首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-temperature relaxation dynamics of supercooled liquids are a long-standing theoretical problem of considerable interest. The vast amount of experimental data on such liquids indicates that viscosity and diffusion in supercooled liquids are non-Arrhenius over a wide range of temperatures. The non-Arrhenius temperature dependence of the relaxation time of the slow modes in glass-forming liquids is investigated in connection with the topology of the potential energy landscape in configuration space. An analogy is made between the derived dynamical equations and Cooper's formulation of the pair equation in superconductivity.  相似文献   

2.
Anion-molecule nucleophilic substitution (S(N)2) reactions are known for their rich reaction dynamics, caused by a complex potential energy surface with a submerged barrier and by weak coupling of the relevant rotational-vibrational quantum states. The dynamics of the S(N)2 reaction of Cl- + CH3I were uncovered in detail by using crossed molecular beam imaging. As a function of the collision energy, the transition from a complex-mediated reaction mechanism to direct backward scattering of the I- product was observed experimentally. Chemical dynamics calculations were performed that explain the observed energy transfer and reveal an indirect roundabout reaction mechanism involving CH3 rotation.  相似文献   

3.
Understanding glass formation is a challenge, because the existence of a true glass state, distinct from liquid and solid, remains elusive: Glasses are liquids that have become too viscous to flow. An old idea, as yet unproven experimentally, is that the dynamics becomes sluggish as the glass transition approaches, because increasingly larger regions of the material have to move simultaneously to allow flow. We introduce new multipoint dynamical susceptibilities to estimate quantitatively the size of these regions and provide direct experimental evidence that the glass formation of molecular liquids and colloidal suspensions is accompanied by growing dynamic correlation length scales.  相似文献   

4.
Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.  相似文献   

5.
The intermediate structures formed through radiationless transitions are termed "dark" because their existence is inferred indirectly from radiative transitions. We used ultrafast electron diffraction to directly determine these transient structures on both ground-state and excited-state potential energy surfaces of several aromatic molecules. The resolution in space and time (0.01 angstrom and 1 picosecond) enables differentiation between competing nonradiative pathways of bond breaking, vibronic coupling, and spin transition. For the systems reported here, the results reveal unexpected dynamical behavior. The observed ring opening of the structure depends on molecular substituents. This, together with the parallel bifurcation into physical and chemical channels, redefines structural dynamics of the energy landscape in radiationless processes.  相似文献   

6.
The vitrification of pure water is compared with that of molecular solutions rich in water, and gross differences are noted. Thermodynamic reasoning and direct observations on noncrystallizing nanoconfined water indicate that the glass transition in ambient-pressure water is qualitatively distinct from that found in the usual molecular liquids. It belongs instead to the order-disorder class of transition seen in molecular and ionic crystalline materials. The distinctive "folding funnel" energy landscape for this type of system explains the extreme weakness of the glass transition of water as well as the consequent confusion that has characterized its scientific history; it also explains the very small excess entropy at the glass transition temperature. The relation of confined water behavior to that of bulk is discussed, and the "fragile-to-strong" transition for supercooled water is interpreted by adding a "critical point-free" scenario to the two competing scenarios for understanding supercooled bulk water.  相似文献   

7.
Wu T  Werner HJ  Manthe U 《Science (New York, N.Y.)》2004,306(5705):2227-2229
A full-dimensional quantum dynamics simulation of a hydrogen atom reacting with methane on an accurate ab initio potential energy surface is reported. Based on first-principles theory, thermal rate constants are predicted with an accuracy comparable to (or even exceeding) experimental precision. The theoretical prediction is within the range of the significantly varied experimental rate constants reported by different groups. This level of accuracy has previously been achieved only for smaller, three-or four-atom reactive systems. Comparison with classical transition state theory confirms the importance of quantum mechanical tunneling for the rate constant below 400 kelvin.  相似文献   

8.
Formation of glasses from liquids and biopolymers   总被引:3,自引:0,他引:3  
Angell CA 《Science (New York, N.Y.)》1995,267(5206):1924-1935
Glasses can be formed by many routes. In some cases, distinct polyamorphic forms are found. The normal mode of glass formation is cooling of a viscous liquid. Liquid behavior during cooling is classified between "strong" and "fragile," and the three canonical characteristics of relaxing liquids are correlated through the fragility. Strong liquids become fragile liquids on compression. In some cases, such conversions occur during cooling by a weak first-order transition. This behavior can be related to the polymorphism in a glass state through a recent simple modification of the van der Waals model for tetrahedrally bonded liquids. The sudden loss of some liquid degrees of freedom through such first-order transitions is suggestive of the polyamorphic transition between native and denatured hydrated proteins, which can be interpreted as single-chain glass-forming polymers plasticized by water and cross-linked by hydrogen bonds. The onset of a sharp change in ddT( is the Debye-Waller factor and T is temperature) in proteins, which is controversially indentified with the glass transition in liquids, is shown to be general for glass formers and observable in computer simulations of strong and fragile ionic liquids, where it proves to be close to the experimental glass transition temperature. The latter may originate in strong anharmonicity in modes ("bosons"), which permits the system to access multiple minima of its configuration space. These modes, the Kauzmann temperature T(K), and the fragility of the liquid, may thus be connected.  相似文献   

9.
Polar solvents often exert a dramatic influence on reactions in solution. Equilibrium aspects of this influence involve differential solvation of reactants compared to the transition state that lead to alteration of the free-energy barrier to reaction. Such effects are well known, and often give rise changes in reaction rates of many orders of magnitude. Less well understood are effects arising from non-equilibrium, dynamical aspects of solvation. During the course of reaction, charge is rapidly redistributed among reactants. How the reaction couples to its solvent environment depends critically on how fast the solvent can respond to these changes in reactant charge distribution. In this article the dynamics of solvation in polar liquids and the influence of this dynamics on electron-transfer reactions are discussed. A molecular picture suggests that polar solvation occurs on multiple time scales as a result of the involvement of different types of solvent motion. A hierarchy of models from a homogeneous continuum model to one incorporating molecular aspects of solvation, combined with computer simulations, gives insight into the underlying dynamics. Experimental measures of solvation dynamics from picosecond and subpicosecond time-dependent Stokes shift studies are compared with the predictions of theoretical models. The implication of these results for electron-transfer reactions in solution are then briefly considered.  相似文献   

10.
The van der Waals forces in the entrance valley of the Cl + HD reaction are shown here to play a decisive role in the reaction's dynamics. Exact quantum mechanical calculations of reactive scattering on a potential energy surface without Cl-HD van der Waals forces predict that the HCl and DCl products will be produced almost equally, whereas the same calculations on a new ab initio potential energy surface with van der Waals forces show a strong preference for the production of DCl. This preference is also seen in crossed molecular beam experiments on the reaction. The study of chemical reaction dynamics has now advanced to the stage where even comparatively weak van der Waals interactions can no longer be neglected in calculations of the potential energy surfaces of chemical reactions.  相似文献   

11.
The use of high-temperature nuclear magnetic resonance (NMR) spectroscopy provides a means of investigating the structure of refractory aluminate liquids at temperatures up to 2500 K. Time-averaged structural information indicates that the average aluminum coordination for magnesium aluminate (MgAl(2)O(4)) liquid is slightly greater than for calcium aluminate (CaAl(2)O(4)) liquid and that in both liquids it is close to four. Ion dynamics simulations for these liquids suggest the presence of four-, five-, and six-coordinated aluminate species, in agreement with NMR experiments on fast-quenched glasses. These species undergo rapid chemical exchange in the high-temperature liquids, which is evidenced by a single Lorentzian NMR line.  相似文献   

12.
加工番茄植株残体腐解液对加工番茄种子萌发的影响   总被引:1,自引:0,他引:1  
李志宏  秦勇  高杰 《新疆农业科学》2011,48(12):2250-2254
[目的]研究加工番茄植株残体腐解液对加工番茄种子萌发的影响,为进一步研究加工番茄植株残体在连作障碍中的作用和合理调控提供科学依据.[方法]设置不同腐解浓度和腐解时间的加工番茄叶、茎、根腐解液组合,研究加工番茄叶、茎、根腐解液对加工番茄种子发芽势、发芽率、胚轴生长和胚根生长的影响.[结果]不同腐解浓度和腐解时间的加工番茄叶、茎、根腐解液对加工番茄种子发芽势均表现为抑制作用,随着腐解液浓度的增大,发芽势均呈逐渐降低的趋势;对加工番茄种子发芽率影响不大,但是延长了种子发芽所需的时间;总体看来,对加工番茄胚轴的生长具有促进作用,且随着腐解浓度的增加和腐解时间的延长,其促进作用逐渐减弱;对加工番茄胚根生长均表现为抑制作用,且在高浓度时,随着腐解时间的增加,抑制作用逐渐增强.[结论]加工番茄植株残体腐解液对加工番茄种子萌发产生了不良影响,其抑制了加工番茄种子发芽势,延长了种子发芽所需时间,促进了胚轴生长,抑制了胚根生长.  相似文献   

13.
Classification of potential energy minima-mechanically stable molecular packings-offers a unifying principle for understanding condensed phase properties. This approach permits identification of an inherent structure in liquids that is normally obscured by thermal motions. Melting and freezing occur through characteristic sequences of molecular packings, and a defect-softening phenomenon underlies the fact that they are thermodynamically first order. The topological distribution of feasible transitions between contiguous potential minima explains glass transitions and associated relaxation behavior.  相似文献   

14.
When mixed with imidazolium ion-based room-temperature ionic liquid, pristine single-walled carbon nanotubes formed gels after being ground. The heavily entangled nanotube bundles were found to untangle within the gel to form much finer bundles. Phase transition and rheological properties suggest that the gels are formed by physical cross-linking of the nanotube bundles, mediated by local molecular ordering of the ionic liquids rather than by entanglement of the nanotubes. The gels were thermally stable and did not shrivel, even under reduced pressure resulting from the nonvolatility of the ionic liquids, but they would readily undergo a gel-to-solid transition on absorbent materials. The use of a polymerizable ionic liquid as the gelling medium allows for the fabrication of a highly electroconductive polymer/nanotube composite material, which showed a substantial enhancement in dynamic hardness.  相似文献   

15.
The viscoelastic properties of high molecular weight polymeric liquids are dominated by topological constraints on a molecular scale. In a manner similar to that of entangled ropes, polymer chains can slide past but not through each other. Tube models of polymer dynamics and rheology are based on the idea that entanglements confine a chain to small fluctuations around a primitive path that follows the coarse-grained chain contour. Here we provide a microscopic foundation for these highly successful phenomenological models. We analyze the topological state of polymeric liquids in terms of primitive paths and obtain parameter-free, quantitative predictions for the plateau modulus, which agree with experiment for all major classes of synthetic polymers.  相似文献   

16.
Sun L  Song K  Hase WL 《Science (New York, N.Y.)》2002,296(5569):875-878
Chemical dynamics trajectory simulations were used to study the atomic-level mechanisms of the OH- + CH3F --> CH3OH + F- SN2 nucleophilic substitution reaction. The reaction dynamics, from the [OH...CH3...F]- central barrier to the reaction products, are simulated by ab initio direct dynamics. The reaction's potential energy surface has a deep minimum in the product exit channel arising from the CH3OH...F- hydrogen-bonded complex. Statistical theories of unimolecular reaction rates assume that the reactive system becomes trapped in this minimum and forms an intermediate, with random redistribution of its vibrational energy, but the majority of the trajectories (90%) avoided this potential energy minimum and instead dissociated directly to products. This finding is discussed in terms of intramolecular vibrational energy redistribution (IVR) and the relation between IVR and molecular structure. The finding of this study may be applicable to other reactive systems where there is a hierarchy of time scales for intramolecular motions and thus inefficient IVR.  相似文献   

17.
The macroscopic motion of liquids on a flat solid surface was manipulated reversibly by photoirradiation of a photoisomerizable monolayer covering the surface. When a liquid droplet several millimeters in diameter was placed on a substrate surface modified with a calix[4]resorcinarene derivative having photochromic azobenzene units, asymmetrical photoirradiation caused a gradient in surface free energy due to the photoisomerization of surface azobenzenes, leading to the directional motion of the droplet. The direction and velocity of the motion were tunable by varying the direction and steepness of the gradient in light intensity. The light-driven motion of a fluid substance in a surface-modified glass tube suggests potential applicability to microscale chemical process systems.  相似文献   

18.
The spin dynamics of an arbitrary localized impurity in an insulating two-dimensional antiferromagnet, across the host transition from a paramagnet with a spin gap to a Neel state, is described. The impurity spin susceptibility has a Curie-like divergence at the quantum-critical coupling, but with a universal effective spin that is neither an integer nor a half-odd integer. In the Neel state, the transverse impurity susceptibility is a universal number divided by the host spin stiffness (which determines the energy cost to slow twists in the orientation of the Neel order). These and numerous other results for the thermodynamics, Knight shift, and magnon damping have important applications in experiments on layered transition metal oxides.  相似文献   

19.
High-resolution transmission electron microscopy images of room-temperature fluid xenon in small faceted cavities in aluminum reveal the presence of three well-defined layers within the fluid at each facet. Such interfacial layering of simple liquids has been theoretically predicted, but observational evidence has been ambiguous. Molecular dynamics simulations indicate that the density variation induced by the layering will cause xenon, confined to an approximately cubic cavity of volume approximately 8 cubic nanometers, to condense into the body-centered cubic phase, differing from the face-centered cubic phase of both bulk solid xenon and solid xenon confined in somewhat larger (>/=20 cubic nanometer) tetradecahedral cavities in face-centered cubic metals. Layering at the liquid-solid interface plays an important role in determining physical properties as diverse as the rheological behavior of two-dimensionally confined liquids and the dynamics of crystal growth.  相似文献   

20.
A critical role is traditionally assigned to transition states (TSs) and minimum energy pathways, or intrinsic reaction coordinates (IRCs), in interpreting organic reactivity. Such an interpretation, however, ignores vibrational and kinetic energy effects of finite temperature. Recently it has been shown that reactions do not necessarily follow the intermediates along the IRC. We report here molecular dynamics (MD) simulations that show that dynamics effects may alter chemical reactions even more. In the heterolysis rearrangement of protonated pinacolyl alcohol Me3C-CHMe-OH2+ (Me, methyl), the MD pathway involves a stepwise route with C-O bond cleavage followed by methyl group migration, whereas the IRC pathway suggests a concerted mechanism. Dynamics effects may lead to new interpretations of organic reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号