首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT This experiment was conducted to investigate leptin mRNA expression, adipocyte size, and their relationship in several adipose tissues of fattening steers. Subcutaneous, perirenal, intermuscular and intramuscular adipose tissues were collected from three crossbred steers (Japanese Black cattle X Holstein) aged 21 months. The mRNA level and adipocyte diameter were determined in these adipose tissues. The intramuscular adipose tissue had a lower leptin mRNA level than the intermuscular and perirenal adipose tissues (P < 0.05). Leptin mRNA level was lower in the subcutaneous depot than in the intermuscular depot (P < 0.05). Adipocyte diameter was larger in the intermuscular adipose tissue than in the subcutaneous and intramuscular adipose tissues (P < 0.05). Leptin mRNA level was positively correlated with adipocyte diameter (r2 = 0.81, P < 0.05). These results suggest that the cattle have fat depot‐specific differences in leptin gene expression, which are a result of a difference in adipocyte size.  相似文献   

2.
Adipose tissue (AT) expresses adipokines, which are involved in the regulation of energy expenditure, lipid metabolism and insulin sensitivity. Visceral (v.c.) and subcutaneous (s.c.) depots largely differ concerning their metabolic characteristics as to the control of lipolysis and the sensitivity to insulin. The adipokines adiponectin, leptin and visfatin influence lipolysis and insulin sensitivity. Signalling by G‐protein coupled receptor 41 (GPR 41) stimulates leptin release via activation by short‐chain fatty acids. We hypothesized that the metabolic differences between v.c. and s.c. fat depots may also apply to the expression of adiponectin, its receptors, leptin, visfatin, insulin receptor (IR) and GPR 41. Therefore, we aimed to compare the mRNA expression of adiponectin, leptin and visfatin, of the adiponectin receptors 1 and 2 (AdipoR1/2) and IR as well of GPR 41 between several s.c. and v.c. fat depots in sheep. Samples from 10 rams were collected at slaughter (40 kg BW) from three s.c. depots, i.e. close to sternum (s.c.S), close to withers (s.c.W), and at the base of tail (s.c.T), and from two v.c. depots, i.e. from perirenal (v.c.P) and omental (v.c.O) fat. The mRNAs of both adiponectin receptors, as well as IR and putative GPR 41, were higher expressed in v.c. fat than in s.c. fat (p ≤ 0.05). Leptin mRNA abundance was greater in s.c. than in v.c. fat (mean ± SEM: s.c.: 2.55 ± 0.81; v.c.: 0.66 ± 0.21) and also differed among the five separately measured fat depots. Our results show differences in mRNA abundance for leptin, AdipoR1 and R2, as well as for IR and GPR 41 in s.c. compared with v.c. fat, thus confirming the need for individual consideration of distinct fat depots, when aiming to characterize adipose functions in ruminants.  相似文献   

3.
The effects of sex, genotype, and adipose depot on lipogenic enzyme activity have been investigated in Holstein and Pirenaican bulls and heifers, taking into account differences in adipocyte size. Fifteen Pirenaican bulls and 15 heifers and 15 Holstein bulls and 13 heifers were fattened until slaughter (12 to 13 mo old and 450 to 500 kg of body weight). During the fattening period, animals had ad libitum access to commercial concentrates and straw. The 10th rib was dissected to determine the fat content. Adipocyte size and activities of the following lipogenic enzymes were determined: glycerol 3-phosphate dehydrogenase, fatty acid synthase, nicotinamide adenine dinucleotide phosphate (NADP)-malate dehydrogenase, glucose 6-phosphate dehydrogenase, and NADP-isocitrate dehydrogenase, in the omental, perirenal, subcutaneous, and intermuscular adipose depots, respectively. Because adipocyte mean cell volume varied with sex, breed, and depot, regression analyses of log(e) activity per cell and log(e) cell volume were used to compare activities per unit volume. Sex, breed and depot had no effect (P > 0.05) on the gradients of regressions, which did not differ significantly from 1. Thus, activity per unit volume did not vary with cell size. Consequently, sex, breed, and depot effects on the regression analyses were equivalent to effects on activity per unit volume. Females had greater amounts of fat in the 10th rib (P < 0.001), larger adipocytes (P < 0.001) and, in general, greater (P < 0.05) lipogenic activity per cell, even when adjusted for cell size, than males. These findings suggest that differences in adiposity between sexes are mainly due to females having a greater capacity for lipid synthesis, and hence, hypertrophy, than males. When adjusted for differences in carcass weight, Holsteins had larger adipocytes than Pirenaicans. The abdominal depots, omental and perirenal, had a greater adipocyte size (P < 0.001) and, in general, greater lipogenic enzyme activities per cell (P < 0.05) than the subcutaneous and intermuscular carcass depots. However, when activity per cell was adjusted for cell size, subcutaneous depots had greater fatty acid synthae, glucose 6-phosphate dehydrogenase, and NADP-malate dehydrogenase activities than omental and perirenal, indicating that other factors such as nutrient supply may restrict hypertrophy of carcass adipocytes.  相似文献   

4.
旨在对绵羊β3肾上腺素能受体基因在脂肪组织中的表达进行研究。本研究通过real-time PCR和免疫组化的方法检测了2个绵羊群体皮下脂肪、大网膜、小网膜、腹膜后脂肪、肠系膜和肾周等6种脂肪组织中ADRB3基因mRNA及其蛋白的表达量与分布情况。结果表明:ADRB3蛋白位于脂肪细胞的细胞膜中。ADRB3基因mRNA及其蛋白在皮下脂肪组织的表达丰度最小(0.159和0.139),在腹膜后脂肪组织的表达丰度最大(2.911和2.225),深层脂肪组织中ADRB3基因mRNA表达量要显著高于皮下脂肪组织(P<0.05),表明皮下脂肪组织的脂肪分解率要低于深层脂肪组织。品种对ADRB3基因mRNA的表达没有显著影响,但对于ADRB3蛋白的表达影响显著。不同脂肪组织中ADRB3表达丰度的差异反映了山西肉用绵羊的遗传稳定性较差。本研究的结果与已知的ADRB3调节脂肪分解和产热的功能是一致的,为利用ADRB3基因作为候选基因进行绵羊新品种的培育提供理论依据。  相似文献   

5.
Leptin and peroxisome proliferator‐activated receptor gamma (PPARγ) are adipogenic proteins that are actively involved in metabolic homeostasis of fat. Recently, it was reported that fat tissue in humans and rodents differs in metabolic activity relative to anatomical location of the fat tissue (i.e. depots) and animal age. Hence, we hypothesized that leptin and PPARγ production in various fat depots in female pigs differs in response to acute fasting, and that these responses vary with physiological maturity of the animal. Sixteen intact crossbred immature female pigs [prepubertal (PP); 132.2 ± 4.1 days] and 16 sexually mature female pigs (M; 224 ± 7.4 days) housed in an open‐air, concrete slab, sheltered barn were randomly assigned to either Control or Fasted treatments. Control pigs (PP, n = 8; M, n = 8) had ad libitum access to feed, while Fasted pigs (PP, n = 8; M, n = 8) were denied access to feed from the onset of the study (0 h) to euthanasia at 72 h. Immediately post‐mortem, fat samples were collected from the subcutaneous, pelvic, kidney, and heart (M pigs only) fat depots and analysed for leptin and PPARγ mRNA and protein content. Acute fasting decreased mean leptin mRNA tissue content in a depot specific manner in M pigs (p < 0.01), while mean leptin protein concentrations in fat tissues did not differ with fat depot or age of the pig. Furthermore, acute fasting did not affect mean PPARγ mRNA tissue content in a fat depot or age dependent manner. Mean concentrations of PPARγ protein in fat depots tended to be greater in M vs. PP pigs (p = 0.07). We suggest that these data provide evidence that acute fasting has a greater effect on leptin than PPARγ production in a fat depot dependent manner in M pigs, which may be indicative of changing physiological demands as an animal matures.  相似文献   

6.
The amount of monounsaturated fatty acid (MUFA) is intimately related to adipose softness, melting point (MP) and flavor in beef. Stearoyl‐CoA desaturase (SCD) is a main gene involved in MUFA synthesis. Mature adipose tends to be highly saturated, whereas immature or maturing adipose is highly unsaturated when chronologically based, so the degree of non‐saturation can be an index of adipose maturity. In this study, three different adipose tissues (coelomic (CL), perirenal (PR), and subcutaneous (SC)) from three beef breeds with differing slaughter ages (Japanese Black (29.5 months), Holstein (20.1 month), and F1 crossbreed (25.6 months)) were examined to: (i) determine adipose maturity level as indexed by MUFA %; and (ii) determine SCD and other lipogenic gene messenger RNA (mRNA) expression levels in relation to unsaturated fatty acid content. Fatty acid composition was significantly different between adipose tissues (P < 0.05). MUFA amount was high in the following order: SC > CL > PR. This pattern corresponded to SCD mRNA expression profile showing higher expression in SC than CL and PR. However, Japanese black cattle are an exception with CL adipose containing similar UFA % as SC adipose, yet having the lowest SCD mRNA expression level among all adipose tissues tested. Therefore, SCD mRNA expression and MUFA % appear to be directly related; however, differences in SCD mRNA expression among three adipose tissues may reflect differences in the fat development characteristics affected by chronological age of the cattle breeds.  相似文献   

7.
The basis for the variation in fatty acid composition in different ovine adipose tissue depots was investigated. The proportion of stearic (C18:0) and oleic (C18:1) acids vary in a site-specific fashion; abdominal depots (omental and perirenal) contain relatively more C18:0 than C18:1, and carcass depots, especially sternum, have a markedly higher proportion of C18:1. Additionally, expression of a number of lipogenic enzyme genes (stearoyl-CoA desaturase [SCD], acetyl-CoA carboxylase-alpha [ACC-alpha], lipoprotein lipase [LPL]) and the cytoskeletal protein gene alpha-tubulin vary among depots, although the pattern of variation differs for each mRNA. When these expression data were related to the mean cell volume of adipocytes pooled from all depots, a significant pattern emerged: expression of the ACC-alpha, LPL, and alpha-tubulin genes was highly correlated with the size of adipocytes. In contrast, when the expression of SCD mRNA was assessed as a function of mean cell volume, two populations of adipocytes emerged: no significant correlation was found between the expression of SCD mRNA per adipocyte and mean cell volume for the abdominal depots, although a highly significant correlation was observed between SCD gene expression and mean cell volume for the carcass and epicardial depots. Similarly, a highly significant correlation was found for the amount of C18:1 per adipocyte and the abundance of SCD mRNA per adipocyte for the carcass and epicardial depots, whereas no significant correlation was observed for these traits for the omental and perirenal depots. Thus, the SCD gene seems to be regulated in a depot-specific fashion and in a manner distinct from that of the ACC and LPL genes.  相似文献   

8.
The aim of the study was to determine if cattle breeds differing in their carcass characteristics also differ in the profiles of their leptin and metabolic hormones. Three breeds, Belgian Blue (BB) (n = 12), Limousin (L) (n = 12) and Aberdeen Angus (AA) (n = 12) with varying ability to deposit fat and protein were compared. Blood, muscle and subcutaneous (SC) adipose tissue were sampled. Animal performance, carcass and meat characteristics were determined as well as plasma leptin concentration, leptin gene expression in SC adipose tissue, leptin-receptor gene expression in SC adipose tissue and plasma concentration of insulin, tri-iodothyronin (T3), thyroxin (T4) and cortisol. The BB bulls showed the lowest values of leptin gene expression (P < 0.05). Values of plasma leptin concentration and of leptin-receptor gene expression tended to be lower in BB than in the other breeds. For a similar amount of adipose tissue (after normalisation), BB bulls showed a higher ratio of plasma leptin (P < 0.05), whereas normalised leptin gene and leptin-receptor gene expressions did not significantly differ between breeds. Belgian Blue bulls also differed in their metabolic hormone profile, tending to show lower values of insulin, T3 and T4 than the two other breeds. Cortisol levels were significantly lower (P < 0.05) in BB than in L and AA animals.  相似文献   

9.
This study verified whether leptin or its long isoform receptor (Ob-Rb) genes are expressed in proliferating lymphocytes from bovine species, and whether their expression changes with increased temperatures. Peripheral blood mononuclear cells (PBMC) from five Holstein cows were incubated in the presence of concanavalin A, and alternatively subjected for 65 h to each of the following treatments (T): 39 degrees C continuously (T39) or three 13-h cycles at 40 (T40), 41 (T41) or 42 degrees C (T42), respectively, which were alternated with two 13-h cycles at 39 degrees C. T39 mimicked normothermia; T40, 41 and 42 mimicked conditions of hyperthermia alternated with normothermia. PBMC proliferation declined under T42. Compared with T39, levels of mRNA for leptin was lower under T42, whereas mRNA for Ob-Rb was lower in lymphocytes cultured both under T41 and T42. DNA synthesis was positively correlated with leptin mRNA. This study supports the concept that severe heat stress impairs proliferation of bovine PBMC, confirms that bovine lymphocytes express Ob-Rb gene, and provides the first experimental evidence that bovine lymphocytes express gene for leptin, and that increased temperatures are associated with altered gene expression for leptin and Ob-Rb.  相似文献   

10.
The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P = 0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2nM: approximately 4-fold; 20nM: approximately 14-fold; P = 0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone, similar dose- and time-dependent effects were noted. However, no effects were seen when adipocytes from the gonadal WAT depot were treated with rosiglitazone. The induction of 11β-HSD-1 expression, by the pro-inflammatory cytokine tumor necrosis factor α and by lipopolysaccharide may have implications for the pathogenesis of obesity and its associated diseases in the dog.  相似文献   

11.
Ruminants transform feed components preferentially in body mass or milk. The accretion type of cattle are apt in accreting feed as meat and fat, while the secretion type of cattle secrete metabolised feed as milk. The objective of this study was to investigate the growth- and type-related differences in muscle fibers, adipocytes, and hormones in two metabolic types of cattle. Biopsy samples of semitendinosus muscle and blood were taken at 6, 8, 10, 13, and 16 months of age from 13 bulls of each metabolic type (Charolais—CH, German Holstein—H). Postnatal growth was characterized by a nearly 2-fold increase in muscle fiber area, while a constant fiber type frequency was observed. Differences in the growth potential between CH and H bulls were not only found in a higher daily weight gain or higher weight for CH cattle, but were also caused by stronger muscle fiber growth in that cattle type. The higher muscle growth potential of CH was accompanied by lower fat accretion and metabolically linked with lower plasma concentrations of insulin, glucagon, and leptin. The amount of subcutaneous adipose tissue was directly correlated with leptin in CH and with insulin and glucagon in H bulls.  相似文献   

12.
The present study aimed to characterize serum haptoglobin (Hp) concentrations throughout an entire lactation period in both primi- and multiparous cows and to compare them to the Hp mRNA expression in liver and - in view of Hp being potentially an adipokine - also in different subcutaneous (s.c.) and visceral fat depots. In addition, potential anti-inflammatory effects of long-term supplementation with conjugated linoleic acids (CLA) were evaluated by assessing Hp. Trial 1 comprised 33 cows and 16 Holstein heifers from day 21 ante partum until day 252 postpartum. The animals received 100 or 50 g/day CLA or a control fat supplement. Blood samples and biopsy (tail head fat and liver) samples were collected. Trial 2 included 25 Holstein heifers, 5 animals were slaughtered on the day of parturition, the remaining animals were allocated to either CLA (100 g/day, n=10) or control fat supplement (n=10) and slaughtered on days 42 and 105 postpartum, respectively. At slaughter, fat samples were collected from 3 different visceral depots, 3 s.c. depots and from liver tissue. Results indicated no effects of CLA on serum Hp and liver Hp mRNA for both trials and on Hp mRNA in biopsies from s.c. tail head fat. In omental and s.c. withers fat from trial 2, CLA reduced Hp mRNA on both day 42 and day 105. Hp mRNA was detectable in fat tissues from both trials with abundance values being significantly lower than in liver. The Hp mRNA abundance in the s.c. fat depots was generally higher than in the visceral depots. Haptoglobin mRNA abundance in the different tissues from trial 2 was correlated whereby all s.c. depots were interrelated. The evidence of Hp mRNA expression in adipose tissues and the presence of Hp-immune staining in histological fat sections confirm that Hp can be classified as a bovine adipokine. The lack of an evident relationship between circulating Hp concentrations and normal body fat portions in dairy cattle demonstrates that varying degrees of adiposity are not confounding factors when using Hp as inflammatory marker. The physiological changes in serum Hp concentration seem to be limited to parity and parturition. In view of the lack of effects of CLA on serum Hp concentrations, the observed reaction in two out of six different fat depots seems of marginal importance for the organisms as an entity.  相似文献   

13.
In cattle, genetic markers at the leptin (LEP) gene and at those linked to the gene have been described as affecting calving interval (markers LEPSau3AI and IDVGA51), or daily weight gain (BMS1074 and BM1500). This work investigated the effect of these alleles on LEP mRNA levels in cattle subcutaneous and omental adipose tissues. A sample of 137 females of a Brangus‐Ibage beef cattle herd was analysed to evaluate the distribution of the polymorphisms; then, animals having at least one of the IDVGA51*181 (allele 181 at marker IDVGA51; six animals), LEPSau3AI*2 (four), BMS1074*151 (13), BM1500*135 (six) alleles and a control group composed of animals without any of these alleles (four animals) were submitted to surgery to obtain omental and subcutaneous adipose tissues. Leptin mRNA expression was quantified by TaqMan RT‐PCR, using 18S rRNA as internal control and adjusted for the effect of body condition score, through regression analysis. Omental fat had LEP gene expression 33% lower than the subcutaneous tissue. Carriers of IDVGA*181 and BMS1074*151 showed subcutaneous fat leptin mRNA levels higher than the controls. Leptin controls feed intake and coordinates reproduction; therefore, animals with higher LEP gene expression will probably have lower daily weight gain than others with similar forage offer and nutritional condition and probably will also have longer calving interval.  相似文献   

14.
Sheep adipose tissue explants were maintained in culture for 24 h in the presence of insulin, dexamethasone, or insulin and dexamethasone, and stearoyl-CoA desaturase (SCD) messenger RNA (mRNA) levels and fatty acid synthesis were measured. Insulin increased SCD mRNA levels (P = 0.008) and synthesis of both saturated (P = 0.07) and unsaturated (P < 0.001) fatty acids but had the greatest effect on unsaturated fatty acid synthesis, resulting in the overall production of a greater (P < 0.001) proportion of monounsaturated fat. Dexamethasone, alone, had the opposite effect but actually potentiated the effect of insulin in stimulating SCD expression and both saturated and monounsaturated fatty acid synthesis, without affecting the relative proportions of each. Across adipose tissue depots, the effect of hormones was similar, although the increase in SCD mRNA levels (P = 0.008) and monounsaturated fatty acid synthesis (P < 0.001) was greater in subcutaneous adipose tissue than in the internal (omental and perirenal) depots. These data clearly show that, in ovine adipose tissue, changes in SCD gene expression in response to insulin and dexamethasone are associated with changes in monounsaturated fatty acid synthesis and suggest that it may be possible to develop strategies to manipulate sheep tissues to produce a less-saturated fatty acid profile.  相似文献   

15.
An ovine-specific RIA, shown to be reliable for bovine leptin determination, was used to study the effects of breed, body fatness, feeding level, and meal intake on plasma leptin level in adult cattle. Eighteen fat Charolais, fat Holstein, and lean Holstein adult cows were either well-fed (130% of maintenance energy requirements [MER]) or underfed (60% of MER) for 3 wk. The breed tended to have a small effect on plasma leptin level, which was decreased by 70% (P < 0.05) in lean compared to fat Holstein cows. A strong curvilinear relationship was found between mean adipocyte volume and plasma leptin concentrations in well-fed (r = +0.95) and underfed (r = +0.91) cows. Underfeeding caused a significant decrease in plasma leptin levels from 8.0+/-3.1 to 6.1+/-2.3 ng/mL (P < 0.01). Nine adult Holstein cows initially fed at 130% of MER (control) were underfed to 21% of MER for 7 d, and five of them were refed to 237% of MER for 21 d. Plasma leptin measured 1 h before meal distribution was decreased from 5.9+/-0.4 to 3.8+/-0.2 ng/mL (P < 0.01) by underfeeding and increased to reach 8.8+/-1.0 ng/mL (P < 0.01) after refeeding. It was positively related to plasma glucose (r = +0.52, P < 0.01) and negatively related to plasma NEFA (r = -0.67, P < 0.001). Plasma leptin measured 4 h after meal distribution was positively related to feeding level and to plasma 3-OH-butyrate (r = +0.61, P < 0.005) and negatively related to plasma NEFA (r = -0.56, P < 0.01). Differences between pre- and postprandial leptin concentrations showed a decrease after meal intake in control and well-fed cows (-7 and -19%, P < 0.01, respectively) and an increase in underfed cows (+12%, P < 0.01). Leptin response to meal intake was positively related to glucose response (r = +0.66, P < 0.001) and negatively related to 3-OH-butyrate response (r = -0.78, P < 0.001). By using the "multispecies" commercial RIA, leptin concentrations were lower and we observed similar physiological responses, although less related to other hormones or metabolites. These data provide evidence, first, that a specific RIA for ruminant leptin determination is necessary to better understand leptin regulation, and second, that plasma leptin is strongly related to adipose cell size and positively related to feeding level in adult cattle, and that an effect of meal intake could be mediated by glucose and(or) ketone bodies.  相似文献   

16.
Nesfatin-1, a product of the nucleobindin 2 (NUCB2) gene, purportedly plays important roles in whole-body energy homeostasis. Experiments were conducted to determine how NUCB2 expression in fat depots may be controlled in the pig and to test the hypothesis that nesfatin-1 regulates appetite and LH secretion in the gilt. Prepubertal gilts were used to study expression of NUCB2 in fat and the effects of intracerebroventricular (i.c.v.) injection of nesfatin-1 on food intake and pituitary hormone secretion. Growing pigs (gilts and barrows at 22 wk of age, n = 1,145) or sexually mature gilts (n = 439) were used to test association of SNP in the NUCB2 gene with growth traits. The expression of NUCB2 was similar for subcutaneous fat compared with perirenal fat. An i.c.v. injection of the melanocortin-4 receptor agonist [Nle4, d-Phe7]-α-melanocyte-stimulating hormone did not alter expression of NUCB2 mRNA in the hypothalamus but reduced (P = 0.056) NUCB2 mRNA expression in subcutaneous fat. Short-term (7 d) submaintenance feeding reduced (P < 0.05) BW and did not alter expression of mRNA for NUCB2, visfatin, or leptin but increased (P < 0.05) expression of adiponectin mRNA in fat. Central injection of nesfatin-1 suppressed (P < 0.001) feed intake. Secretion of LH was greater (P < 0.01) after i.c.v. injection of nesfatin-1 than after saline. Single nucleotide polymorphisms in the porcine NUCB2 gene were not associated with adiposity of growing pigs or age at puberty in gilts but were associated (P < 0.05) with BW at puberty. These data indicate that NUCB2 is expressed in fat depots of the pig and that the level of expression is sensitive to stimulation of appetite-regulating pathways in the hypothalamus. It is confirmed herein that nesfatin-1 can regulate appetite in the pig and affect the gonadotropic axis of the prepubertal pig. Association of SNP in the porcine NUCB2 gene with BW at puberty suggests that regulation of appetite by nesfatin-1 in the pig affects growth, which may have important consequences for adult phenotypes.  相似文献   

17.
Brown adipose tissue (BAT) can influence glucose, lipid, and energy metabolism in rodents. Active BAT is now known to be present in adult humans, and interventions targeting BAT are being investigated for the treatment of human obesity and disorders of glucose and lipid metabolism. Domestic cats, like humans, are at increasing risk for obesity and diabetes but little is known about the presence and role of BAT in adult cats. The purpose of this study was to determine if brown adipocytes, identifiable by histological features and molecular markers, were present in the fat depots of adult cats. Adipose tissue samples from intrascapular, perirenal, and subcutaneous depots of eleven 8–12 year old cats (6 lean, 5 obese), were analyzed by real-time PCR for brown adipocyte markers uncoupling protein 1 (UCP1) and Type II iodothyronine 5′deiodinase (D2), by histological examination and by immunohistochemistry for UCP1.UCP1 mRNA was detectable in interscapular and subcutaneous depots in all cats, and in the perirenal depot in 10/11 cats. D2 mRNA was detectable in all depots from all cats. Multilocular adipocytes were identified in the interscapular depots of 4/11 cats and these were positive for UCP1 immunoreactivity. The results demonstrate that UCP1-expressing brown adipocytes are present in multiple depots of adult lean and long-term obese cats, even at 8–12 years of age. It is possible that dietary components or pharmacological agents that influence brown fat activity could exert a relevant biological effect in cats.  相似文献   

18.
19.
The polypeptide hormone leptin is produced by both adipose tissue and the liver and has been shown to induce satiety in chickens. In this study we have investigated the developmental regulation of leptin mRNA expression in growing broiler chickens. Leptin expression generally increases in all tissues from 1-12 weeks of age. In the subcutaneous fat depot there is an apparent pattern of increased leptin mRNA expression occurring at 2, 6, and 10 weeks post-hatch. This pattern was not evident in the other tissues surveyed and may relate to the cycle of loading and unloading of adipocytes with lipid. No consistent gender differences in leptin expression patterns were detected in the tissues surveyed, as is often observed in mammals. Positive correlations between metabolic body weight and adipose leptin expression levels were observed. Leptin expression by the liver was highly correlated with metabolic body weight from 1-6 weeks of age, and uncorrelated from 6-12 weeks of age. This pattern of increasing liver leptin expression with increasing body weight during the early rapid growth phase of the bird may be due to limited fat storage during this period, which is followed by rapid body fat accumulation from 6-12 weeks. The characterization and tissue specific distribution of leptin mRNA expression in the growing broiler indicate similar patterns of leptin production to that of growing mammals. Leptin may be involved in lipid flux through the adipocyte as well as the shift in lipid metabolism to increased storage during pre-puberty.  相似文献   

20.
J.P. Jiang  J. Zhou  J. Chen  X.H. Wei  T.S. Lu  H. Chi  R.Q. Zhao   《Livestock Science》2007,107(2-3):235-243
Chicken egg yolk antibody against pig adipose tissue plasma membranes (AIgY) was raised and used in the present experiment to evaluate the effect of dietary AIgY supplementation on pig growth and carcass composition. 160 crossbred (Duroc–Jersey × Landrace·Meishan) pigs, with initial live body weight of 27.5 ± 2.4 kg, were treated with AIgY or non-immunized control egg yolk powder (NIgY) at the inclusion level of 75 mg/kg diet. Following a 104-day trial, the pigs were slaughtered for analyzing the carcass and meat quality traits. The perirenal, mesenteric and subcutaneous fat depots were weighed and the diameter of adipocytes from different fat depots was measured with histological methods. Serum concentrations of insulin and leptin as well as the activities of malic enzyme (ME) and lipoprotein lipase (LPL) in adipose tissue were measured. Dietary supplementation of AIgY enhanced average daily gain and feed efficiency by 13.03% (P < 0.01) and 7.49%, respectively, with no influence on feed consumption. AIgY increased the lean mass by 10.3% (P < 0.01) without affecting the dressing percentage. Backfat thickness at 6th–7th rib and the weights of perirenal, mesenteric and subcutaneous fat depots were reduced by 24.14% (P < 0.01), 27.27% (P < 0.05), 20.42% (P < 0.01) and 29.21% (P < 0.01), respectively. Dietary supplementation of AIgY reduced the size of adipocytes in all the three fat pads (P < 0.05). The meat color was improved whereas the marbling score, the intramuscular fat content, and pH45 of the longissimus muscle remained unaffected. Serum concentration of non-esterified fatty acids (NEFA) was significantly increased (P < 0.01) while urea-N content was reduced (P < 0.05). No alterations were detected for the serum levels of triacylglycerides (TG) and glucose. Serum concentrations of insulin and leptin were decreased by 26.19% (P < 0.05) and 26.53% (P < 0.05), respectively. LPL activity in adipose tissue was depressed significantly (P < 0.05) without affecting ME activity. This study demonstrates that dietary supplementation of AIgY can effectively improve growth and carcass composition of pigs and the changes of serum insulin and leptin levels as well as the tissue LPL activity may be involved in the acting mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号