首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Background, Aims and Scope   Sulfate-reducing bacteria (SRB) are known for their capacity to reduce and precipitate heavy metals (HM) as metal sulfides, offering the opportunity to create an in situ reactive zone for the treatment of heavy metal-contaminated groundwater, a process called in situ metal precipitation (ISMP). The applicability of the ISMP technology first has to be investigated at a laboratory scale before going into an on site application. The evaluation and optimization of the ISMP process is facilitated when physical/chemical analysis techniques are combined with molecular tools that specifically monitor the abundance, diversity and dynamics of the indigenous sulfate reducing microbial community. In this study, batch experiments were conducted in order to investigate the feasibility of ISMP as a groundwater remediation strategy for an industrial site contaminated with elevated levels of Zn, Cd, Co and Ni. Methods   The potential of different types of carbon source/ electron donor (lactate, acetate, methanol, ethanol, Hydrogen Release Compound?, molasses) to stimulate the sulfate reduction and metal precipitation activity of the naturally present (or indigenous) SRB community was explored. In addition, the effect of amending vitamin B12 and yeast extract was evaluated. The ISMP process was monitored by combining analytical analyzes of process parameters (SO42-concentration, heavy metal concentrations, pH, Eh) with molecular tools such as SRB subgroup and genus specific PCR, denaturing gradient gel electrophoresis (DGGE), and phylogenetic analysis of clone sequences, based on either the 16S rRNA or the dsr (dissimilatory sulfite reductase) gene. Results and Discussion   The efficiency of different carbon-sources to stimulate the ISMP process followed the order HRC 〉 molasses 〉 methanol 〉 lactate 〉 ethanol 〉 acetate. Within 10 weeks, the highest sulfate and metal removal efficiencies ranged from 85% to 99%. Addition of yeast extract boosted the ISMP process, whereas vitamin B12 negligibly affected SRB activity. Analysis of the sulfate reducing population by SRB subgroup and genus specific PCR demonstrated that members of the genus Desulfosporosinus dominated in all batch tests, while 16S rDNA DGGE profiles additionally revealed the presence in the microbial communities of non-sulfate reducing bacteria within the family Clostridium and the -proteobacteria. The dsrB-based DGGE profiles allowed us to assess the diversity and dynamics of the sulfate reducing community and added to a better understanding of the effects of different batch conditions on the ISMP process. Remarkably, all dsrB sequences affiliated with the dsrB gene sequence cluster found in Desulfotomaculum, which received their xenologous dsrB gene from the -proteobacteria. Conclusions   The batch experiments, which aimed at stimulating the activities of the indigenous SRB communities, demonstrated that these communities were present and that their activities could be used to obtain efficient in situ precipitation of the contaminating heavy metals. This opens the possibility to test this concept in the future as an on site demonstration as part of the groundwater strategy for the heavy metal contaminated site. Although batch setups are suitable for preliminary feasibility studies for ISMP, they do not reflect the in situ situation where sulfate and heavy metal and metalloid polluted groundwater are supplied continuously. A sulfate reducing strain JG32A was isolated from whose 16S rRNA gene affiliated with the genus Desulfosporosinus, while its dsrB gene sequence clustered with Desulfotomaculum dsrB gene sequences, which received their xenologous dsr genes from -proteobacteria. Therefore we hypothesize that the batch experiments enrich members of the Desulfosporosinus genus that possess a non-orthologous dsrB gene. Recommendation and Perspective   The next step towards an on site pilot test for ISMP will be the setup of a series of column experiments, with process conditions that are selected based on the above mentioned results. This will allow to define optimal ISMP process conditions and to test its long-term efficacy and sustainability before going into an on site bioremediation application. By applying the described molecular tools together with physical-chemical analyzes, it can be investigated whether the same SRB community is enriched and which type of C-source is most effective in promoting and sustaining its growth and sulfate-reduction activity.  相似文献   

2.
Background, Aims and Scope  Phytoremediation is a promising means for the treatment of heavy metal contamination. Although several species have been identified as hyperaccumulators, most studies have been conducted with only one metal. Experiments were conducted to investigate the ability of Helianthus annuus and Thlaspi caerulescens to simultaneously uptake Cd, Cr and Ni. Materials and Methods  The efficiency of plants grown in a sandy-loam soil was investigated. The ability of two EDTA concentrations (0.1 and 0.3 g kg−1) for enhancing the phytoremediation of Cd, Cr and Ni at two different metal concentrations (24.75 mg kg−1 and 90 mg kg−1) was studied. Results   Thlaspi hyperaccumulated Ni with 0.1 g kg−1 EDTA. When the EDTA dosage was increased to 0.3 g kg−1, Thlaspi was able to hyperaccumulate both Ni and Cr. Since Thlaspi is a low-biomass plant, it was considered insufficient for full-scale applications. Helianthus annuus hyperacummulated Cr (with 0.1 g kg−1 EDTA) and Cd (0.3 g kg−1 EDTA). Discussion  When the contamination was 8.25 mg kg−1 per metal, the total metal uptake was 10–25% (1.35 to 2.12 mg) higher and had the same uptake selectivity (Cr>>Cd>Ni) for both EDTA levels. It was hypothesized that complexation with EDTA interfered with Ni translocation. For these experiments, the optimal results were obtained with the H. annuus-0.1 g kg−1 EDTA combination. Conclusions  Although the use of EDTA did increase the amount of metal that could be extracted, care should be taken during in-situ field applications. Chelators can also increase the amount of metals that are leached past the root zone. Metal leaching and subsequent migration could lead to ground water contamination as well as lead to new soil contamination. Recommendations and Perspectives  Additional research to identify the optimal EDTA dosage for field applications is warranted. This is necessary to ensure that the metals do not leach past the root zone. Identification of a plant that can hyperaccumulate multiple metals is critical for phytoremediation to be a viable remediation alternative. In addition to being able to hyperaccumulate multiple metals, the optimal plant must be fast growing with sufficient biomass to sequester the heavy metals.  相似文献   

3.
Volcanic rock is a potential adsorbent for metallic ions from wastewater. This study determined the capacity of Gisenyi volcanic rock found in Northern Rwanda to adsorb Cd, Cu, Pb and Zn using laboratory scale batch experiments under a variety of experimental conditions (initial metal concentration varied from 1 to 50 mg/L, adsorbent dosage 4 g/L, solid/liquid ratio of 1:250, contact time 120 h, particle size 250–900 μm). The adsorbent had a surface area of 3 m2/g. The adsorption process was optimal at near-neutral pH 6. The maximal adsorption capacity was 6.23, 10.87, 9.52 and 4.46 mg/g for Cd, Cu, Pb and Zn, respectively. The adsorption process proceeded via a fast initial metal uptake during the first 6 h, followed by slow uptake and equilibrium after 24 h. Data fitted well the pseudo second-order kinetic model. Equilibrium experiments showed that the adsorbent has a high affinity for Cu and Pb followed by Cd and Zn. Furthermore, the rock is a stable sorbent that can be reused in multiple sorption–desorption–regeneration cycles. Therefore, the Gisenyi volcanic rock was found to be a promising adsorbent for heavy metal removal from industrial wastewater contaminated with heavy metals.  相似文献   

4.
This study assesses the impact of antibiotics used in clinical and veterinary practices, on the incidence of antibiotic- heavy metal resistant enterics in fresh water and sediment from agricultural and harbor sample sites. A total of 848 bacterial strains of the familyEnterobacteriaceae was isolated from agricultural and lake harbor samples and identified to genus level. These were examined for antibiotic-heavy metal resistance. A select smaller number of these isolates were also examined for the presence of plasmids and ability to transfer antibiotic resistance via conjugation or transformation. More than 85 % of the 848 isolates from all four sites were resistant to Ph, Zn, and Co while 5.6% to 16% were resistant to Te and 2.4% to 5.7% to Hg. The ranking of metal resistance according to frequency was the same as the frequency of metal occurrence in sediment samples. Of the total isolates tested, 87% were resistant to six or more antibiotics and 74% were also simultaneously resistant to Co, Zn, and Ph. Testing the resistance of the water isolates to antibiotics used solely in animal husbandry-veterinary medicine indicated that 55.6% of the agricultural isolates possessed resistance to these antibiotics while only 31.9% of the isolates from harbor water showed resistance to the same antibiotics. Of 41 ampicillin resistant isolates examined, 16 (39%)were capable of transferring antibiotic-heavy resistance markers via conjugation. From this same group, plasmid DNA preparations were made. Of these latter preparations, 67% transformed recipientE. coli cells while 58% possessed discernible, often multiple plasmids when examined by gel electrophoresis.  相似文献   

5.
The aim of this study was to evaluate and compare the capacities of cattail (Typha latifolia L.) and reed (Phragmites australis L.) for heavy metal storage in the phytomass. Samples were studied in the fourth of the four interconnected natural lagooning basins of a constructed treatment wetland, developed as an integrated pilot system for the treatment of leachates in a domestic landfill site at Etueffont (Territoire de Belfort, France). The efficiency of the lagooning system was evaluated through physical and chemical parameter measurements over a period of three seasons. Anion/cation and heavy metal concentrations were sampled and analyzed in water flowing into and out of the lagooning basin. Simultaneously, reed and cattail biomass samples (roots/rhizomes, shoots) were collected at both inflow and outflow, and the biomass characteristics were determined. The average above-ground biomass of T. latifolia and P. australis varied, respectively, from 0.41 to 1.81 kg DW m−2 in the fall, 0.31 to 1.34 kg DW m−2 in winter, and 0.38 to 1.68 kg DW m−2 in spring, with significant seasonal variations. The greatest mean concentrations of heavy metals were found in the below-ground plant parts of the two species during the spring season. The average standing stock of heavy metals was higher in the below-ground than in the above-ground phytomass, whatever the season. With the exception of nickel, heavy metal concentrations in the inflow were correlated to the plant content of both species.  相似文献   

6.
As a result of the destruction of ammunition, mines, and explosive devices by the method of open detonation, the increased concentration of heavy metals is often recorded in the soil of military polygons, which is a serious ecological problem. However, in order to determine the potential risk of such locations to the environment, it is necessary to determine, in addition to the total content, the forms in which the metals are present. In this paper, a sequential extraction method was used to analyze the six fractions of five heavy metals (cadmium, lead, nickel, copper, and zinc) in the soil of the polygon for destruction of ammunition, mines, and explosive devices. Samples were collected from the place of direct detonation (so-called pits) and from the edge of the pit. The aim of this research is determination of metal speciation in order to obtain a better insight in their mobility and risk arising from this. The results showed that heavy metals are predominantly present in the residual, oxide, and organic fractions. Cd and Cu were also significantly present in the mobile fractions due to conducted activities on the polygon. To assess the potential environmental risk of soil, the risk assessment code (RAC) and individual (ICF) and global (GCF) contamination factors were used. According to the RAC, the mobility and bioavailability of the analyzed heavy metals decreases in the following order: Cd?>?Cu?>?Zn?>?Pb?>?Ni. ICF results show low to moderate risk, while GCF results show low risk in terms of heavy metal contamination in the examined area.  相似文献   

7.
A batch sorption method was used to study the removal of few toxic metals onto the Late Cretaceous clays of Aleg formation (Coniacian–Lower Campanian system), Tunisia, in single, binary and multi-component systems. The collected clay samples were used as adsorbents for the removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. Results show that the natural clay samples were mainly composed of silica, alumina, iron and magnesium oxides. N2-adsorption measurements indicated mesoporous materials with modest specific surface area of <71 m2/g. Carbonate minerals were the most influencing parameters for heavy metal removal by natural clays in both single and multi-element systems. The affinity sequence was Pb(II)>Cu(II)>Zn(II)>Cd(II) due to the variable physical properties of the studied metals. The maximum adsorption capacity reached 131.58 mg/g in single systems, but decreased to <50.10 mg/g in mixed systems. In single, binary and muti-element systems, the studied clay samples removed substantial amounts of heavy metals, showing better effectiveness than the relevant previous studies. These results suggest that the studied clay samples of the Late Cretaceous clays from Tunisia can be effectively used as natural adsorbents for the removal of toxic heavy metals in aqueous systems.  相似文献   

8.

Purpose  

Although the bioavailability of heavy metals has been widely investigated, little information is available on the spatial correlations of heavy metals in soil–rice systems at a regional scale. A study of heavy metals in soil–rice systems at a present rice production area could provide valuable information on the safety of rice production and provide guidelines beneficial to agriculture management and strategic sustainable agriculture in China and other rapidly developing regions in the world. The overall goals of this study were to identify the characteristics of metal fractions and their bioavailability to rice plants in the paddy fields of a present rice production region.  相似文献   

9.
Background, aim, and scope  Elevated levels of heavy metals in the aquatic and soil systems can be caused by the weathering of mineralized rocks. This enrichment is often considerably enlarged by historical and current mining and smelting activities. In Poland, the most contaminated river systems are those in the Silesia region. The metalliferous ore mining and smelting industries have been the main sources of heavy metal pollutions over the last 100–170 years. The previous and present studies have shown very high concentrations of heavy metals in the bottom sediments of the Mala Panew River, the most polluted tributary of the Oder River. The main objective of this work was to study temporary changes of selected metal (Zn, Pb, and Cd) concentrations in upper layer of bottom sediments at the measuring point near the outlet of the Mala Panew River into the Oder River, and to determine the vertical distribution of the metals in the sediment cores from the most polluted middle part of this river. The mobility of the metals and their potential bioavailability were assessed based on metal partitioning in the sediments and metal concentrations in pore waters. The presented data were compared with metal concentrations in aquatic sediments from similar historical mining and smelting sites in Poland and other countries. Methods  The upper layer of bottom sediment samples from the same Mala Panew River measuring point were collected six times in the period 1997–2005, while five sediment cores were collected once from the middle course of Mala Panew River in 2006. Abiotic parameters such as pH and Eh have been determined in situ. Metal contents were determined in the <20 and <63 μm size fractions of sediments after digestion in a microwave oven with aqua regia or concentrated nitric acid. Metal mobility was assessed in the selected sediment cores by the chemical forms of metals (sequential extraction method) and their concentrations in pore waters were investigated. Results  The concentrations of Cd, Pb, and Zn in the upper layer of sediments varied, depending on both the season and the year of sampling. Their mean concentrations (from six samplings) are [mg/kg]: Zn 1,846, Pb 229 and Cd 73. The metal concentrations in the sediment cores varied with the depth in the range of [mg/kg]: 0.18–559 for Cd, 26.2–3,309 for Pb and 126–11,153 for Zn, although the highest accumulations generally could be observed in the deeper layers. The most mobile metal fractions, i.e., exchangeable, carbonate and easily reducible fractions, are typical of Zn and Cd. Cadmium was found to be the most mobile metal and its relative contribution ranges from 84 to 96%, while in the case of Zn it ranged from 45 to 94%. Lead is mainly associated with the moderately reducible fraction (30–60%). Relative contributions of metal chemical forms slightly vary with the depth in the sediment profile. The results obtained for the pore water samples show very high concentrations of the metals studied, especially in the case of Cd (31–960 μg/dm3) and Zn (300–4,400 μg/dm3). Discussion  Accumulation of Cd, Pb, and Zn in the upper layer of the bottom sediments and in the sediment core samples from the Mala Panew River is very high, considerably exceeding the local geochemical background. High contributions of mobile Cd and Zn and the toxicity of cadmium can cause environmental risk. Our measurements also suggest that mobile metals can migrate into groundwater, whereas the groundwater itself can leach some chemicals from river sediments, because of a relatively high water table in the study area, especially during rainfall periods. Comparison of the results obtained with the literature data from the last decade shows that the concentrations of Cd and Zn in the sediments from the Mala Panew River are the highest among other submersed sediments in Poland and other regions (e.g., the Mulde River, Germany). Conclusions  The Mala Panew River is one of the most polluted rivers when compared with similar historical mining and smelting areas in Poland and elsewhere. The sediments studied are strongly polluted with the metals analyzed. In the upper layer of the bottom sediments there has been no reduction of Zn and Cd amounts over the last decade, which could suggests a long-term migration and a secondary contamination. Considerably higher accumulations of metals in overbank sediment cores and in the deeper core section could result from strong contamination in previous decades and translocation of Cd and Zn (secondary pollutants). The relatively high concentrations of the two metals in pore waters support these findings. Cadmium is crucial in the environmental risk assessment because of its high mobility and toxicity. These data are important for water/sediment management in the transboundary Oder River catchment, situated in Poland, Germany and the Czech Republic. Recommendations and perspectives  It is important to assess mobility phase and pore water in the contaminated historical aquatic sediments. Such studies may help explain the changes, which take place in the sediment layers as well as at the water–sediment interface. Obtained results should be used for the risk assessment of the historical contaminated sediments at the local river-basin scale. The treatment of contaminated sediments, e.g., dragging activity, should be considered as very important in management strategies in order to avoid remobilization of metals.  相似文献   

10.
陈榕  魏彤  刘畅  郝冬雪 《农业工程学报》2022,38(24):188-196
工业废水的直接或间接排放导致中国自然水体受重金属污染程度较高,对重金属污水处理刻不容缓,但现有重金属去除方法普遍存在工艺过于复杂或投资高等缺点。由于废弃混凝土颗粒含有水泥水化产物和未水化的水泥颗粒,具有一定的活性和较高的比表面积,因此该研究拟尝试采用废弃混凝土颗粒作为重金属污染水的吸附材料。通过重金属浸出试验发现,重金属浸出量与废弃混凝土粒径相关,粒径越大,重金属析出量越小。基于试验数据以及《国家污水综合排放标准》的排放阈值要求,最终确定了废弃混凝土颗粒材料的最佳选取粒径。随后,通过静态吸附试验,重点考察了吸附时间、吸附剂用量、重金属初始质量浓度对废弃混凝土吸附重金属铜和铅的影响。结果表明:铜和铅在废弃混凝土上的吸附是一个先快速而后缓慢的过程,在100min基本达到吸附平衡,且废弃混凝土对铜和铅的吸附量随铜和铅初始质量浓度的升高而提高,去除率则随着铜和铅初始质量浓度的升高而降低,随着废弃混凝土用量的升高而提高。废弃混凝土对铜和铅的吸附符合Langmiur等温吸附模型,拟合得到的最大吸附量分别为40.75和86.73mg/g;准二阶动力学模型更适合描述废弃混凝土对铜和铅的吸附过程,说明控...  相似文献   

11.

Purpose  

Despite the decline of metal mining in the UK during the early 20th century, a substantial legacy of heavy metal contamination persists in river channel and floodplain sediments. Poor sediment quality is likely to impede the achievement of ‘good’ chemical and ecological status for surface waters under the European Union Water Framework Directive. This paper examines the environmental legacy of the Dylife lead/zinc mine in the central Wales mining district. Leachable heavy metal concentrations in the bed sediments of the Afon Twymyn are established and the geochemical partitioning, potential mobility and bioavailability of sediment-associated heavy metals are established.  相似文献   

12.
This work aims to identify and characterize heavy metal contamination in a fluvial system from Cartagena–La Unión mining district (SE Spain). In order to assess the dynamics of transport and the accumulation of heavy metals, sediments, surface water and vegetation, samples along “El Avenque” stream were collected. The former direct dumps of wastes and the presence of tailing ponds adjacent to the watercourse have contributed to the total contamination of the stream. Total Cd (103 mg kg−1), Cu (259 mg kg−1), Pb (26,786 mg kg−1) and Zn (9,312 mg kg−1) in sediments were above the limits of European legislation, being highest where tailing ponds are located. Bioavailable metals were high (3.55 mg Cd kg−1, 6.45 mg Cu kg−1, 4,200 mg Pb kg−1 and 343 mg Zn kg−1) and followed the same trend than total contents. Metals in water were higher in sampling points close to ponds, exceeding World Health Organization guidelines for water quality. There is a direct effect of solubilisation of sediment metals in water with high contents of SO42−, product of the oxidation of original sulphides. The mobility of metals varied significantly with shifts in pH. Downstream, available and soluble metals concentrations decreased mainly due to precipitation by increments in pH. As a general pattern, no metal was bioaccumulated by any tested plant. Thus, native vegetation has adopted physiological mechanisms not to accumulate metals. This information allows the understanding of the effect of mining activities on stream contamination, enforcing the immediate intervention to reduce risks related to metals’ mobility.  相似文献   

13.

Purpose  

Successful phytoremediation depends mainly on the bioavailability of heavy metals in the soil. Recently, soil microbes possess several mechanisms that are able to change metal bioavailability in the soil, which provides a new strategy for investigating biogeochemical cycling of metals in contaminated soils. Three metal mines soils with elevated concentrations of Cd, Pb, and Zn from China were applied in this column study to (1) evaluate the effects of metal tolerant bacterial inoculation (Burkholderia cepacia, accession number: AB051408) on metal release, (2) monitor the migration of metals in the rhizospheric horizon (0–20 cm), and (3) investigate metal speciation and sequential fractions in soil.  相似文献   

14.
Abstract

Long‐term agricultural sustainability and water quality are impacted by different chemicals, including heavy metals. Heavy‐metal losses at the catchment scale depend largely on land‐management practices. Water‐quality indicators are required near soil‐quality indicators for different regions and farming systems. The purpose of this work is to analyze the heavy‐metal losses from a mixed agroforestry catchment. Iron (Fe), Magnesium (Mn), Zinc (Zn), and Copper (Cu) were measured in the drainage water of a 36.3 km2 catchment located at the Valiñas River (Coruña, northwest Spain), and a total of 193 samples were collected during the course of 2003. The sampling strategy was a stratified point sampling involving more frequent sampling when flow was high. Water metal content was analyzed by inductively coupled plasma (ICP‐AES). The content ranges of dissolved heavy metals were as follows: Fe between 10 and 267 µg/L, Mn 0.2 and 77 µg/L, Zn 0.62 and 53.7 µg/L, and Cu 0.20 and 9.26 µg/L. Heavy metal content strongly varied along the study time, depending on storm flow but also on timing of animal‐waste applications.  相似文献   

15.
2 Conclusions  The investigations into the membrane electrolysis cell show that electrochemical metal separation from bioleaching process waters can represent a practical alternative for metal separation by alcalization, Coal and platinized titanium material exhibit good anodic resistance at the current densities tested. By contrast, high-grade steel and to some extent lead anodes were dissolved and are hence unsuitable for this purpose. However, for practical application, suitable ways are required to discharge the precipitates containing heavy metals deposited on the electrodes from the electrolysis cell and to prevent membrane clogging. Regarding the main components zinc, manganese, and nickel, the combination electrodes proved to be suitable for eliminating the heavy metals from the aqueous phase. Another way of treating diluted process waters containing sulphuric acidic and heavy metals is to concentrate the sulphuric acid in the anode region and to precipitate the heavy metals in the cathode region. The sulphuric acid recovered could then be returned to the leaching process, hence avoiding wastewater.  相似文献   

16.
The concentrations of heavy metals in water, sediments, soil, roots, and shoots of five aquatic macrophytes species (Oenanthe sp., Juncus sp., Typha sp., Callitriche sp.1, and Callitriche sp.2) collected from a detention pond receiving stormwater runoff coming from a highway were measured to ascertain whether plants organs are characterized by differential accumulations and to evaluate the potential of the plant species as bioindicators of heavy metal pollution in urban stormwater runoff. Heavy metals considered for water and sediment analysis were Cd, Cr, Cu, Ni, Pb, Zn, and As. Heavy metals considered for plant and soil analysis were Cd, Ni, and Zn. The metal concentrations in water, sediments, plants, and corresponding soil showed that the studied site is contaminated by heavy metals, probably due to the road traffic. Results also showed that plant roots had higher metal content than aboveground tissues. The floating plants displayed higher metal accumulation than the three other rooted plants. Heavy metal concentrations measured in the organs of the rooted plants increased when metal concentrations measured in the soil increased. The highest metal bioconcentration factors (BCF) were obtained for cadmium and nickel accumulation by Typha sp. (BCF = 1.3 and 0.8, respectively) and zinc accumulation by Juncus sp. (BCF = 4.8). Our results underline the potential use of such plant species for heavy metal biomonitoring in water, sediments, and soil.  相似文献   

17.
Background, Goal and Scope   The aim of this study was to check the concentration of some elements in water samples collected near Pb-Zn mining and smelting works and comparison of the obtained data with results achieved for sediment samples originated from the same reservoirs. Objective   Here, 8 water samples and 3 bottom sediments collected from water reservoirs in the vicinity of 3 big Polish Pb-Zn smelters were analysed.Methods   Water analysis was performed after filtration through a 0.45 &#181;m filter and pH adjustment to 2. For decomposition of dried sediment samples, microwave assisted digestion with total dissolution of silicate matrix was applied. The elements studied were determined using ICP-MS and ICP-OES methods. Results and Discussion   The concentrations of most studied elements in water samples were on the 0.X &#181;g/L level, while only the contents of Tl, As, Mn, Cd, Pb and Sb in two water reservoirs were above the limits established for drinking water. The content of studied metals in sediments was in a wide range from X mg/kg (Se and Sb) to X000 mg/kg (Pb and Zn).Conclusions  and Recommendation. The study indicates that the impact of Tl, As, Cd, Cu, Mn, Pb, Zn, Se and Sb on bottom sediments is much more extensive than on the water in ponds located in the vicinity of a post-flotation waste heap. Monitoring of surface and underground waters, if limited only to the dissolved elements, can lead to faulty conclusions about environmental pollution. The bottom sediments mainly contain easily mobilised phases, and water-sediment equilibrium could be changed easily.  相似文献   

18.
对分离自陕西、甘肃金属尾矿废弃地寄主为刺槐、鸡眼草、草木樨等23种豆科植物的188株根瘤菌进行了7种重金属的抗性分析、最大抗性水平(MRL)的确定和抗性菌株的系统发育研究。结果表明,菌株之间对重金属的耐受性存在较大差异,大部分菌株表现出对Hg^2+、Cd^2+、Cr^6+(〈0.5 mmol·L^-1)敏感,而对Pb^2+(〈2.5 mmol·L^-1)不敏感。在液体培养基中,CCNWSX0403和CCNWSX0360可耐受4.0 mmol·L^-1 Zn^2+,分别可耐受2.4 mmol·L^-1 和2.8 mmol·L^-1 Cu^2+,CCNWGS0139可耐受0.4 mmol·L^-1 Hg^2+,CCNWSX0003可耐受2.4 mmol·L^-1 Ni^2+,CCNWGS0284和CCNWGS0142可耐受4.8 mmol·L^-1 Pb^2+。9株抗性菌株的16S rDNA全序列分析表明:CCNWGS0122和CCNWSX0003分别属于中慢生根瘤菌属(Mesorhizobium)和中华根瘤菌属(Sinorhizobium);4株对Pb^2+、Hg^2+耐受性较强的菌株CCNWSX0386、CCNWGS0139、CCNWGS0284和CCNWGS0142均属于土壤杆菌属(Agrobacterium);而属于慢生根瘤菌属(Bradyrhizobium)的3株菌CCNWGS0309、CCNWSX0403和CCNWSX0360对Cu^2+、Zn^2+耐受性较好。总体上Agrobacterium对Hg^2+和Pb^2+的耐受性较好,Bradyrhizobium比Rhizobium、Sinorhizobium、Mesorhizo  相似文献   

19.
An effective adsorbent for the removal of heavy metals was manufactured by immobilization of jujube powder. The adsorptions of Cd, Zn and Cu from aqueous solutions by jujube complex beads (Type 1 and Type 2) were studied in a batch adsorption system. The adsorption data were fitted well with the Langmuir isotherm models. The adsorption capacities (β) for Cd, Zn and Cu were 4.23, 2.93 and 3.64 mg/g in Type 1 and 1.24, 0.70 and 1.35 mg/g in Type 2 beads. The removal efficiencies of the Type 2 beads, with a larger unit surface area, were lower than those of the Type 1 due to part of the casein or cyclic AMP being destroyed during the drying process of the Type 1. These values for Type 1 beads were higher than those of all other adsorbents for each heavy metal. A comparison of the kinetic models on the overall adsorption rate showed that the adsorption system was best described by pseudo-first-order kinetics. The removal efficiencies of Cd, Zn and Cu exhibited similar tendencies to those observed in the equilibrium tests. This indicates that the jujube complex beads developed in this study can be used as promising adsorbents for the removal of heavy metals from wastewater.  相似文献   

20.
肥料重金属含量状况及施肥对土壤和作物重金属富集的影响   总被引:56,自引:5,他引:56  
本文对肥料中重金属的含量状况以及施肥对土壤和农作物重金属累积影响的研究进展进行了系统分析和总结。过磷酸钙中锌(Zn)、 铜(Cu)、 镉(Cd)、 铅(Pb)含量高于氮肥、 钾肥和三元复合肥,有机-无机复混肥料中的Pb含量高于其他化肥。有机肥如畜禽粪便、 污泥及其堆肥中的重金属含量高于化肥,猪粪中的Cu、 Zn、 砷(As)、 Cd含量明显高于其他有机废弃物,鸡粪中铬(Cr)含量高;污泥和垃圾堆肥中Pb或汞(Hg)含量高。商品有机肥Zn、 Pb和镍(Ni)含量高于堆肥,Hg含量高于畜禽粪便。多数研究表明,氮磷钾配施与不施肥相比土壤Cd和Pb含量增加,施用有机肥比不施肥提高土壤Cu、 Zn、 Pb、 Cd含量。施用化肥对农作物重金属富集的影响不明确,而施用有机肥可提高作物可食部位Cu、 Zn、 Cd、 Pb 的含量,影响大小与有机肥种类、 用量、 土壤类型和pH以及作物种类等有很大关系。在今后的研究中应着重以下几个方面, 1)典型种植体系下土壤重金属的投入/产出平衡; 2)不同种植体系下长期不同施肥措施对土壤重金属含量、 有效性影响的动态趋势; 3)典型种植体系和施肥措施下土壤对重金属的最高承载年限; 4)现有施肥措施下肥料中重金属的最高限量标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号