首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the intravenous (i.v.) administration of 1.1 mg/kg of flunixin meglumine on thromboxane B2 (TxB2) concentrations were studied in sedentary and 2-year-old horses in training. The baseline TxB2 serum concentrations generated during clotting were 2.89 +/- 0.81, 2.19 +/- 0.25 and 0.88 +/- 0.12 ng/ml for the 2-year-old Thoroughbreds in training, sedentary horses under 10 and over 10 years old, respectively. There was a significant difference in baseline TxB2 concentrations between older and younger horses (P less than 0.005). Significant reduction in TxB2 production from baseline were noted at 1 (P less than 0.01) and 4 h (P less than 0.01) but not at 8 h after flunixin administration. The percent reduction in serum TxB2 concentration at 1 h after the administration of flunixin was 68.6 +/- 7.3 and 45.2 +/- 6.8 for the training and sedentary horses, respectively; the differences were significant (P less than 0.04). Serum concentrations of TxB2 returned to baseline values by 12-16 h after flunixin administration. The results of this study indicate a difference in the TxB2 concentrations of older vs. younger horses and a difference in the suppression of TxB2 after the administration of flunixin in 2-year-old Thoroughbreds in training compared to sedentary horses. The results of this study suggest that the detection of low concentrations of flunixin in urine 24 h post-administration may not represent pharmacologic effective concentrations of flunixin in plasma.  相似文献   

2.
Background: Nonsteroidal anti‐inflammatory drugs (NSAIDs) are commonly used systemically for the treatment of inflammatory ocular disease in horses. However, little information exists regarding the ocular penetration of this class of drugs in the horse. Objective: To determine the distribution of orally administered flunixin meglumine and firocoxib into the aqueous humor of horses. Animals: Fifteen healthy adult horses with no evidence of ophthalmic disease. Methods: Horses were randomly assigned to a control group and 2 treatment groups of equal sizes (n = 5). Horses assigned to the treatment groups received an NSAID (flunixin meglumine, 1.1 mg/kg PO q24h or firocoxib, 0.1 mg/kg PO q24h for 7 days). Horses in the control group received no medications. Concentrations of flunixin meglumine and firocoxib in serum and aqueous humor and prostaglandin (PG) E2 in aqueous humor were determined on days 1, 3, and 5 and aqueous : serum ratios were calculated. Results: Firocoxib penetrated the aqueous humor to a significantly greater extent than did flunixin meglumine at days 3 and 5. Aqueous : serum ratios were 3.59 ± 3.32 and 11.99 ± 4.62% for flunixin meglumine and firocoxib, respectively. Ocular PGE2 concentrations showed no differences at any time point among study groups. Conclusions and Clinical Importance: Both flunixin meglumine and firocoxib penetrated into the aqueous humor of horses. This study suggests that orally administered firocoxib penetrates the aqueous humor better than orally administered flunixin meglumine at label dosages in the absence of ocular inflammation. Firocoxib should be considered for the treatment of inflammatory ophthalmic lesions in horses at risk for the development of adverse effects associated with nonselective NSAID administration.  相似文献   

3.
An injectable preparation of flunixin meglumine was administered orally and intravenously at a dose of 1.1 mg/kg to six healthy adult horses in a cross-over design. Flunixin meglumine was detected in plasma within 15 min of administration and peak plasma concentrations were observed 45-60 min after oral administration. Mean bioavailability of the oral drug was 71.9 +/- 26.0%, with an absorption half-life of 0.76 h. The apparent elimination half-life after oral administration was 2.4 h. The injectable preparation of flunixin meglumine is suitable for oral administration to horses.  相似文献   

4.
The efficacy of low doses of flunixin meglumine in reducing eicosanoid generation and clinical signs in response to experimentally induced endotoxaemia was investigated. Thromboxane B2 and 6-keto-prostaglandin F1 alpha were measured in serum and plasma by radioimmunoassay. Plasma flunixin concentrations were determined by high performance liquid chromatography and pharmacokinetic parameters derived non-compartmentally. In horses administered flunixin meglumine before endotoxin challenge, a significant suppression in plasma thromboxane B2 and 6-keto-prostaglandin F1 alpha generation was observed. Elevations in blood lactate were significantly suppressed in horses pretreated with 0.25 mg/kg bodyweight flunixin meglumine. Reduction of the clinical signs of endotoxaemia by flunixin meglumine was dose dependent. Low doses of flunixin inhibited eicosanoid production without masking all of the physical manifestations of endotoxaemia necessary for accurate clinical evaluation of the horse's status.  相似文献   

5.
REASONS FOR PERFORMING STUDY: Absorption of endotoxin across ischaemic-injured mucosa is a major cause of mortality after colic surgery. Recent studies have shown that flunixin meglumine retards mucosal repair. Systemic lidocaine has been used to treat post operative ileus, but it also has novel anti-inflammatory effects that could improve mucosal recovery after ischaemic injury. HYPOTHESIS: Systemic lidocaine ameliorates the deleterious negative effects of flunixin meglumine on recovery of mucosal barrier function. METHODS: Horses were treated i.v. immediately before anaesthesia with either 0.9% saline 1 ml/50 kg bwt, flunixin meglumine 1 mg/kg bwt every 12 h or lidocaine 1.3 mg/kg bwt loading dose followed by 0.05 mg/kg bwt/min constant rate infusion, or both flunixin meglumine and lidocaine, with 6 horses allocated randomly to each group. Two sections of jejunum were subjected to 2 h of ischaemia by temporary occlusion of the local blood supply, via a midline celiotomy. Horses were monitored with a behavioural pain score and were subjected to euthanasia 18 h after reversal of ischaemia. Ischaemic-injured and control jejunum was mounted in Ussing chambers for measurement of transepithelial electrical resistance (TER) and permeability to lipopolysaccharide (LPS). RESULTS: In ischaemic-injured jejunum TER was significantly higher in horses treated with saline, lidocaine or lidocaine and flunixin meglumine combined, compared to horses treated with flunixin meglumine. In ischaemic-injured jejunum LPS permeability was significantly increased in horses treated with flunixin meglumine alone. Behavioural pain scores did not increase significantly after surgery in horses treated with flunixin meglumine. CONCLUSIONS: Treatment with systemic lidocaine ameliorated the inhibitory effects of flunixin meglumine on recovery of the mucosal barrier from ischaemic injury, when the 2 treatments were combined. The mechanism of lidocaine in improving mucosal repair has not yet been elucidated.  相似文献   

6.
Pharmacokinetics of flunixin meglumine in donkeys, mules, and horses   总被引:6,自引:0,他引:6  
OBJECTIVE: To compare serum disposition of flunixin meglumine after i.v. administration of a bolus to horses, donkeys, and mules. ANIMALS: 3 clinically normal horses, 5 clinically normal donkeys, and 5 clinically normal mules. PROCEDURE: Blood samples were collected at time zero (before) and 5, 10, 15, 30, and 45 minutes, and at 1, 1.25, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, and 8 hours after i.v. administration of a bolus of flunixin meglumine (1.1 mg/kg of body weight). Serum was analyzed in duplicate by the use of high-performance liquid chromatography for determination of flunixin meglumine concentrations. The serum concentration-time curve for each horse, donkey, and mule were analyzed separately to estimate noncompartmental pharmacokinetic variables RESULTS: Mean (+/-SD) area under the curve for donkeys (646 +/- 148 minute x microg/ml) was significantly less than for horses (976 +/- 168 minute x microg/ml) or for mules (860 +/- 343 minute x microg/ml). Mean residence time for donkeys (54.6 +/- 7 minutes) was significantly less than for horses (110 +/- 24 minutes) or for mules (93 +/- 30 minutes). Mean total body clearance for donkeys (1.78 +/- 0.5 ml/kg/h) was significantly different from that for horses (1.14 +/- 0.18 ml/kg/h) but not from that for mules (1.4 +/- 0.5 ml/kg/h). Significant differences were not found between horses and mules for any pharmacokinetic variable. CONCLUSION AND CLINICAL RELEVANCE: Significant differences exist with regard to serum disposition of flunixin meglumine in donkeys, compared with that for horses and mules. Consequently, flunixin meglumine dosing regimens used in horses may be inappropriate for use in donkeys.  相似文献   

7.
OBJECTIVE: To examine pharmacokinetic interactions of flunixin meglumine and enrofloxacin in dogs following simultaneously administered SC injections of these drugs. ANIMALS: 10 Beagles (4 males and 6 females). PROCEDURE: All dogs underwent the following 3 drug administration protocols with a 4-week washout period between treatments: flunixin administration alone (1 mg/kg, SC); simultaneous administration of flunixin (1 mg/kg, SC) and enrofloxacin (5 mg/kg, SC); and enrofloxacin administration alone (5 mg/kg, SC). Blood samples were collected from the cephalic vein at 0.5, 0.75, 1, 1.5, 2, 3, 5, 8, 12, and 24 hours following SC injections, and pharmacokinetic parameters of flunixin and enrofloxacin were calculated from plasma drug concentrations. RESULTS: Significant increases in the area under the curve (32%) and in the elimination half-life (29%) and a significant decrease (23%) in the elimination rate constant from the central compartment of flunixin were found following coadministration with enrofloxacin, compared with administration of flunixin alone. A significant increase (50%) in the elimination half-life and a significant decrease (21%) in the maximum plasma drug concentration of enrofloxacin were found following coadministration with flunixin, compared with administration of enrofloxacin alone. CONCLUSIONS AND CLINICAL RELEVANCE: The observed decrease in drug clearances as a result of coadministration of flunixin and enrofloxacin indicates that these drugs interact during the elimination phase. Consequently, care should be taken during the concomitant use of flunixin and enrofloxacin in dogs to avoid adverse drug reactions.  相似文献   

8.
In most species, large variations in body size necessitate dose adjustments based on an allometric function of body weight. Despite the substantial disparity in body size between miniature horses and light‐breed horses, there are no studies investigating appropriate dosing of any veterinary drug in miniature horses. The purpose of this study was to determine whether miniature horses should receive a different dosage of flunixin meglumine than that used typically in light‐breed horses. A standard dose of flunixin meglumine was administered intravenously to eight horses of each breed, and three‐compartmental analysis was used to compare pharmacokinetic parameters between breed groups. The total body clearance of flunixin was 0.97 ± 0.30 mL/min/kg in miniature horses and 1.04 ± 0.27 mL/min/kg in quarter horses. There were no significant differences between miniature horses and quarter horses in total body clearance, the terminal elimination rate, area under the plasma concentration versus time curve, apparent volume of distribution at steady‐state or the volume of the central compartment for flunixin (> 0.05). Therefore, flunixin meglumine may be administered to miniature horses at the same dosage as is used in light‐breed horses.  相似文献   

9.
OBJECTIVE: To assess effects of treatment with phenylbutazone (PBZ) or a combination of PBZ and flunixin meglumine in horses. ANIMALS: 24 adult horses. PROCEDURE: 13 horses received nonsteroidal antiinflammatory drugs (NSAIDs) in a crossover design. Eleven control horses were exposed to similar environmental conditions. Treated horses received PBZ (2.2 mg/kg, PO, q 12 h, for 5 days) and a combination of PBZ and flunixin meglumine (PBZ, 2.2 mg/kg, PO, q 12 h, for 5 days; flunixin meglumine, 1.1 mg/kg, IV, q 12 h, for 5 days). Serum samples were obtained on day 0 (first day of treatment) and day 5, and total protein, albumin, and globulin were measured. RESULTS: 1 horse was euthanatized with severe hypoproteinemia, hypoalbuminemia, and colitis during the combination treatment. Comparisons revealed no significant difference between control horses and horses treated with PBZ alone. There was a significant difference between control and treated horses when administered a combination of PBZ and flunixin meglumine. Correction for horses with values >2 SDs from the mean revealed a significant difference between control horses and horses administered the combination treatment, between control horses and horses administered PBZ alone, and between horses receiving the combination treatment and PBZ alone. Gastroscopy of 4 horses revealed substantial gastric ulcers when receiving the combination NSAID treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of results of the study indicates the need for caution when administering a combination NSAID treatment to horses because the detrimental effects may outweigh any potential benefits.  相似文献   

10.
In this study, effect of flunixin meglumine on serum tumour necrosis factor alpha, (TNFalpha) interleukin-1 beta and interleukin-10 levels was investigated in lipopolysaccharide-induced endotoxic mice. Healthy 273 Balb/C mice were used and divided into three equal groups. Group 1 was injected lipopolysaccharide (Escherichia coli 0111:B4, 250 microg/mouse, intraperitoneally), Group 2 was injected flunixin meglumine (2.5 mg/kg, subcutaneously), and Group 3 was injected lipopolysaccharide + flunixin meglumine. After the treatments, at 0., 1., 2., 3., 6., 12., 24th hours and 3., 5., 7., 14., 21., 28th days blood samples were taken from seven mice in each group. Serum TNFalpha, interleukin-1 beta and interleukin-10 levels were measured using commercially available kits by enzyme-linked immunoassay. Flunixin meglumine did not affect the cytokine levels in healthy animals. While lipopolysaccharide increased serum TNFalpha, interleukin-1 beta and interleukin-10 levels, flunixin meglumine inhibited increases at levels of all cytokines. As result, flunixin meglumine showed depressor effect on cytokine levels in endotoxemia and the effect may be a reason for the first chosen member of nonsteroid anti-inflammatory drug in endotoxemia.  相似文献   

11.
OBJECTIVE: To identify risk factors for recurrent airway obstruction (RAO) among horses examined at veterinary teaching hospitals in North America. DESIGN: Retrospective case-control study. ANIMALS: 1,444 horses with RAO and 1,444 control horses examined for other reasons. PROCEDURE: The Veterinary Medical Database was searched for records of horses in which RAO was diagnosed. A control group was identified by randomly selecting a horse with a diagnosis other than RAO that matched the institution and year of admission for each of the horses with RAO. Information obtained included hospital, admission year and month, age, sex, breed, and discharge status. The association between risk factors and diagnosis of RAO was estimated with logistic regression models. RESULTS: The risk of RAO increased significantly with age, with horses > or = 7 years old being 6 to 7 times as likely to have RAO as were horses < or = 4 years old. Thoroughbreds were 3 times as likely to have RAO as were ponies. Horses were 1.6 and 1.5 times as likely to be examined because of RAO during winter and spring, respectively, than they were during summer. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that RAO was more likely to be diagnosed in females, horses > or = 4 years old, and Thoroughbreds and that RAO has a seasonal distribution.  相似文献   

12.
The signalment, clinical and laboratory findings of surgical conditions, treatment, and outcome of 102 cases of descending colon disease in horses were reviewed. Abnormal conditions were categorized as enteroliths, impactions, strangulating lipomas, fecaliths, foreign body obstruction, volvulus, nephrosplenic entrapment, and other conditions. Eleven breed categories of horses were seen during this period. Arabians, ponies, and American miniature horses were more predisposed to descending colon disease than other breeds (P less than 0.05). Female horses and animals greater than 15 years old were more likely to be affected with descending colon disease, whereas horses less than 5 years old were less likely to be affected (P less than 0.05). More specifically, Arabians, Quarter Horses, and Thoroughbreds greater than 10 years old were breeds that were overrepresented when compared with the hospital population (P less than 0.05). Enteroliths were most commonly seen in horses between 5 and 10 years old (P less than 0.05) and were not seen in horses less than 2 years old. Enteroliths had a tendency to develop more commonly in Arabians and in female horses. Impactions affected horses greater than 15 years old (P less than 0.05) and had a greater tendency to affect ponies and American miniature horses. Female horses were more commonly affected by impaction than were males. Strangulating lipomas were commonly seen in horses greater than 15 years old (P less than 0.05) and more specifically female Quarter Horses (P less than 0.05). Fecaliths tended to be a disease of horses less than 1 year old or greater than 15 years old and affected males more commonly than females.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
OBJECTIVE: To determine the effectiveness of administering multiple doses of phenylbutazone alone or a combination of phenylbutazone and flunixin meglumine to alleviate lameness in horses. ANIMALS: 29 adult horses with naturally occurring forelimb and hind limb lameness. PROCEDURES: Lameness evaluations were performed by use of kinematic evaluation while horses were trotting on a treadmill. Lameness evaluations were performed before and 12 hours after administration of 2 nonsteroidal anti-inflammatory drug (NSAID) treatment regimens. Phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days, or phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days in combination with flunixin meglumine administered at 1.1 mg/kg, IV, every 12 hours for 5 days. RESULTS: Alleviation of lameness was greater after administration of the combination of NSAIDs than after oral administration of phenylbutazone alone. Improvement in horses after a combination of NSAIDs did not completely mask lameness. Five horses did not improve after either NSAID treatment regimen. All posttreatment plasma concentrations of NSAIDs were less than those currently allowed by the United States Equestrian Federation Inc for a single NSAID. One horse administered the combination NSAID regimen died of acute necrotizing colitis during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of a combination of NSAIDs at the dosages and intervals used in the study reported here alleviated the lameness condition more effectively than did oral administration of phenylbutazone alone. This may attract use of combinations of NSAIDs to increase performance despite potential toxic adverse effects.  相似文献   

14.
OBJECTIVE: To determine the effect of meloxicam and flunixin meglumine on recovery of ischemia-injured equine jejunum. ANIMALS: 18 horses. PROCEDURES: Horses received butorphanol tartrate; were treated IV with saline (0.9% NaCl) solution (SS; 12 mL; n = 6), flunixin meglumine (1.1 mg/kg; 6), or meloxicam (0.6 mg/kg; 6) 1 hour before ischemia was induced for 2 hours in a portion of jejunum; and were allowed to recover for 18 hours. Flunixin and SS treatments were repeated after 12 hours; all 3 treatments were administered immediately prior to euthanasia. Selected clinical variables, postoperative pain scores, and meloxicam pharmacokinetic data were evaluated. After euthanasia, assessment of epithelial barrier function, histologic evaluation, and western blot analysis of ischemia-injured and control jejunal mucosa samples from the 3 groups were performed. RESULTS: Meloxicam- or flunixin-treated horses had improved postoperative pain scores and clinical variables, compared with SS-treated horses. Recovery of transepithelial barrier function in ischemia-injured jejunum was inhibited by flunixin but permitted similarly by meloxicam and SS treatments. Eighteen hours after cessation of ischemia, numbers of neutrophils in ischemia-injured tissue were higher in horses treated with meloxicam or flunixin than SS. Plasma meloxicam concentrations were similar to those reported previously, but clearance was slower. Changes in expression of proteins associated with inflammatory responses to ischemic injury and with different drug treatments occurred, suggesting cyclooxygenase-independent effects. CONCLUSIONS AND CLINICAL RELEVANCE: Although further assessment is needed, these data have suggested that IV administration of meloxicam may be a useful alternative to flunixin meglumine for postoperative treatment of horses with colic.  相似文献   

15.
GSH-Px activity in blood and plasma of 269 horses was determined and interrelated to age, sex, and type of use or breed. Furthermore values in blood were related to hematocrit and hemoglobin contents. Trotters and riding horses had higher GSH-Px activities in plasma as well as in blood (0.83 +/- 0.22 and 0.79 +/- 0.23 U/ml plasma or 27.2 +/- 4.3 and 24.0 +/- 7.0 U/ml blood) than Thoroughbreds in training and yearlings (0.61 +/- 0.,14 and 0.56 +/- 0.16 U/ml plasma or 20.6 2 +/- 6.9 and 24.6 +/- 4.3 U/ml blood). 3 to 6 years old Thoroughbreds had higher GSH-Px-activities than 1 to 2 years old ones. Colts and fillies did not have differing values.  相似文献   

16.
Twelve clinically sound, healthy, athletically conditioned Thoroughbred horses were subjected to an incremental exercise stress test to determine the effects and period of detection of a single dose of flunixin meglumine (1.1 mg/kg by intravenous injection) in serum and urine by ELISA. Flunixin concentrations, performance, and hematologic and clinical chemical parameters were measured. All horses were rotated through four treatment groups of a Latin-square design providing for each horse to serve as its own control. Flunixin meglumine reduced prostaglandin F(1alpha) and thromboxane concentrations that had been increased by intense exercise. Performance parameters did not improve and prostaglandin concentrations did not significantly correlate with total run time. Exercise did not change the flunixin elimination profile in either serum or urine, and concentrations were found to be below the detection limit of the ELISA test within 36 hours in serum and 120 hours in urine.  相似文献   

17.
The clinical effect of flunixin meglumine administration was determined in cows with acute mastitis induced by intramammary administration of endotoxin. In 12 lactating cows, 10 micrograms of Escherichia coli 026:B6 endotoxin were administered via a teat cannula into the teat cistern of single randomly selected rear quarters. Cows were challenge exposed as pairs. One cow in each pair was administered parenteral flunixin meglumine (6 cows) and 1 cow per pair was administered saline solution (6 cows). Multiple doses (7) of 1.1 mg of flunixin meglumine/kg of body weight or saline solution were administered at 8-hour intervals beginning 2 hours after endotoxin. Cow and quarter clinical signs as well as milk somatic cell concentrations, bovine serum albumin, electrical conductivity, and milk production were determined before and for 14 days after endotoxin inoculation. Intramammary endotoxin produced signs characteristic of acute coliform mastitis. Quarter and systemic abnormalities occurred and milk production was reduced by approximately 50% at 12 hours after endotoxin. Flunixin meglumine therapy significantly (P less than or equal to 0.05) reduced rectal temperatures and quarter signs of inflammation and improved clinically graded depression when compared with these signs in saline solution-treated controls. Milk production and laboratory indicators of inflammation in milk were not significantly (P greater than 0.05) different for flunixin meglumine vs saline solution controls. The clinical response observed was consistent with the antipyretic, analgesic, and anti-inflammatory properties of flunixin meglumine.  相似文献   

18.
In a study to evaluate the effect of flunixin meglumine on secretory diarrhea, 11 calves were assigned to 3 groups: group 1 (n = 3) served as controls, group-2 calves (n = 4) were given 2.2 mg of flunixin meglumine/kg, IM at 7 AM and 3 PM, and group-3 calves (n = 4) were given 2.2 mg of flunixin meglumine/kg, IM at 7 AM, 11 AM, and 3 PM. All calves were given approximately 200 micrograms of heat-stable Escherichia coli enterotoxin (STa) orally at 8 AM. Mean cumulative fecal output for groups 1, 2, and 3 was 1,331.0 +/- 317.2 g, 1,544.3 +/- 154.4 g, and 785.5 +/- 276.5 g, respectively. There was a significant (P less than 0.05) reduction in mean fecal output in group-3 calves, compared with that in groups 1 and 2. Calves in group 2 tended to have a delay, but not a reduction, in their fecal output. At 12 hours, hemoconcentration was significantly (P less than 0.05) greater in group-1 calves than in group-2 or group-3 calves.  相似文献   

19.
Two cyclooxygenase inhibitors (flunixin meglumine and phenylbutazone) and a selective thromboxane synthetase inhibitor were assessed in the management of experimental equine endotoxemia. Drugs or saline solution were administered to 16 horses 15 minutes before administration of a sublethal dose of endotoxin (Escherichia coli 055:B5). Plasma concentrations of thromboxane B2 (TxB2), prostacyclin (6-keto PGF1 alpha), plasma lactate, and hematologic values and clinical appearance were monitored for 3 hours after endotoxin administration. Pretreatment with flunixin meglumine (1 mg/kg of body weight) prevented most of the endotoxin-induced changes and correlated with a significant decrease in plasma TxB2 and 6-keto PGF1 alpha concentrations, compared with concentrations in nontreated horses (ie, pretreated with saline solution). Pretreatment with phenylbutazone (2 mg/kg) attenuated the effects of endotoxin and was associated with a brief, early, significant increase in plasma TxB2 concentrations, but not in plasma 6-keto PGF1 alpha concentrations. Pretreatment with the thromboxane synthetase inhibitor did not appear to clinically benefit the horses involved; however, arachidonic acid metabolism was redirected to prostacyclin production.  相似文献   

20.
Newer cyclo-oxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drugs (NSAIDs), such as firocoxib, are proposed to reduce inhibition of cyclo-oxygenase-1 (COX-1) and avoid undesirable side effects, while continuing to inhibit inflammation associated with COX-2. However, COX selectivity is typically based on in vitro testing, which may not provide sufficient information critical for treatment selection. This study investigated the pharmacokinetics and ex vivo COX-1 and COX-2 inhibition of phenylbutazone, flunixin meglumine, meloxicam and firocoxib. Horses (n = 3) were administered one of the four drugs, in a randomised cross-over design, with 3-week washout periods. For each drug, three doses were given and sampling performed. Drug plasma concentrations, thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were determined. After one dose, TXB2 and PGE2 levels were significantly higher in horses administered firocoxib compared to flunixin meglumine. Following the third dose, TXB2 levels in horses administered firocoxib and meloxicam were significantly higher compared to flunixin meglumine or phenylbutazone; all drugs reduced PGE2 to a similar degree. The mean plasma half-lives were 5.97 ± 0.47, 4.74 ± 0.14, 8.24 ± 3.74 and 47.42 ± 7.41 h for phenylbutazone, flunixin meglumine, meloxicam and firocoxib, respectively. Firocoxib and meloxicam exhibited significantly less COX-1 inhibition compared to flunixin meglumine and phenylbutazone; all drugs inhibited COX-2. The plasma half-life of firocoxib was longer than the other NSAIDs, including meloxicam. Data from this study have important clinical relevance and should be used to inform practitioners’ drug selection of a COX-1 sparing or traditional NSAID and dose selection and to provide knowledge of the duration for the four NSAIDs studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号