首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to test the efficacy of a compounded long-acting progesterone formulation (BioRelease P4 LA 150; BETPHARM, Lexington, KY) containing 150 mg progesterone/ml for pregnancy maintenance in mares after prostaglandin (PG) F-induced luteolysis. On day 18 of gestation, mares were randomly assigned to one of four groups (n = 7/group): (1) saline-treated control (Saline); (2) PGF-treated control (PGF); (3) PGF- and Regu-Mate-treated (Regu-Mate); and (4) PGF- and BioRelease P4 LA 150-treated (BioRelease). On day 18, Saline mares received 1 ml sterile saline IM, whereas PGF, Regu-Mate, and BioRelease mares received 250 μg cloprostenol IM. Beginning on day 18, Regu-Mate mares received 10 ml Regu-Mate orally once daily and BioRelease mares received 10 ml BioRelease P4 LA 150 containing 150 mg/ml progesterone IM once every 7 days; treatments were continued until day 45 or until pregnancy loss occurred. Pregnancy diagnosis was performed every 3 days between days 18 and 45 (or until pregnancy loss). Pregnancy loss was defined as complete absence of a discernible embryonic vesicle as determined with transrectal ultrasonography. Pregnancy loss rates between days 18 and 45 were: Saline, 1/7; PGF, 7/7; Regu-Mate, 1/7; and BioRelease, 0/7. The pregnancy loss rate was higher (P < .01) in PGF-treated control mares compared with the other groups. There were no differences (P > .1) in pregnancy loss rates among the saline-treated control, Regu-Mate-treated, and BioRelease P4 LA 150-treated mares. These results indicate that intramuscular administration of BioRelease P4 LA 150 containing a total of 1.5 g progesterone every 7 days provided a sufficient level of progesterone to maintain pregnancy between days 18 and 45 of gestation in mares that lacked an endogenous source of progesterone; therefore, this long-acting formulation of progesterone appears to be an efficacious and suitable alternative to currently available progesterone formulations that require daily administration.  相似文献   

2.
The objective of this study was to compare the rate of ovulation when deslorelin and/or human chorionic gonadotropin (hCG) was administered in mares in both the transition period and the ovulatory season. A total of 200 Paint Horses, Quarter Horses, and crossbred mares were used during the transition season (July to September) and the ovulatory season (October to February) of the southern hemisphere. The animals were divided into four groups. In the control group (n = 72), mares received 1 mL of saline; in deslorelin group (n = 171), 1.5 mg of deslorelin was administered by intramuscular (IM) injection; in hCG group (n = 57), 1,667 IU of hCG was administered IV; and in hCG + deslorelin group (n = 438), 1.5 mg of deslorelin (IM) and 1,667 IU of hCG (IV) were administered. The drugs were administered after follicles ≥35 mm in diameter were identified and grade III uterine edema was observed. At 48 hours after application, ultrasonography was performed to detect ovulation. During the transition period, the ovulation rates were 4.3% (control), 78.6% (deslorelin), 50% (hCG), and 73.3% (hCG + deslorelin). During ovulatory season, the ovulation rates were 16.4% (control), 68.8% (deslorelin), 60% (hCG), and 73% (hCG + deslorelin). There was no significant difference (P > .05) in the ovulation rate between the groups or the periods, except that the control group was lower than all others. Furthermore, both hCG and deslorelin are viable options for inducing ovulation during the transition period before ovulation season.  相似文献   

3.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

4.
Equine clinicians rely on ovulation induction agents to provide a timed ovulation in mares for optimal breeding management. Numerous studies have been performed on the efficacy of human chorionic gonadotropin (hCG) to induce ovulation in the mare, but limited clinical data are available for the new deslorelin acetate product SucroMate. This study was designed to evaluate the efficacy of SucroMate (deslorelin) in comparison with hCG to induce ovulation. American Quarter horse mares (n = 256) presented to Colorado State University for breeding management were used in this study. Mares received either deslorelin or hCG when a follicle ≥35 mm was detected by transrectal ultrasound in the presence of uterine edema. Ultrasonographic examinations were subsequently performed once daily until ovulation was detected. Deslorelin was administered to 138 mares during168 estrous cycles, and hCG was given to 118 mares during 136 estrous cycles. Mares administered deslorelin had a similar (P < .05) higher ovulation rate (89.9%) within 48 hours following drug administration than mares administered hCG (82.8%). There are no effects of season or age on ovulation rates in either treatment group. Twenty-one mares administered deslorelin and 11 mares administered hCG were monitored by transrectal ultrasound every 6 hours to detect ovulation as part of a frozen semen management program. Average intervals from deslorelin or hCG administration to ovulation were 41.4 ± 9.4 and 44.4 ± 16.5 hours, respectively. Results of this study indicate that SucroMate is effective at inducing a timed ovulation in the mare.  相似文献   

5.
Between February 15 and May 17, 2011, a total of 88 broodmares (10 maiden, 10 barren, and 68 foaling) maintained on pasture in southeast Texas were examined three times weekly (Tuesday, Thursday, Saturday) by transrectal palpation and ultrasonography. On Tuesday or Thursday, mares in estrus with uterine edema, a relaxed cervix, and a dominant follicle ≥34 mm in diameter were alternately assigned to treatment with the following: group (1) 2,500-unit human chorionic gonadotropin (hCG), intravenous; group (2) 1.0-mg BioRelease Histrelin (Biorelease Technologies, Lexington, KY), intramuscular; or group (3) 0.5-mg BioRelease Histrelin, intramuscular. Ovulation was confirmed by ultrasonographic examination. The percentage of mares ovulating within 2 days appeared to be similar between maiden, barren, and foaling mares, so responses for all mares were totaled for analysis. A nonsignificant trend for higher ovulation rates within 2 days was noted for both dose rates of histrelin compared with hCG treatment (31/37, 84%; 34/37, 92%; and 33/36, 92% for groups 1-3, respectively) (P = .45). Ovulatory responses appeared to improve for both products as the season progressed, yet no differences were detected between response rates to histrelin or hCG for any month (P ≥ .50). The use of 1.0- or 0.5-mg BioRelease Histrelin was found to be at least equally effective as hCG treatment for inducing ovulation within 2 days of treatment throughout the breeding season.  相似文献   

6.
Palpation records of 155 Throughbred broodmares maintained on one of seven farms (3–80 mares per farm) that were administered deslorelin on one or more estrous cycles (204 treated cycles) during the 1999 breeding season were retrospectively examined. Some deslorelin-treated mares were also treated with hCG (2500 units intravenously), or had no ovulation-inducing drugs administered, during different estrous cycles of the same season. Most mares were treated with an ovulation- inducing drug after returning to their resident farm following breeding and were subsequently examined by transrectal ultrasonography daily until ovulation was confirmed, and again 13–14 and 15–16 days after ovulation for determination of pregnancy status.Per-cycle pregnancy rate for all 155 mares bred was 53%, and for all deslorelin breeding was 57%. Per-cycle pregnancy rates for mares ovulating 0–1 days, 1–2 days, and 2–3 days after treatment with deslorelin did not differ (P>0.05). Forty-six mares received more than one treatment during the breeding season, yielding 115 breedings (estrous cycles) for comparison of pregnancy rates among treatment. Per-cycle pregnancy rates for these mares did not differ among treatments (P>0.10).No differences due to treatment were detected in mean interval to ovulation (P>0.10). Mean interovulatory interval was longer for deslorelin-treated mares than for untreated or hCG treated mares (P>0.01). Eighty percent (80%) of deslorelin-treated mares had interovulatory intervals of 18–25 days, and 19% had interovulatory intervals>25 days. Ninety-seven percent (97%) of untreated or hCG-treated mares had interovulatory interovulatory intervals>25 days. More deslorelin-treated mares had extended (>25 days) interovulatory intervals than hCG- or nontreated-mares (P>0.05). In this group of Thoroughbred mares, it appeared that season (month) and management (farm) factors had only minor effects on the incidence of extended interovulatory intervals following use of deslorelin.  相似文献   

7.
Estradiol and progesterone concentrations were evaluated from diestrous embryo transfer recipient mares (5 to 14 days post-ovulation) which were treated with an exogenous hormone regimen. Upon detection of the donor mare's ovulation (0 hours), 10 mg PGF was given to the recipient mare; at 12, 24 and 36 hours 20 mg estradiol cypionate; at 48 hours, 500 mg progesterone in oil and then 22 mg altrenogest at 60, 72 and 96 hours. Altrenogest (22 mg/day) was continued until end of the trial (detection of a fetal heart beat). Embryos were transferred non-surgically 6 or 7 days after the start of treatment.Plasma samples were evaluated over three periods; period 1-between recipient mare ovulation and prior to PGF period 2-between PGF and embryo transfer and period 3-post-transfer. During periods 2 and 3, estradiol was higher (P<.05) for mares which were 10 to 14 days post-ovulation (late diestrous) as compared to mares which were 5 to 9 days post ovulation (mid-diestrous) when treatment began. Progesterone concentrations were higher (P<.05) for the mid-diestrous mares in the same periods. The pregnancy rate was higher for the late diestrous mares than the mid-diestrous mares (58% (7/12) vs 10% (1/10)). However, no difference (P>.05) was detected in estradiol or progesterone in the late diestrous mares which were pregnant or open. During period 2, estradiol was higher (P<.05) in the pregnant than open mares. Whereas, during period 3, progesterone was higher (P<.05) in the open mares.These data suggest that estradiol is important for the establishment of pregnancy in the mare. Furthermore, hormone treatment developed in this study appears to have some potential in synchronization of diestrus mares to be used as embryo recipients.  相似文献   

8.
The presence of anovulatory haemorrhagic follicles during the oestrous cycle of mares causes financial impacts, slowing conception and increasing the number of services per pregnancy. Non‐steroidal anti‐inflammatory drugs (NSAIDs) such as meloxicam and phenylbutazone are used in the treatment of several disorders in mares, and these drugs can impair the formation of prostaglandins (PGs) and consequently interfere with reproductive activity. This study aimed to evaluate the effects of treatment with NSAIDs on the development of pre‐ovulatory follicles in mares. In total, 11 mares were studied over three consecutive oestrous cycles, and gynaecological and ultrasound examinations were performed every 12 h. When 32‐mm‐diameter follicles were detected, 1 mg of deslorelin was administered to induce ovulation. The first cycle was used as a control, and the mares received only a dose of deslorelin. In the subsequent cycles, in addition to receiving the same dose of deslorelin, each mare was treated with NSAIDs. In the second cycle, 4.4 mg/kg of phenylbutazone was administered, and in the third cycle, 0.6 mg/kg of meloxicam was administered once a day until ovulation or the beginning of follicular haemorrhage. All of the mares ovulated between 36 and 48 h after the induction in the control cycle. In the meloxicam cycle, 10 mares (92%) did not ovulate, while in the phenylbutazone cycle, nine mares (83%) did not ovulate. In both treatments, intrafollicular hyperechoic spots indicative of haemorrhagic follicles were observed on ultrasound. Thus, our results suggested that treatment with meloxicam and phenylbutazone at therapeutic doses induced intrafollicular haemorrhage and luteinization of anovulatory follicles.  相似文献   

9.
Ovulation-inducing agents are routinely used in broodmare practice. The objective of this study was to compare the efficacy of two compounded deslorelin products and human chorionic gonadotropin (hCG) in inducing ovulation in a clinical reproduction program. Breeding records of 203 mares administered an ovulation-inducing agent during the 2006 breeding season were reviewed. Estrous cycles were included for comparison if agents were administered when the largest follicle was 35 to 45 mm in diameter and endometrial edema was present. There was no significant difference (P > .05) in interval to ovulation for mares receiving deslorelin (1.9 ± 0.7 days) or hCG (2.0 ± 0.7 days). The percentage of mares that ovulated within 48 hours after treatment was also not significantly different between the agents (90.1% and 88.3%, respectively). In summary, clinical efficacy at inducing a timed ovulation in estrual mares with follicles 35 to 45 mm was similar between compounded deslorelin and hCG.  相似文献   

10.
旨在探讨影响马胚胎移植效率的几种关键因素。本研究统计了国内北京马场、河北马场和山东马场2013-2018年胚胎移植数据,3个马场供体马数量分别为15、21和25匹,受体母马数量分别为56、50和75匹。所有母马年龄为3~12岁。统计供体马冲胚时间对胚胎回收率的影响;胚胎日龄对移植后受体马妊娠率的影响;供、受体母马排卵同期化程度对移植后妊娠率的影响;受体母马居住移植基地时间对移植后妊娠率的影响。结果显示,母马在配种季节注射前列腺素(PG)+GnRH类似物或PG+hCG诱发排卵,发情周期分别为(14.5±0.8)和(14.3±1.1)d,显著低于对照组的((20.5±2.6)d,P<0.05);排卵后第8天冲洗子宫的胚胎回收率均高于第7天,但差异不显著;8日龄胚胎移植后受体马的妊娠率均高于7日龄,差异不显著;供体母马排卵比受体母马早1 d时,胚胎移植后的妊娠率最高;受体母马在移植基地居住时间大于1年时,移植后妊娠率高于居住时间小于0.5年的受体马。根据以上结果,本研究得出如下结论,PG与hCG或GnRH类似物联合使用可缩短母马发情周期,母马排卵后第8天的胚胎回收率和移植后妊娠率较高,胚胎移植时选择居住时间大于1年且排卵时间比供体晚1 d的母马作受体。  相似文献   

11.
As part of a commercial embryo transfer programme, 20 embryos were transferred to spontaneously synchronous or synchronized recipient mares. In 14 cases, embryo recipients were treated with non‐steroidal anti‐inflammatory drugs (NSAID), receiving flunixin meglumine i.v. at the time of transfer and vedaprofen orally twice a day on the 3 days after embryo transfer, while six embryos were transferred to untreated mares that served as controls. Out of the 14 recipient mares treated with NSAID, 11 (79%) were pregnant at 6–8 days after transfer and in 10 mares, the pregnancy was continued. From the six untreated recipients, only one became pregnant but underwent early embryonic death between day 14 and 35 after ovulation. In conclusion, pregnancy rate in NSAID‐treated recipients is higher than that in untreated recipients and above reported average values, indicating that treatment of recipient mares with NSAID helps to increase pregnancy rates after transcervical transfer and can be recommended for equine embryo transfer.  相似文献   

12.
The objective of this study is to evaluate the reproductive efficiency in donors and recipient Mangalarga Marchador mares in commercial programmes of embryo transfer (ET) and the effects of some reproductive characteristics and ET methodology on conception rates in the recipient mares. A total of 1140 flushing procedures were performed and 830 embryos (72.8%) were recovered. There were no differences between the rates of embryonic recovery in the different breeding seasons (p > 0.05) and 92.8% of the recovered embryos were 8–9 days old. There was no difference in the embryonic recovery regarding the collection order from the first to the ninth embryo collection along the breeding season, as well as among mares inseminated during the foal heat or subsequent cycles (p > 0.05). Pregnancy rates observed in the total period of all reproductive seasons at 15, 30, 45 and 60 days of pregnancy were 73.4, 69.9, 66.7 and 64.5%, respectively. Differences in pregnancy rate and early embryonic loss rates were not observed between embryos transferred immediately after collection (66.8% and 13.5%) and embryos transported at room temperature for periods of <1 h (62.9% and 14.4%; p > 0.05). Pregnancy rates were higher when the interval between ovulations of donor and recipient mares remained between ?3 and ?2 days (p < 0.05), and the lowest rates were observed for intervals of ?6 days (p < 0.05) with intermediary values for intervals of ?1, 0 and +1 (p > 0.05). Embryonic loss rates, however, did not differ between intervals of ovulation’s synchronism between donor and recipient mares (p > 0.05). This flexibilization in the ovulatory synchronism between donor and recipient mares optimizes the use of recipient mares, thus reducing costs and facilitating management of horse breeding farms.  相似文献   

13.
Endogenous progesterone levels may decline after transcervical embryo transfer in some mares. Progestogen therapy is commonly used to support endogenous progesterone levels in embryo transfer recipient mares or those carrying their own pregnancy. The goal of this study was to determine the effects of the transcervical transfer procedure and/or altrenogest therapy on luteal function in mares. Mares were assigned to one of six treatment groups: group 1 (untreated control; n = 7 cycles), group 2 (sham transfer, no altrenogest; n = 8 cycles), group 3 (sham transfer plus altrenogest; n = 8 cycles), group 4 (pregnant, no altrenogest; n = 9 mares), group 5 (pregnant plus altrenogest; n = 9 mares), and group 6 (nonpregnant plus altrenogest; n = 10 cycles). Mares in groups 4-6 were bred and allowed an opportunity to carry their own pregnancy. Blood samples were collected for 22 days beginning on the day of ovulation. Sham embryo transfer (groups 2 and 3, combined) did not result in a decline in endogenous progesterone levels compared with control mares (group 6). However, sham embryo transfer did result in luteolysis and an abrupt decline in endogenous progesterone levels in one of the 16 (6.2%) sham-transferred mares. Altrenogest therapy in sham-transferred mares (group 3) was associated with lower endogenous progesterone levels on days 10, 12, and 13 postovulation when compared with sham-transferred mares that did not receive altrenogest (group 2). Administration of altrenogest to pregnant mares (group 5) was associated with lower concentrations of endogenous progesterone from days 14 to 18 and on day 21 compared with endogenous progesterone levels in pregnant mares not administered altrenogest (group 4). In conclusion, a transcervical embryo transfer procedure can cause luteolysis in a low percentage of mares. Altrenogest therapy may be associated with a reduction in endogenous progesterone secretion, presumably mediated by a reduction in pituitary luteinizing hormone (LH) release and a decrease in luteotropic support.  相似文献   

14.
Over four years, four investigators in the Northern Hemisphere treated 413 privately owned transition phase mares between late February and early April, for the purpose of breeding such mares early in the season. Mares received an intravaginal device (CIDR-B) carrying 1.9 g progesterone, for about 12 days. Thereafter mares forming preovulatory follicles >30 mm were either treated with a short acting implant releasing the GnRH analog deslorelin (Ovuplant™) or with 1,500—2,500 IU hCG, or not. Follicle sizes were determined with ultrasonography at admission to the study (i.e. day of CIDR-B insertion), at intervals during treatment, at device removal and in 24 (to 48) hour intervals thereafter to determine the time for treatment to induce and accelerate ovulation and to ovulation, respectively. Pregnancies were determined by ultra-sonography between Days 14 to 18 after breeding, mostly 12 to 14 days after ovulation. Based on the size of the largest follicle at admission, mares were grouped into Classes with a ollicle diameter of 10 mm or less in Class I, and mares with follicles 11-20 mm, 21-30 mm and >30 mm in Classes II, III and IV, respectively. Overall, 80.2% of all mares responded to treatment with estrus and 80.7% ovulated. For mares in Classes I to IV, the rate of mares bred and becoming pregnant was 53.4% and 66.7%, 65.6% and 58.7%, 87.5% and 52.3%, and 75.0% and 52.0%, respectively. The overall pregnancy rate was 55.6% for the first breeding in response to treatment. Mares not assisted with Ovuplant or hCG were bred at a significantly lower rate (<0.0001) and the pregnancy rate was lower, 44.4% vs. 54.2% and 60.5%, respectively. Treatments with Ovuplant or hCG ensured ovulation rates of 96.0 and 84.9% versus 53.3% in unassisted mares overall. Follicle diameters increased significantly with CIDR-B in situ, and progressed after device removal to >30 mm within 4.0 days and to ovulation 5.3 days. Those mares in Class I responding to treatment (ca 60%) did not differ from Class II to IV mares in almost all the parameter evaluated. Significant differences were seen in the UK in response to treatment between years for the percentage of mares showing heat, ovulated, were bred and became pregnant.  相似文献   

15.
Since 1966, exogenous progestins have been used in equine practice for pregnancy maintenance, estrous suppression, and control of erratic sexual behavior. This study was designed to investigate the use of a new compounded controlled-release progesterone preparation (BioRelease P4 LA 300) in early and late spring transitional mares. In the first experiment, the pharmacodynamic properties of the preparation were studied in five geldings. In the second experiment, the use of a single intramuscular injection (600 mg) was tested in 68 embryo-recipient mares maintained under natural photoperiod in the Southern Hemisphere. Experiment 1 demonstrated elevated serum concentrations of progesterone (>1 ng/mL) for 7.6 ± 2.2 days. In experiment 2, there was no effect of treatment in mares that were treated on September 18, independent of their follicular status at day of treatment (10 to 15 mm; 20 to 25 mm, respectively). When mares with a follicular size of 20 to 25 mm were treated on October 14, significantly more progestin-treated mares (10/12; 83%) ovulated between 10 and 24 days after treatment than untreated controls (3/12; 25%) (P < .05). Additionally, there was a trend in mares treated on October 14 for a shorter treatment to ovulation interval (mean ± SD, 18.6 ± 8.7 days) compared with untreated controls (mean ± SD, 26.7 ± 14.7 days) (P = .07). Administration of one single injection of long-acting progesterone is a simple and effective method of controlling the first ovulation of the season in late transitional mares.  相似文献   

16.
Prostaglandins (PGs) are essential to trigger the cascade of events that degrade the extracellular matrix of follicles leading to follicular rupture and ovulation. In mares, systemic administration of flunixin meglumine (FM), a PG synthetase inhibitor, blocks ovulation by inducing luteinized unruptured follicles (LUF). In the rat, the administration of PGF(2α) (PGF) and PGE restored ovulation in indomethacin treated animals. The mares were treated with FM 0, 12, 24 and 36 h after human chorionic gonadotrophin (hCG) administration to induce experimentally LUF (n = 15) or were left untreated (controls, n = 5). In addition, 250 μg of cloprostenol were administered intravenously to the mares 33, 35 and 36 h (CLO 33, n = 5) or 48, 49 and 50 h (CLO 48, n = 5) after hCG. One group was treated with FM but not with cloprostenol (FM-control, n = 5). The ovulation rate, follicular diameter and progesterone concentration were compared amongst groups. The ovulation rate at 48 h was higher (p < 0.05) in the controls (100%) than in the FM-control (0%), CLO 33 (0%) or CLO 48 (20%) mares. All but one FM treated mares developed LUF by 48 h after hCG administration. Two LUF collapsed between 48 and 60 h and 72 and 84 h in one mare from FM-control and from the CLO 33 group each, respectively. Progesterone concentration was significantly higher (p < 0.05) in the control mares than in any of the FM treated mares 5, 9 and 13 days after hCG. In conclusion, FM administered during the periovulatory period blocked ovulation in the mares. In contrast, the administration of cloprostenol, a PGF analogue, in the previously FM treated mares failed to restore ovulation.  相似文献   

17.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

18.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

19.
The timing of ovulation is an important component to many equine breeding strategies. The action of luteinizing hormone on ovulation induction has been recognized; however, potential effects of follicle-stimulating hormone (FSH) have been less defined. Objectives of this study were to determine whether (1) mares could be induced to ovulate follicles ≤30 mm; (2) equine FSH (eFSH) has a positive effect on ovulation induction, and (3) ovulation of small follicles would affect embryo recovery. Light-horse mares (n = 12) between 4 and 10 years of age were assigned to treatments when they had a dominant growing follicle with a mean diameter of 24, 28, or 35 ± 2 mm and endometrial edema. Treatments were (1) H35, human chorionic gonadotropin (hCG) at 35 ± 2 mm; (2) F35, eFSH at 35 ± 2 mm; (3) H28, hCG at 28 ± 2 mm; (4) FH28, eFSH and hCG at 28 ± 2 mm; (5) D28, deslorelin (gonadotropin-releasing hormone [GnRH] analog) at 28 ± 2 mm; (6) FH24/H24, hCG or eFSH and hCG at 24 ± 2 mm. Mares’ reproductive tracts were scanned at 24 ± 2-hour intervals after treatment to detect ovulation. Mares were inseminated, and embryos were collected. Numbers of mares that ovulated within 48 ± 2 hours after treatment were: H35, 8/8 (100%); F35, 8/14 (57%); H28, 7/12 (58%); FH28, 9/12 (75%); D28, 3/7 (43%) and FH/H24, 4/14 (29%). The number of mares that ovulated in 48 ± 2 hours for H35 was not different from that for FH28 but was higher (P < .05) than all other groups. Embryo recovery rates, diameters, developmental stages, and morphology scores were not different for mares ovulating 48 hours or less versus more than 48 hours after treatment or among treatment groups. Results of this study demonstrate that follicles ≤30 mm can be induced to ovulate with no effect on embryo recovery or quality, as assessed by stereomicroscopy.  相似文献   

20.
OBJECTIVE: The objectives of this study were: to compare the recovery of follicular development in early postpartum cows that had been treated for 7, 14 or 21 d with implants containing the GnRH agonist deslorelin; to evaluate the effectiveness of human chorionic gonadotrophin (hCG) for the induction of ovulation when a follicle was at least 10 mm in diameter following implant removal; and to compare final pregnancy rates for treated cows and untreated contemporaries. PROCEDURE: Within 3 d of calving Holstein cows were allocated to receive a single subcutaneous deslorelin implant to be left in place for either 7, 14 or 21 d, or to remain untreated as controls. Every deslorelin treated cow was monitored twice weekly for 35 d to determine the interval from implant removal to resumption of ovulation using serial transrectal ultrasonography and plasma progesterone assay. An injection of 1000 IU hCG was given to induce ovulation when a follicle of at least 10 mm diameter was first observed. Oestrous cycles of every cow were synchronised to facilitate artificial insemination (Al) at the start of the seasonally concentrated Al program and resynchronised for three rounds. Pregnancy testing was performed by ultrasonography 13 weeks after the first round of Al. RESULTS: Deslorelin implants inhibited ovulation for at least 10 d after they were removed. Ovarian follicles were smaller for the group that had implants for 21 d at the time of implant removal. Eighteen cows selected for treatment with hCG ovulated and formed multiple corpora lutea within 7 d. There was no effect of treatment duration on final pregnancy rates. After three rounds of AI the pooled final pregnancy rate for every cow that had received a deslorelin implant was similar to the rest of the herd (67% versus 63%; Deslorelin versus Herd, P > 0.1).The interval from start date of the AI program to conception was also unaffected by treatment (9.6 +/- 3.0 versus 14.8 +/- 1.7 d; Deslorelin versus Herd; P > 0.1). CONCLUSION: No significant effect was detected on the interval from implant removal to first ovulation by altering the duration of deslorelin treatment. Treatment with hCG when a follicle at least 10 mm in diameter was present induced ovulation in most cases. Although no significant improvement in fertility was found, a larger field trial using this model for induced anoestrous is necessary before any effect on fertility could confidently be stated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号