首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 204 毫秒
1.
通过对不同容量营养液的培养基、不同柠檬酸铵含量的培养基以及在不同培养条件下栽培的蛹虫草子实体产量和质量的分析比较,发现培养基营养液、柠檬酸铵含量、光照强度、相对湿度等因素都会影响蛹虫草子实体的产量和质量,培养基中加入40 mL营养液时蛹虫草子实体产量及高度最高,培养基中加入1.0 g/L柠檬酸铵蛹虫草子实体产量最高。适宜蛹虫草子实体生长的培养条件是温度20°C、光照强度500 lx、相对湿度70%。  相似文献   

2.
本研究采用大米米饭固体培养基培养出蛹虫草子实体,在菌株、培养基、接种方式三个因素中筛选出高产蛹虫草子实体的最优组合,并与工业液体发酵蛹虫草菌丝体作比较,用高效液相色谱法(High Performance Liquid Chromatography,HPLC)测定了子实体和采后培养基中的虫草素含量,结果表明,子实体中的虫草素含量(10.22 mg/g)是采后培养基中虫草素含量(2.04 mg/g)的5倍,是工业液体发酵蛹虫草菌丝体中虫草素含量(7.06 mg/g)的1.45倍。  相似文献   

3.
马国良  马琪  看措  东主措 《安徽农业科学》2011,39(30):18539-18541,18547
[目的]开发天然的富硒虫草产品,为提高虫草的医疗保健价值提供科学的理论依据。[方法]以蛹虫草为富硒载体,在培养基质中加入不同浓度硒,研究其对蛹虫草菌丝、原基的分化和子实体形成的影响。[结果]当硒浓度在21.0~23.0 mg/L范围内,蛹虫草菌丝生长最快,形成原基、子实体的生物量最高,表明该浓度范围内对子实体生长有一定的促进作用;当硒浓度为25.0 mg/L时,菌丝几乎停止生长,且子实体生长受到抑制。在硒+肌醇的复合浓度中,添加硒9.0 mg/L+肌醇4.0 mg/L的培养基中蛹虫草菌丝生长最快;硒21.0 mg/L+肌醇4.0 mg/L促进了蛹虫草原基的分化和子实体的生长,其生物量明显高于其他浓度处理。[结论]低浓度硒促进了蛹虫草菌丝的生长,而高浓度硒对其菌丝生长产生抑制作用。  相似文献   

4.
目的】研究分析Na2SeO3对药食用真菌蛹虫草子实体生长及功能成分腺苷、虫草素的影响,大面积人工栽培富硒蛹虫草提供理论依据和技术支持。【方法】以新疆本地蛹虫草菌种作为富硒载体,采用瓶栽法,系统分析不同浓度亚硒酸钠处理对蛹虫草菌丝、子座、子实体生长,产量、生物转化率、总硒及其功能成分腺苷、虫草素含量的影响。【结果】处理1(硒浓度20 mg/L)和处理2(硒浓度40 mg/L)与对照相比其蛹虫草的菌丝体生长、子座生长、子实体出草长度、鲜重、干重、生物转化率等无影响,其子实体中总硒含量最高,功能成分腺苷、虫草素含量明显增加;从处理3(硒浓度60 mg/L)至处理7(硒浓度200 mg/L)与对照相比,其蛹虫草的菌丝体生长、子座生长受到抑制,其子实体出草长度、鲜重、干重、生物转化率等呈显著性差异(P<0.05),呈降低趋势,并随着硒浓度增加,抑制越明显;其子实体中总硒含量逐渐降低,功能成分腺苷、虫草素含量逐渐下降。【结论】以亚硒酸钠作为外源硒,硒浓度20~40 mg/L效果最好,可作为进行蛹虫草富硒栽培较为理想的浓度。  相似文献   

5.
本研究以燕麦、大米和小麦为主要栽培基质对蛹虫草菌株QC04进行栽培,比较不同栽培基质和栽培周期对蛹虫草子实体生物量和活性成分的影响,以期为蛹虫草菌株QC04的生产及充分开发利用提供参考。结果表明:栽培时间为35~55 d时,随着栽培时间的延长,子实体干重不断增加且同一时期子实体干重由高到低为小麦培养基>燕麦培养基>大米培养基,燕麦培养基和大米培养基的剩余栽培料干重大于小麦培养基且剩余栽培料干重均大于子实体干重;燕麦和小麦培养基的子实体和栽培剩余物中虫草素和腺苷含量均高于大米培养基;55 d时子实体和栽培剩余物中虫草酸和腺苷含量达到最高;同一时期同一种培养基虫草素在子实体中的含量低于栽培剩余物,腺苷则相反;大米培养基的虫草酸含量普遍高于燕麦和小麦培养基,子实体后期生物量衰退时,子实体虫草酸含量有少量增加且在65 d时大米培养基的子实体虫草酸含量达到最大值,为195.18mg/100g。  相似文献   

6.
【目的】研究亚硒酸钠对蛹虫草菌落形态、子座产量及子座硒含量的影响,旨在为富硒蛹虫草产业化开发提供依据。【方法】以蛹虫草菌株CM003为试材,采用平板培养基探讨不同质量浓度(0,50,100,150,200,250,300,350,400和450 mg/L)亚硒酸钠对蛹虫草菌落形态的影响。在此基础上,采用常规瓶栽法研究不同质量浓度(0,50,100,150,200和250 mg/L)亚硒酸钠对蛹虫草长势、子座产量及子座硒含量的影响,并拟合了栽培营养液中亚硒酸钠质量浓度与蛹虫草长势评分、子座产量、子座硒含量之间的函数关系。【结果】在平板培养基上,当亚硒酸钠质量浓度≤100 mg/L 时,蛹虫草的菌落形态基本正常,菌落直径的变化幅度较小;当亚硒酸钠质量浓度为450 mg/L 时,蛹虫草菌丝仍能缓慢生长。采用常规瓶栽法栽培蛹虫草时,随着亚硒酸钠质量浓度的增加,蛹虫草的长势评分和子座产量呈先增加后减小的趋势,子座硒含量呈逐渐增加趋势。拟合方程显示,营养液中亚硒酸钠质量浓度为28.2 mg/L时,蛹虫草的长势最好;亚硒酸钠质量浓度为58.17 mg/L时,蛹虫草子座产量最高;亚硒酸钠质量浓度为200 mg/L时,子座硒含量最高达92.68 mg/kg。【结论】蛹虫草对亚硒酸钠不仅具有较强的耐受性,且具有较强的富硒能力,是人工生产富硒产品的优良载体。  相似文献   

7.
固体培养条件对蛹虫草产子实体和虫草菌素的影响   总被引:3,自引:0,他引:3  
研究了营养液不同pH值和米粒大小两个培养条件对蛹虫草固体发酵产子实体和虫草菌素的影响.当营养液pH值为5.5~6.0时子实体的产量最大,营养液pH值为6.5时,虫草菌素总的产量最大,达48.44 g/瓶.较大的米粒有利于蛹虫草子实体的生长,较小的米粒有利于蛹虫草虫草菌素的积累.子实体的产量随着米粒的变小而减少;子实体中虫草菌素的含量随着米粒的变小而增加.当采用整米作为培养基基质时,蛹虫草子实体产量最大,达1.67 g/瓶,当采用40目米 10目米(1∶1,M/M)作为培养基基质时,蛹虫草子实体中虫草菌素含量最大,达1.87%,虫草菌素总的产量也最大,达52.46 mg/瓶.  相似文献   

8.
[目的]蛹虫草(Cordyceps militaris)又名北虫草、北冬虫夏草,是一种药(食)用真菌,具有替代名贵中药冬虫夏草的潜力,目前已大规模开发利用;但在人工栽培过程中,仍存在栽培基质配方不佳、子实体形成及优质率不高等问题.[方法]从新疆天山区域采集野生蛹虫草子实体,经分离纯化,筛选出优良菌株,设计不同的人工栽培培养基配方,在恒温培养条件下,明确不同培养基对新疆蛹虫草的子实体生长影响.[结果]不同培养基对蛹虫草的菌丝生长及子实体形成发育具有差异性影响.与对照处理相比,其它处理对蛹虫草的子实体长度、鲜重、干重、鲜干比、生物转化率,以及每瓶投入、产出和净利润等方面均呈显著性差异(P<0.05);不同的培养基配方对蛹虫草的菌丝、子实体形成具有重要的影响,处理1(大米培养基,20 9/瓶)和处理10(大米:小麦:水稻壳=6:3:1)表现最好.[结论]蛹虫草人工栽培可使用处理1或处理10配方培养基适宜新疆地区蛹虫草的规模化生产,丰富该地区人工栽培蛹虫草培养基配方,为伊犁乃至新疆大面积人工栽培蛹虫草提供技术支持.  相似文献   

9.
近年,随着人工栽培蛹虫草面积逐年扩大,迫切需求大规模培育蛹虫草菌种,尤其是液体菌种来满足日益扩大的再生产的需要。采用正交试验设计,选取pH值、温度、通气量3个因素,每个因素设置3个水平,进行液体菌种发酵工艺试验,分析蛹虫草子实体生长影响及生物转化率变化情况。通过试验得到人工栽培蛹虫草液体菌种发酵的最佳组合条件。不同处理对蛹虫草子实体生长有明显变化,3种因素对蛹虫草的生物转化率影响为:温度通气量pH值,其最优组合为温度20℃、pH值5.5、通气量2 L/min。  相似文献   

10.
虫草深层发酵的培养条件和培养基优化研究   总被引:3,自引:1,他引:2  
以菌丝体干重、腺苷含量及腺苷总量为指标,研究温度、初始pH值、碳源、氮源和金属离子等因素对蛹虫草液体培养的影响.结果表明,蛹虫草液体摇瓶培养的最佳温度为20 ℃,初始pH值为4.0,最适培养基组成为糖蜜20 g/L、玉米浆10 g/L、氯化钙0.5 g/L、磷酸二氢钾0.5 g/L、磷酸氢二钾0.5 g/L、维生素B1 0.1 g/L.在优化的培养条件下,蛹虫草菌丝体生物量为15.55 g/L,腺苷含量为6.26 mg/g,腺苷总量为97.25 mg/L.  相似文献   

11.
蛹虫草主要有效成分分析   总被引:5,自引:0,他引:5  
[目的]进一步开发蛹虫草,满足人们对药品和滋补保健品的需求。[方法]通过用HPLC测定核苷类化合物和氨基酸,乙醇沉淀法测定虫草多糖,比色法测定虫草酸,SOD Assay Kit-WST试剂盒测定SOD酶酶活分析蛹虫草的主要有效成分。[结果]蛹虫草子实体中含有虫草素(3′-脱氧腺苷)、腺嘌呤、脱氧胸苷、尿嘧啶、腺苷、次黄嘌呤、鸟苷、尿苷等核苷类化合物,18种氨基酸,其中以谷氨酸、精氨酸、天冬氨酸、亮氨酸含量最高;甘露聚糖和葡萄糖含量分别为13.88和16.68 mg/g,虫草酸含量为17 mg/g,胞内SOD酶酶活为515.40 U/g。[结论]蛹虫草的主要有效成分为:核苷类化合物(虫草素、腺苷、鸟苷、尿苷、肌苷)、虫草酸、虫草多糖、氨基酸、SOD酶等。  相似文献   

12.
[目的]选育高富硒酵母菌株,优化发酵培养条件,以提高酵母生物富集、转化有机硒的能力。[方法]以耐受亚硒酸钠强的菌株为出发菌株,研究该菌株在培养过程中的亚硒酸钠添加量、添加时间、酵母菌接种龄、培养温度等参数,从而达到最优的酵母生物量及富硒量。[结果]研究表明,酵母菌FX5菌株具有较高的耐受性和富硒能力。发酵条件优化表明,FX5菌株在亚硒酸钠添加量为20 g/L、添加硒的时间为6 h,富硒效果最好。在最佳的摇瓶培养条件下(初始硒浓度20μg/mL,接种量10%,装液量50/250 mL,温度28℃,初始pH 6.0,摇床转速160 r/min,接种龄84 h,培养60 h后),该酿酒酵母的生物量及富硒量分别达到40.1 g/L、1 120 mg/L。[结论]该研究可为富硒农牧业生产提供一种安全的有机硒源。  相似文献   

13.
正交法优化蛹虫草子实体多糖的提取工艺   总被引:1,自引:0,他引:1  
[目的]采用正交法优化蛹虫草(Cordyceps militaris L.Link)子实体多糖的提取工艺。[方法]采用优化煎煮法、水热回流提取法和碱法提取蛹虫草子实体多糖的工艺。[结果]煎煮法提取蛹虫草子实体多糖的最优条件为:加入40倍体积的水,提取3次,每次3.0h,各因素影响得率的主次顺序为:料液比〉煎煮时间〉煎煮次数。水热回流法提取蛹虫草子实体多糖的最优条件为:加入20倍体积的水,80℃下提取2次,每次1.0h,各因素影响得率的主次顺序为:提取次数〉提取时间〉提取温度〉料液比。碱法提取蛹虫草子实体多糖的最优条件为:加入8倍体积的0.7mol/LNaOH溶液,提取3次,每次0.5h,各因素影响多糖得率的主次顺序为:浸提次数〉NaOH浓度〉料液比〉浸提时间。[结论]该研究找出了煎煮法、水热回流提取法和碱法提取蛹虫草子实体多糖的工艺,可为下一步研究及工业生产提供参考资料。  相似文献   

14.
辐射诱变高产虫草素蛹虫草菌株的研究   总被引:1,自引:0,他引:1  
张红  于桂英  徐方旭  王升厚 《安徽农业科学》2011,39(27):16575-16576,16696
[目的]筛选高产虫草素蛹虫草菌株。[方法]采用放射性元素60Co-γ射线辐射诱变方法对蛹虫草菌株进行处理。[结果]筛选出yccGy1016诱变菌株为目标菌株,其生物转化率达12.5%,菌丝中虫草素含量达481.6 mg/kg,子实体虫草素含量达9 600 mg/kg,明显高于对照菌株。[结论]经10代加富PDA斜面继代培养及罐头瓶小麦培养基栽培试验,yccGy1016诱变菌株具有产量性状稳定、产生虫草素能力强的特点。  相似文献   

15.
北冬虫夏草人工栽培条件的优化   总被引:1,自引:0,他引:1  
通过单因素试验和主要因素的正交试验对北冬虫夏草人工栽培条件进行优化,结果表明:北冬虫夏草栽培的最适培养基为大米培养基,最佳接种量为20 ml,菌丝和子实体生长的最佳温度均为21℃,最佳光照时间为14 h/d。  相似文献   

16.
本试验结果认为金针菇(Collybia vellutipes)最佳培养料配方为棉籽壳或木屑75%,麸子20%,豆饼粉3%,糖1%,过磷酸钙1%;菌丝生长的最适温度为25~28℃,子实体发育最适温度为13~15℃;菌丝生长发育的最适湿度为培养料含水量60%~65%,子实体发育时期空气最适相对湿度为85~90%。  相似文献   

17.
陈宏伟  朱蕴兰  邵颖  周亭 《安徽农业科学》2007,35(26):8193-8194
以蛹虫草为材料,在温度为22℃,摇瓶转速为120r/min条件下,研究了锌浓度对菌丝体生长的影响;并通过锌浓度、培养时间、pH值、培养基等4因素正交试验组合,研究了菌丝体生长量、菌体产胞内外多糖量、有机锌转化率的最佳条件。结果表明,低浓度的锌可以促进虫草菌丝体生长,而高浓度的锌则抑制菌丝体生长,虫草菌丝体生长的最适锌浓度为100~150μg/ml;虫草菌丝体生长的最佳条件组合为锌浓度100μg/ml,培养6d,pH值7,培养基选用麸皮培养基;产胞外糖最佳条件组合为锌浓度100μg/ml,培养4d,pH值8,培养基选用马铃薯培养基;产胞内糖及锌转化率最佳条件组合为锌浓度100μg/ml,培养时间为6d,pH值7,培养基选用马铃薯培养基,该条件下产胞内糖达24.264mg/100ml,有机锌率转化最高为18.4%。  相似文献   

18.
北冬虫夏草工厂化生产发展迅速,但其菌种还存在产量低、不产子实体等问题。通过头部组织分离法和孢子分离法对工厂化生产北冬虫夏草进行了研究,结果表明,头部组织分离对于北冬虫夏草的工厂化生产是可行的;孢子分离法使北冬虫夏草的产量提高约13%,栽培周期缩短了约7d,有利于北冬虫夏草产量的提高和栽培周期的缩短,降低栽培成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号