细长果蔬的无损采摘,设计一种充气呈螺旋运动的软体气动抓手。对该抓手进行有限元静力学仿真分析,采用3因素3水平的中心组合设计与响应面分析方法,研究各因素对软体气动抓手螺旋特性的交互影响。以软体气动抓手的螺旋直径和螺距为响应值,分别建立二次回归模型,得到模型的决定系数分别为0.9987和0.9351,各因素对螺旋直径和螺距的影响显著性顺序从大到小均为:壁厚、内腔室高度、腔室角;以软体气动抓手的仿真直径35mm、仿真螺距[50mm,150mm]为目标函数对各试验因素进行优化,最优设计结果为壁厚2.51mm、腔室角30.52°、内腔室高度11.91mm。制作软体气动抓手并进行仿真试验对比,结果表明,螺旋直径与螺距的误差均小于5%。对该抓手在不同气压下的抓取力进行试验,结果显示,软体气动抓手在气压0.13MPa下至少具有3.37N的抓取力;通过抓取不同尺寸、不同柔软度细长果蔬的试验证明了软体气动抓手抓取的有效性;以水果黄瓜为采摘对象,在3.6s内实现了黄瓜的抓取与断梗。  相似文献   

5.
穴盘移栽指铲式末端执行器苗钵基质抓取仿真与试验   总被引:5,自引:0,他引:5  
针对针式末端执行器夹持移栽后穴孔内基质残留较多的问题,设计了一种指铲式末端执行器,通过增大指铲与苗钵基质的接触面积,减少穴孔内基质的残留。通过静力学分析找出末端执行器提取苗钵后基质残留的原因:基质间的最大内聚力小于由基质与穴盘间的粘附力和苗钵重力合成的总阻力时,苗钵出现破裂,基质塌陷。基于离散单元法,通过EDEM(Enhanced discrete element method)仿真分析了指铲式末端执行器对土壤基质的抓取过程,发现随着土壤基质内聚力的提高基质残留的现象得到改善;将基质配比和含水率条件作为主要影响因素,通过组合测盘试验测量在不同基质配比和含水率试验条件下的粘附力和内聚力变化,寻找内聚力大于粘附力的基质配比和含水率条件。试验表明,当相对含水率为60%、基质配比为6∶3∶1(泥炭∶蛭石∶珍珠岩)时,内聚压强和粘附压强的差值最大,在该条件下,指铲式末端执行器对劣质苗钵穴孔基质的平均剔净率达到70. 8%,优于其他作业条件,可剔除穴孔内大部分基质。  相似文献   

6.
设计了一种基于气动柔性驱动器的苹果采摘末端执行器:以气动柔性驱动器作为其弯曲关节,用力学分析的方法对弯曲关节及末端执行器进行建模,分析建立关节弯曲量及输出力与其内腔气体压力之间的数学关系;建立了末端执行器抓取苹果目标的数学模型。实验结果表明:该末端执行器有较大的输出力,能很好地抓持苹果,并具有很好的柔顺性。  相似文献   

7.
基于气动柔性驱动器的苹果采摘末端执行器研究   总被引:3,自引:2,他引:3  
设计了一种基于气动柔性驱动器的苹果采摘末端执行器:以气动柔性驱动器作为其弯曲关节,用力学分析的方法对弯曲关节及末端执行器进行建模,分析建立关节弯曲量及输出力与其内腔气体压力之间的数学关系;建立了末端执行器抓取苹果目标的数学模型.实验结果表明:该末端执行器有较大的输出力,能很好地抓持苹果,并具有很好的柔顺性.  相似文献   

8.
为实现柑橘采摘的机械化、智能化,设计了一款欠驱动式柑橘采摘末端执行器。该执行器通过三指充分抓握与偏转的融合控制,实现对不同大小及椭圆度的柑橘的稳定采摘。针对不同尺寸柑橘采摘需求,设计了双连杆并联式手指,在抓握直径差异较大的柑橘时,手指能够自动进行抓取或捏取动作,并实现被动柔顺。通过静力学分析,得到抓取力与电机输出力矩间的关系。针对不同椭圆度柑橘采摘需求,为手指根部添加旋转关节。在建立电机驱动控制系统模型的基础上,提出基于电流反馈的主动柔顺控制策略,指根能够旋转合适的角度使指面与柑橘表面紧密贴合,在防止手指棱边刮伤柑橘表皮的同时,增大接触面积、提高摩擦力。仿真结果表明,该末端执行器结构在运动学方面满足设计要求。制作物理样机并在实验室环境下进行了柑橘抓取试验,试验结果表明采摘执行器针对直径30~100mm的柑橘抓取成功率为98.3%,平均耗时5.3s。该末端执行器能够针对不同尺寸、不同形状的柑橘实现采摘功能,具有适应性强、抓取稳定、不损伤果实等优点。  相似文献   

9.
为实现白芦笋高效、低损伤采收,设计了一种适用于白芦笋选择性收获机的末端执行器,并推导出一种驱动力的计算方法。为驱动末端执行器完成入土、剪切、夹持、拔取等动作,需对其入土驱动力、剪切力以及夹持力等控制参数给出定量描述。首先,针对入土驱动力问题,利用DEM仿真建立末端执行器-土壤离散元模型,研究末端执行器与土壤作用过程,分析末端执行器入土驱动力;其次,从切割白芦笋和土壤两方面分析末端执行器的剪切力,利用万能试验机与DEM仿真建立白芦笋-末端执行器-土壤的互作用模型,借助万能试验机模拟末端执行器的刀片切割白芦笋过程,确定白芦笋剪切强度,结合从DEM仿真角度测得末端执行器刀片切割土壤所需的剪切力,确定末端执行器剪切力参数范围;再次,通过万能试验机模拟末端执行器夹持白芦笋过程,确定白芦笋抗压强度,结合从DEM仿真角度分析末端执行器在土壤中完成夹持动作所需的夹持力,确定末端执行器夹持力参数范围。最终,确定末端执行器入土驱动力FRT195 N、剪切力FJQ1.8 N、夹持力FJC13 N的参数范围。根据确定的末端执行器的参数范围,选取几组参数组合进行田间采收试验,试验结果表明:在入土驱动力200 N、剪切力2 N、夹持力11 N的参数组合下,白芦笋的采收率大于99%,损伤率小于3%,损伤率的数值在可接受范围内,符合白芦笋低损伤采收的要求,为白芦笋选择性收获机实现选择性、低损伤采收提供了一定的理论支持。  相似文献   

10.
为实现利用同一机械手柔顺抓取各种形状果蔬,并且在保证抓取效率的前提下,有效避免末端执行器对果蔬的损害,设计了一种基于仿生原理的多功能蜓爪式末端执行器。首先通过体式显微镜将蜻蜓各爪指的相关物理信息转换为具有指导意义的数据和量化模型,并采用理论分析与数学建模的方法,确定了机械手前后爪腿节、胫节与跗节的长度分别为36、48、31 mm,机械手中爪腿节、胫节与跗节的长度分别为48、48、36 mm;在此基础上,采用D-H法建立了该欠驱动末端执行器的运动模型,绘制了机械手的包络空间区域,进而得到机械手能够完全包络各种形态果蔬的主要抓取部位;最后,应用并联机构平台和串联机构平台开展静态抓取破坏试验,测定了损伤力极限值,并进行了果蔬抓取试验。试验结果表明,仿生机械手对番茄、苹果、柿子椒和茄子的平均抓取成功率分别为90.7%、88.6%、87.9%和87.2%,损伤率分别为4.3%、0.7%、3.6%和2.1%;可见该仿生末端执行器能够较好地实现对各种形态果蔬柔顺、稳定的无损抓取。  相似文献   

11.
三指柔性气动夹爪结构设计与实验   总被引:1,自引:0,他引:1  
针对水果表皮脆弱易损、不适合采用传统刚性夹爪抓取的问题,基于章鱼触手结构特征,结合仿生学原理和增材制造技术,设计并制作了一种结构简单、具有自适应性的由3个柔性手指和固定组件组成的适用于水果采摘的气动柔性夹爪。采用ANSYS模拟和测试柔性手指在不同气压下的弯曲情况,发现柔性手指可在低压下具有较大的弯曲变形,最大弯曲角为22.4°,气压为100kPa时,产生最大压力为2.38N;柔性夹爪的夹持力实验表明,在0~100kPa的压力范围,柔性夹爪可自适应抓取质量564g、直径100mm内的水果,并且水果表面没有损伤,抓取效果良好,达到设计目标要求。  相似文献   

12.
针对传统机械手爪存在抓持动作单一、自由度少及通用性较差等缺点,设计了一种新型的由FPA直接驱动的多指多关节采摘机械手,有效地提高了机械手的灵活性和对不同果实采摘的自适应能力。从静力学的角度,建立了弯曲关节的转角及输出力的静态模型,并利用多目标优化方法对各个关键受力的均匀性进行了优化设计,分析了三自由度手指的输出力特性。最后,通过实验方法建立了机械手的苹果抓持实验,分析了气压值与抓持能力之间的关系。实验结果表明:随着待采摘果实目标半径的增大,机械手抓取关节角度有所减小,机械手抓取关节手指内腔的压力有所降低,为新型采摘机械手的研究提供了理论借鉴和技术参考。  相似文献   

13.
针对球形果实采摘问题,采用气动多向弯曲柔性驱动器设计了2种规格带有回转腕部功能的多自由度3指采摘柔性手爪。该采摘柔性手爪采用中心对称结构,其柔性手指与驱动器复合一体,在气压下可产生贴合球果表面的弧状变形,3指协同配合运动抓取球果,并通过腕部旋扭分离方式完成采摘。研究了“刚柔耦合”驱动器的材料和制造工艺,建立了柔性驱动器形变模型,获得了其气压下的形变特性,并进行了相关实验验证。试制了采摘柔性手爪物理样机,研究分析了柔性手爪的工作空间、抓取模式和采摘时的力学性能,并在实验室搭建的采摘平台上进行了多种球果模拟采摘实验。结果表明,该采摘柔性手爪具有3种抓取模式,物形适应性好,抓取柔顺可靠、动作灵活,采摘主动安全、损伤小,适于多种球果的采摘。该柔性手爪采摘球果的尺寸范围为30~130 mm,三指交错强力握取球果的最大质量为1.28 kg。  相似文献   

14.
为实现球形果实自适应采摘,仿人手触觉传感设计并制作了一种用于球果采摘的无系留智能软体手爪,该手爪采用自循环供气与传感集成,将柔性薄膜触力传感器内嵌于软体手爪内并复合自循环气泵,可实现多尺寸、多类型球果自适应抓取。研究了自循环气泵工作原理,进行了结构优化、压力建模与性能测试。试制了自适应软体手爪原理样机,建立了手爪抓持力模型,并进行了静力学实验,获得了其气压下的弯曲变形和力学特性。建立了球果采摘手爪控制系统与自适应抓取机制,搭建模拟采摘实验平台,进行了自适应抓取实验验证及实验环境下的球果采摘与分拣。结果表明,通过接触力反馈与控制系统,该采摘手爪可安全有效地抓取球果,抓取尺寸范围为48.5~97 mm,最大抓取球果质量为350 g,平均采摘用时15 s,成功率为97.46%。  相似文献   

15.
设计了一种采用伸长型气动人工肌肉的三自由度柔性驱动器,该驱动器的驱动装置与本体复合一体,主要由3根对称分布的人工肌肉并联组成。根据力和力矩分析,考虑了驱动器伸长量、弯曲方向和弯曲角度的综合影响,建立了驱动器伸长量、弯曲方向和弯曲角度的非线性理论模型。通过试验对理论模型进行了验证,获得了柔性驱动器在不同通气方式下的形变性能。结果表明:该柔性驱动器弯曲时近似圆弧状,具有较高灵活性,能够实现轴向伸长和空间内任意方向弯曲,可作为执行部件应用于农业机器人和果蔬采摘机械手等仿生机械上。  相似文献   

16.
针对温室高架栽培草莓自动化采收需要,设计了一种单驱双夹式采摘末端执行器。该末端执行器采用单气缸驱动,通过在剪短果柄的同时夹持近果实端果柄的方式完成草莓果实采摘,结构紧凑、控制方便、且通用性好。通过对草莓果实生长形态参数和果柄力学参数的测量分析,优化设计了采摘末端执行器结构模型,并对其果柄夹持和剪切性能进行力学模型验证。  相似文献   

17.
苹果采摘机器人仿生机械手静力学分析与仿真   总被引:1,自引:0,他引:1  
提出了一种应用于苹果采摘机器人末端执行器的仿生机械手。采用腱传动式仿生机械手取代了简单的夹具,提高了末端执行器在复杂环境中抓取苹果的适应性。建立了腱传动式机械手开环控制的驱动力和抓握力间的力学模型。仿真结果表明,在相同的驱动力下,腱传动仿生机械手的抓握力与其机构参数相关。其中,有效抓握力由手指的长度和厚度决定;抓握力的分布由各指节的长度比例决定;手指的初始张角决定了其可抓取苹果的半径范围;随着苹果半径的增大,有效抓握力将减小。摩擦力能够改善抓握力在各指节的分布,使抓握力分布均匀化,同时使有效抓握力变大。  相似文献   

18.
为了解决单一阻塞介质变刚度软机械手抓取复杂外形物体效果不佳的问题,受人体手指结构启发,设计了一种仿指腹结构的混合阻塞变刚度软手指。将其设计为双层结构,外层为气动驱动器,内层为基于主动层干扰与被动颗粒阻塞的混合阻塞变刚度层,使得软手指自动贴合被抓取对象,实现主动驱动的被动适应,并通过调整刚度实现可靠抓取。基于传统缝纫工艺,采用超弹性硅胶材料制造软手指。采用Euler-Bernoulli梁理论和虚功原理,建立了基于悬臂梁结构下的多材料软手指的刚度控制模型,并据此提出增大整体刚度的材料筛选方法。弯曲特性实验表明软手指的弯曲性能优异。变刚度和抓取实验结果表明,混合阻塞软手指刚度增大4.6倍,建立的刚度模型最大相对误差为3.4%;在抓取对象表面粗糙度增大的条件下,软手指拉脱力仍增大17%,达到1.7N;相较于单阻塞介质软手指,抓取成功率和承载能力均得到显著提高。  相似文献   

19.
基于自适应神经模糊网络的果蔬抓取力控制   总被引:4,自引:0,他引:4  
运用自适应神经模糊推理系统设计了农业机器人果蔬抓取力智能控制器。以当前抓取力和滑觉传感器信号的小波变换细节系数作为控制器的输入,末端执行器两指闭合距离作为控制器的输出。基于减法聚类建立模糊推理模型,通过调整聚类半径来优选模糊规则数。给出了训练样本数据集采集方法,并应用梯度下降与最小二乘混合训练算法辨识了控制器的前件参数和结论参数。对所设计的控制器进行了实验验证,结果表明该控制器能够适应果蔬质量、表面摩擦特性等方面的差异。抓取力超调量得到了限制,最大值小于0.8 N,可以避免给抓取对象造成机械损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号