首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We quantified the effect of tissue inhomogeneity on dose distribution in a canine distal extremity resulting from treatment with cobalt photons and photons from a 6 MV accelerator. Monitor units for a typical distal extremity treatment were calculated by two methods, using equally weighted, parallel-opposed fields. The first method was a computed tomography (CT)-based, computerized treatment plan, calculated without inhomogeneity correction. The second method was a manual point dose calculation to the isocenter. A computerized planning system was then used to assess the dose distribution achieved by these two methods when tissue inhomogeneity was taken into account. For cobalt photons, the median percentage of the planning target volume (PTV) that received <95% of the prescribed dose was 4.5% for the CT-based treatment plan, and 26.2% for the manually calculated plan. For 6 MV photons, the median percentage of the PTV that received <95% of the prescribed dose was <1% for both planning methods. The PTV dose achieved without using inhomogeneity correction for cobalt photons results in potentially significant under dosing of portions of the PTV.  相似文献   

2.
Although anisotropic analytical algorithm (AAA) and Acuros XB (AXB) are both radiation dose calculation algorithms that take into account the heterogeneity within the radiation field, Acuros XB is inherently more accurate. The purpose of this retrospective method comparison study was to compare them and evaluate the dose discrepancy within the planning target volume (PTV). Radiation therapy (RT) plans of 11 dogs with intranasal tumors treated by radiation therapy at the University of Georgia were evaluated. All dogs were planned for intensity‐modulated radiation therapy using nine coplanar X‐ray beams that were equally spaced, then dose calculated with anisotropic analytical algorithm. The same plan with the same monitor units was then recalculated using Acuros XB for comparisons. Each dog's planning target volume was separated into air, bone, and tissue and evaluated. The mean dose to the planning target volume estimated by Acuros XB was 1.3% lower. It was 1.4% higher for air, 3.7% lower for bone, and 0.9% lower for tissue. The volume of planning target volume covered by the prescribed dose decreased by 21% when Acuros XB was used due to increased dose heterogeneity within the planning target volume. Anisotropic analytical algorithm relatively underestimates the dose heterogeneity and relatively overestimates the dose to the bone and tissue within the planning target volume for the radiation therapy planning of canine intranasal tumors. This can be clinically significant especially if the tumor cells are present within the bone, because it may result in relative underdosing of the tumor.  相似文献   

3.
This study compared the calculated normal tissue complication probability of brain in dogs with a nasal tumor, which had both photon and proton treatment planning. Nine dogs diagnosed with a variety of histologies, but all with large, caudally located nasal tumors were studied. Three-dimensional (3-D) photon dose distribution, and a proton dose distribution was calculated for each dog. To calculate the normal tissue complication probability (NTCP) for brain, the partial brain volume irradiated with the prescribed dose was determined, then a mathematic model relating complications to partial volume and radiation dose was used. The NTCP was always smaller for proton plans as compared to photon plans, indicating conformation of the dose to the target allows a higher dose to be given. If a 5% NTCP were accepted, the mean applicable dose for this group of dogs was 50.2 Gy for photons, but 58.3 Gy for protons. Not all dogs would benefit the same from proton irradiation. If a large partial brain volume has to be irradiated, the advantage becomes minimal. There is also a minimal advantage if the planning target volume (PTV) includes a small, superficial brain volume. However, for a complex PTV shape the degree of conformation is clearly superior for protons and results in smaller calculated NTCPs.  相似文献   

4.
5.
We evaluated the impact of inverse planned intensity-modulated radiation therapy (IMRT) on the dose-volume histograms (DVHs) and on the normal tissue complication probabilities (NTCPs) of brain and eyes in dogs with nasal tumors. Nine dogs with large, caudally located nasal tumors were planned using conventional techniques and inverse planned IMRT for a total prescribed dose of 52.5 Gy in 3.5 Gy fractions. The equivalent uniform dose for brain and eyes was calculated to estimate the normal tissue complication probability (NTCP) of these organs. The NTCP values as well as the DVHs were used to compare the treatment plans. The dose distribution in IMRT plans was more conformal than in conventional plans. The average dose delivered to one-third of the brain was 10 Gy lower with the IMRT plan compared with conventional planning. The mean partial brain volume receiving 43.6 Gy or more was reduced by 25.6% with IMRT. As a consequence, the NTCPs were also significantly lower in the IMRT plans. The mean NTCP of brain was two times lower and at least one eye could be saved in all patients planed with IMRT. Another possibility with IMRT is dose escalation in the target to improve tumor control while keeping the NTCPs at the same level as for conventional planning. Veterinary  相似文献   

6.
Radiation therapy is the treatment of choice for many primary canine brain tumors. The radiation dose tolerated by surrounding healthy brain tissue can be a limiting factor for radiation treatment and total dose as well as fractionation schedules, and volume effects may play a role in the outcome of patients undergoing radiation therapy. The purpose of this retrospective study was to evaluate the efficacy of radiation therapy in dogs with brain tumors that showed signs of neurologic disease. Forty-six dogs with brain tumors were included in the analysis. In 34 dogs, computer-generated treatment plans were available, and dose-volume data could be obtained. The totally prescribed radiation therapy doses ranged from 35 to 52.5 Gy (mean = 40.9 [SD +/- 2.91) applied in 2.5- to 4-Gy fractions (mean = 3.2). The median overall survival time calculated for deaths attributable to worsening of neurologic signs was 1,174 days (95% confidence interval [CI], 693-1,655 days). Assuming that all deaths were due to disease or treatment consequences, the median survival time was 699 days (95% CI, 589-809 days). No prognostic clinical factors such as the location or size of the tumor or neurologic signs at presentation were identified. With computerized treatment planning and accurate positioning, high doses of radiation (> 80% of the total dose) could be limited to mean relative brain volumes of 35.3% (+/- 12.6). These small volumes may decrease the probability of severe late effects such as infarction or necrosis. In this study, very few immediate or early delayed adverse effects and no late effects were noted, and quality of life was good to excellent.  相似文献   

7.
Potential benefits of planning radiation therapy on a contrast‐enhanced computed tomography scan (ceCT) should be weighed against the possibility that this practice may be associated with an inadvertent risk of overdosing nearby normal tissues. This study investigated the influence of ceCT on intensity‐modulated stereotactic body radiotherapy (IM‐SBRT) planning. Dogs with head and neck, pelvic, or appendicular tumors were included in this retrospective cross‐sectional study. All IM‐SBRT plans were constructed on a pre‐ or ceCT. Contours for tumor and organs at risk (OAR) were manually constructed and copied onto both CT's; IM‐SBRT plans were calculated on each CT in a manner that resulted in equal radiation fluence. The maximum and mean doses for OAR, and minimum, maximum, and mean doses for targets were compared. Data were collected from 40 dogs per anatomic site (head and neck, pelvis, and limbs). The average dose difference between minimum, maximum, and mean doses as calculated on pre‐ and ceCT plans for the gross tumor volume was less than 1% for all anatomic sites. Similarly, the differences between mean and maximum doses for OAR were less than 1%. The difference in dose distribution between plans made on CTs with and without contrast enhancement was tolerable at all treatment sites. Therefore, although caution would be recommended when planning IM‐SBRT for tumors near “reservoirs” for contrast media (such as the heart and urinary bladder), findings supported the use of ceCT with this dose calculation algorithm for both target delineation and IM‐SBRT treatment planning.  相似文献   

8.
Intensity‐modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop‐off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty‐one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared with a comparable group of historical controls treated with conventional two‐dimensional radiotherapy (2D‐RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose–volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D‐RT. Overall median survival for IMRT‐treated and 2D‐treated dogs was 420 and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof‐of‐principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared with historical controls treated with 2D‐RT.  相似文献   

9.
To compare changes in dose distribution in irregularly shaped volumes treated using fields with noncoincident isocenters compared with fields with coincident isocenters. The hypothesis was that use of fields with noncoincident isocenters would result in improved homogeneity of dose distribution. We chose to test the hypothesis in canine nasal tumors because of the increased dorsoventral thickness of the caudal compared with the rostral nasal cavity. Computed tomography images from eight dogs with nasal tumors were selected. A tissue-contouring program was used to outline contours, including the mandible as a normal tissue structure and the planning target volume (PTV), divided into a rostral and caudal volume. A traditional computerized treatment plan consisting of two parallel-opposed fields was constructed for each dog. A second treatment plan using a third caudally located field having a different isocenter was constructed for comparison. Dose-volume histograms were generated and compared for each contoured structure in both plans. In all dogs the use of noncoincident fields resulted in increased dose to the ethmoid region through the caudal field. Minimum dose in the caudal tumor PTV increased as well. At the same time, dose delivered to the mandible, prone to develop significant side effects, was lower in all dogs with the use of noncoincident fields, as it was possible to reduce the dose delivered from the ventral field. Use of photon fields with noncoincident isocenters can improve the dose distribution in irregularly shaped volumes in comparison with fields with coincident isocenters. Improved tumor dose distribution was achieved with the addition of a smaller field having a different isocenter.  相似文献   

10.
For canine and feline patients with head tumors, simultaneous irradiation of the primary tumor and mandibular and retropharyngeal lymph nodes (LNs) is often indicated. The purpose of this study was to assess the repeatability of a planning target volume (PTV) expansion protocol for these LNs. Two CT image sets from 44 dogs and 37 cats that underwent radiation therapy for head tumors were compared to determine LN repositioning accuracy and precision; planning‐CT (for radiation therapy planning) and cone‐beam CT (at the time of actual treatment sessions). Eleven percent of dogs and 65% of cats received treatment to their LNs. In dogs, the mandibular LNs were positioned more caudally (P = 0.0002) and the right mandibular and right retropharyngeal LNs were positioned more to the left side of the patient (P = 0.00015 and P = 0.003, respectively). In cats, left mandibular LN was positioned higher (toward roof) than the planning‐CT (P = 0.028). In conclusion, when the patient immobilization devices and bony anatomy matching are used to align the primary head target and these LNs are treated simultaneously, an asymmetrical PTV expansion that ranges 4–9 mm (dogs) and 2–4 mm (cats), depending on the directions of couch movement, should be used to include the LNs within the PTV at least 95% of the time.  相似文献   

11.
As advanced delivery techniques such as intensity-modulated radiation therapy (IMRT) become conventional in veterinary radiotherapy, highly modulated radiation delivery helps to decrease dose to normal tissues. However, IMRT is only effective if patient setup and anatomy are accurately replicated for each treatment. Numerous techniques have been implemented to decrease patient setup error, however tumor shrinkage, variations in the patient's contour and weight loss continue to be hard to control and can result in clinically relevant dose deviation in radiotherapy plans. Adaptive radiotherapy (ART) is often the most effective means to account for gradual changes such as tumor shrinkage and weight loss, however it is often unclear when adaption is necessary. The goal of this retrospective, observational study was to review dose delivery in dogs and cats who received helical radiotherapy at University of Wisconsin, using detector dose data (D2%, D50%, D98%) and daily megavoltage computed tomography (MVCT) images, and to determine whether ART should be considered more frequently than it currently is. A total of 52 treatment plans were evaluated and included cancers of the head and neck, thorax, and abdomen. After evaluation, 6% of the radiotherapy plan delivered had clinically relevant dose deviations in dose delivery. Dose deviations were more common in thoracic and abdominal targets. While adaptation may have been considered in these cases, the decision to adapt can be complex and all factors, such as treatment delay, cost, and imaging modality, must be considered when adaptation is to be pursued.  相似文献   

12.
Published radiotherapy results for spinal nephroblastomas in dogs are limited. In this retrospective longitudinal study (1/2007–1/2022), five dogs with a median age of 2.8 years received post-operative 3D conformal, conventional fractionated radiotherapy (CFRT) with 2–4 fields (parallel-opposed with or without two hinge-angle fields), for an incompletely resected nephroblastoma. Clinical findings prior to surgery included one or more of the following: pelvic limb paresis (5), faecal incontinence (2), flaccid tail (1), non-ambulatory (2) and deep pain loss (1). All masses were located between T11 and L3 and surgically removed via hemilaminectomy. Dogs received 45–50 Gray (Gy) in 18–20 fractions, and no dogs received chemotherapy post-radiation. At analysis, all dogs were deceased, with none lost to follow-up. The median overall survival (OS) from first treatment to death of any cause was 3.4 years (1234 days; 95% CI 68 days-upper limit not reached; range: 68–3607 days). The median planning target volume was 51.3 cc, with a median PTV dose of 51.4 Gy and median D98 = 48.3 Gy. Late complications or recurrence was difficult to fully determine in this small dataset; however, some degree of ataxia persisted throughout life in all dogs. This study provides preliminary evidence that post-operative radiotherapy may result in prolonged survival times dogs with spinal nephroblastomas.  相似文献   

13.
Irradiated brain tumors commonly progress at the primary site, generating interest in focal dose escalation. The aim of this retrospective observational study was to use biological optimization objectives for a modeling exercise with simultaneously‐integrated boost IMRT (SIB‐IMRT) to generate a dose‐escalated protocol with acceptable late radiation toxicity risk estimate and improve tumor control for brainstem tumors in dogs safely. We re‐planned 20 dog brainstem tumor datasets with SIB‐IMRT, prescribing 20 × 2.81 Gy to the gross tumor volume (GTV) and 20 × 2.5 Gy to the planning target volume. During the optimization process, we used biologically equivalent generalized equivalent uniform doses (gEUD) as planning aids. These were derived from human data, calculated to adhere to normal tissue complication probability (NTCP) ≤5%, and converted to the herein used fractionation schedule. We extracted the absolute organ at risk dose‐volume histograms to calculate NTCP of each individual plan. For planning optimization, gEUD(a = 4) = 39.8 Gy for brain and gEUD(a = 6.3) = 43.8 Gy for brainstem were applied. Mean brain NTCP was low with 0.43% (SD ±0.49%, range 0.01‐2.04%); mean brainstem NTCP was higher with 7.18% (SD ±4.29%, range 2.87‐20.72%). Nevertheless, NTCP of < 10% in brainstem was achievable in 80% (16/20) of dogs. Spearman's correlation between relative GTV and NTCP was high (ρ = 0.798, P < .001), emphasizing increased risk with relative size even with subvolume‐boost. Including biologically based gEUD values into optimization allowed estimating NTCP during the planning process. In conclusion, gEUD‐based SIB‐IMRT planning resulted in dose‐escalated treatment plans with acceptable risk estimate of NTCP < 10% in the majority of dogs with brainstem tumors. Risk was correlated with relative tumor size.  相似文献   

14.
Radiotherapy with or without surgery is a common choice for brain tumors in dogs. Although numerous studies have evaluated use of three‐dimensional conformal radiotherapy, reports of definitive‐intent, IMRT for canine intracranial tumors are lacking. Intensity‐modulated radiation therapy has the benefit of decreasing dose to nearby organs at risk and may aid in reducing toxicity. However, increasing dose conformity with IMRT calls for accurate target delineation and daily patient positioning, in order to decrease the risk of a geographic miss. To determine survival outcome and toxicity, we performed a multi‐institutional retrospective observational study evaluating dogs with brain tumors treated with IMRT. Fifty‐two dogs treated with fractionated, definitive‐intent IMRT at four academic radiotherapy facilities were included. All dogs presented with neurologic signs and were diagnosed via MRI. Presumed radiological diagnoses included 37 meningiomas, 12 gliomas, and one peripheral nerve sheath tumor. One dog had two presumed meningiomas and one dog had either a glioma or meningioma. All dogs were treated in the macroscopic disease setting and were prescribed a total dose of 45‐50 Gy (2.25‐2.5 Gy per fraction in 18‐20 daily fractions). Median survival time for all patients, including seven cases treated with a second course of therapy was 18.1 months (95% confidence of interval 12.3‐26.6 months). As previously described for brain tumors, increasing severity of neurologic signs at diagnosis was associated with a worse outcome. Intensity‐modulated radiation therapy was well tolerated with few reported acute, acute delayed, or late side effects.  相似文献   

15.
16.
Because radiation cell killing follows Poisson statistics, radiation dose response curves for tumors and normal tissue response are sigmoidal in shape. This shape implies that small errors in delivery of radiation dose can result in large changes in the probability of normal tissue necrosis or tumor control. Thus it is important for veterinarians involved with radiation oncology to be familiar with the basic aspects of radiation physics and dose calculation as they relate to radiation therapy. In this paper, we present a review of pertinent physics and treatment planning relative to orthovoltage and cobalt irradiation. The usefulness of radiation treatment planning computers is emphasized for improving the radiation oncologist's knowledge of dose distribution and selection of the optimum treatment plan.  相似文献   

17.
18.
While surgery is the treatment of choice for thymomas, complete excision is not possible in a significant proportion of cases. For these patients, radiotherapy can be used as neoadjunctive, post‐operative adjunctive or sole therapy. During radiotherapy, rapid biological clearance of tumour cells is often observed, requiring adaptation of the treatment plan. Adaptive radiation therapy (RT) is a dynamic process, whereby the treatment plan is altered throughout the treatment course due to changes in morphologic, functional or positioning changes. With the hypothesis, that individually adapted replanning will massively reduce the dose to organs at risk (OAR) in a fast‐changing environment such as a rapidly responding thymoma, the dosimetric impact of adaptive treatment planning in 5 patients with large thymoma was measured. In all patients rapid tumour‐shrinkage of the gross tumour volume was observed after 1 week of therapy, with a mean shrinkage of 31.0% ± 15.2%, or a tumour regression of 5.2% per day. In consequence, there was a considerable change in position of organs such as heart and lung, both of them moving cranially into the high dose area upon tumour regression. After mid‐therapy replanning, the dose to OAR was significantly reduced, with ?18.2% in the mean heart dose and ?27.9% in the V20 lung dose. Adaptive planning led to a significantly reduced radiation dose and hence protection of OAR for these patients. It can be concluded that adaptive replanning should be considered for canine and feline thymoma patients receiving fractionated RT.  相似文献   

19.
Thymoma is a relatively common tumor in rabbits. Treatment with surgery, radiation therapy, and chemotherapy alone or in combination has been reported with varying outcomes. Stereotactic volumetric modulated arc radiotherapy delivered in a hypofractionated manner allows high doses of radiation to be delivered to the target volume while allowing sparing of adjacent critical structures. This therapy is ideally suited for thymomas in rabbits given their size, the difficulty of multiple anesthesia episodes and the complexity of the radiotherapy plans required due to the tumor's proximity to the heart, lungs, and mediastinal structures. Fifteen rabbits with thymoma were prospectively recruited for this observational, single institution, single arm clinical study. All rabbits were imaged with both computed tomography (CT) and magnetic resonance imaging (MRI). A total dose of 40 Gy in six fractions was delivered using a single arc over an 11‐day period with repeat CT simulation done every other fraction for adaptive planning. Follow‐up evaluation was done through repeat CT and MRI imaging and revealed complete responses using the Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Two rabbits had died at 618 and 718 days, 10 were alive and three were lost to follow‐up. Observed acute and late effects were graded according to the Veterinary Radiation Therapy Oncology Group (VRTOG) criteria and were found to be minimal.  相似文献   

20.
There are few reports of radiation treatment for brain tumors in dogs, and the optimal treatment protocol has yet to be established. We completed a retrospective analysis of the survival times of a series of 83 dogs with intracranial masses that were treated by hypofractionated megavoltage radiation therapy. A total tumor dose of 38 Gray was given over 5 weeks as once weekly fractions via 3 perpendicular portals. The median survival time from the start of radiotherapy for the whole cohort was 43.7 weeks (range, 0.1-172 weeks). Extra-axial masses had a better survival time (49.7 weeks) than did other intracranial masses (intra-axial, 40.4 weeks; pituitary, 21.0 weeks). Delayed radiation toxicity was suspected as the cause of death or reason for euthanasia in 12 dogs. The hypofractionated radiation protocol resulted in survival times similar to those obtained using more conventional multifractionated regimens, and this protocol may be a useful, less intensive alternative treatment for brain tumors in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号