首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了检测reBD-1 mRNA在驯鹿体内可能的表达器官,研究根据已知的reBD-1 cDNA序列设计了一对预计扩增产物为121 bp的引物,以驯鹿舌、食管、瘤胃、网胃、皱胃、十二指肠、回肠、结肠、肝、肺、气管、肾、膀胱、睾丸、附睾、心脏、脾脏中提取的总RNA为模板,采用反转录PCR(RT-PCR)技术检测驯鹿的上述器官内reBD-1 mRNA的表达情况.结果显示:reBD-1 mRNA在上述组织器官中均有表达,其中在舌、瘤胃、睾丸中表达最强;在食管、十二指肠、结肠、气管、脾脏中有中等量的表达;在网胃、皱胃、回肠、肝、肺、肾、膀胱、附睾、心脏内的表达较弱.β-防御素reBD-1在驯鹿体内的广泛表达提示reBD-1有助于驯鹿的先天性宿主防御.  相似文献   

2.
驯鹿β-防御素reBD-1 cDNA的克隆及序列分析   总被引:2,自引:0,他引:2  
从驯鹿舌黏膜上皮组织中提取总RNA,采用RT—PCR技术扩增出reBD-1的cDNA,并重组到pBlueselect T载体,经限制性内切酶谱分析和DNA序列测定,证实所克隆的reBD-1的cDNA为β-防御素,因为该cDNA包含由192个碱基组成的开放读码框(ORF),该ORF编码64个氨基酸残基的前原防御素,该前原防御素含有伊防御素特征性结构即6个在特定位置上的保守半胱氨酸残基。驯鹿β-防御素属首次发现,为更好地了解驯鹿黏膜防御机制有很大的帮助。  相似文献   

3.
旨在构建驯鹿β防御素-1(Reindeerβ-defensin-1,reBD-1)基因的原核表达载体pET-32a(+ )/reBD-1,诱导reBD-1融合蛋白在大肠杆菌中表达,并对其表达产物的生物学活性进行评价.利用RT-PCR技术扩增reBD-1前原肽.从重组克隆载体PMD19T/reBD-1中扩增reBD-1成熟肽编码基因,并克隆入pET-32a(+)中,在大肠杆菌BL21 (DE3)中用IPTG诱导表达reBD-1融合蛋白.表达的融合蛋白扩大培养,进一步纯化后进行体外抑菌试验.结果表明,reBD-1前原肽和成熟肽扩增产物大小分别为215和138 bp,目的基因的序列与驯鹿防御素-1 mRNA序列同源性为100%.前原肽和成熟肽融合蛋白分子量分别为28和24 ku.利用琼脂糖扩散法表明,0.08 mg·mL-1的纯化成熟肽蛋白对金黄色葡萄球菌及大肠杆菌的活性有明显抵抗作用.结果显示,reBD-1前原肽及成熟肽在大肠杆菌中得到了高效表达,其成熟肽对革兰氏阳性菌和阴性菌的活性有抗性.  相似文献   

4.
β-防御素caBD-1 mRNA在骆驼组织器官中的表达   总被引:2,自引:0,他引:2  
根据已知的骆驼β-防御素caBD-1 cDNA序列设计了1对预计扩增产物为203bp的引物,通过RT—PCR检测骆驼的整个消化道黏膜、肝、胰腺、气管黏膜、肺、肾、膀胱黏膜、卵巢、子宫内膜、脾、淋巴结、心等器官内caBD-1 mRNA的表达。结果显示:caBD-1 mRNA在整个消化道、气管、膀胱、子宫等管状器官内的黏膜层有表达,而在实质性器官如心、肝、胰腺、肺、脾、淋巴结、卵巢、肾中无表达。提示,骆驼体内的这种内生性抗微生物肽有助于骆驼的黏膜宿主防御。  相似文献   

5.
β-防御素主要分布于哺乳动物黏膜上皮细胞内,是黏膜表面抗微生物屏障的组成成分.小尾寒羊是重要的家畜之一.应用实时荧光定量PCR技术,分别对未孕和孕龄3个月的小尾寒羊子宫内膜β-防御素mRNA的表达进行了荧光定量PCR检测和分析,结果表明,在未孕子宫和怀孕子宫内膜组织中均有β-防御素mRNA的表达,但怀孕的子宫内膜组织中的表达量高于未孕子宫,说明β-防御素在生殖生理中有着重要的作用,为进一步研究生殖生理中的免疫防御机制奠定理论基础.  相似文献   

6.
骆驼β-防御素caBD-1 cDNA的克隆及序列分析   总被引:8,自引:3,他引:5  
β防御素是一类富含半胱氨酸的抗微生物多肽,主要表达在哺乳动物黏膜上皮内。我们发现了一种新的β-防御素-骆驼防β-御素-1(caBD-1)。从骆驼舌黏膜上皮组织中提取总RNA,采用RT-PCR技术扩增出caBD-1的cDNA,并重组到pBlueselect T载体,经限制性内切酶谱分析和DNA序列测定,证实所克隆的caBD-1的cDNA为β-防御素,因为该cDNA包含由192个碱基组成的开放读码框(ORF),该ORF编码64个氨基酸残基的前原防御素,该前原防御素含有β-防御素特征性结构即6个在特定位置上的保守半胱氮酸残基。骆驼β-防御素的发现对我们更好地理解骆驼黏膜防御机制有很大帮助。  相似文献   

7.
为了研究马鹿β-防御素-1(Red deerβ-defensin-1,redBD-1)基因的结构与功能,揭示该基因的组织表达规律。本研究利用PCR结合RACE(Rapid-amplification of cDNA ends)技术从马鹿舌黏膜中克隆redBD-1基因的cDNA全长序列并对其进行了生物信息学分析,同时采用Real-time quantitative PCR(RT-qPCR)技术检测该基因在各组织的表达情况。结果表明,redBD-1基因的cDNA全长序列为455bp,开放阅读框(ORF)为192bp,编码64个氨基酸。生物信息学分析表明,redBD-1蛋白的理论分子量为6.94ku,有10个带正电荷的氨基酸残基,无带负电荷的氨基酸残基,理论等电点为10.85。预测redBD-1蛋白有一个分泌信号肽结构,无跨膜区,主要在细胞外发挥生理功能;6个保守的半胱氨酸残基分别以Cys1-Cys5、Cys2-Cys4和Cys3-Cys6连接形成3个分子内二硫键;成熟蛋白的三级结构是由β-折叠、延伸和无规则卷曲构成。redBD-1基因编码的氨基酸序列同源性最高的是梅花鹿β-防御素(siBD-1)为98.4%,其次是水牛肠β-防御素(BEBD)为92.2%,与人β-防御素-2(HBD-2)同源性最低仅为35.9%。RT-qPCR结果得出,redBD-1在被检器官中均有表达,在消化系统、呼吸系统以及生殖系统的大部分器官表达量较高,肝、肾和脾等实质性器官表达量相对较低。本试验为今后深入研究防御素基因功能以及马鹿黏膜免疫系统提供理论依据。  相似文献   

8.
选用益生枯草芽孢杆菌研究其对体外培养的绵羊瘤胃上皮细胞β-防御素表达的调节作用。首先,在体外成功培养绵羊瘤胃上皮细胞,然后用枯草芽孢杆菌对体外培养的绵羊瘤胃上皮细胞进行不同浓度、不同时间的刺激,利用荧光定量PCR技术(Real-time fluorescence quantitative PCR,RT-PCR)从mRNA水平检测刺激后上皮细胞中绵羊β-防御素-1(Sheep beta-defensin-1,SBD-1)基因表达水平的差异。结果表明:当菌液浓度为1010 cfu·mL-1刺激上皮细胞8h后,SBD-1的表达量达到最高;不同的菌液浓度诱导下SBD-1的表达量均有显著增加,109、1010、1011 cfu·mL-1菌液浓度刺激下,SBD-1的表达量与空白相比差异极显著(P0.01)。结果表明,枯草芽孢杆菌能够诱导绵羊瘤胃上皮细胞内SBD-1基因的表达。  相似文献   

9.
为了获得驯鹿β-防御素reBD-1全长cDNA序列,根据已获得的reBD-1cDNA的已知序列设计1条序列特异性引物作为上游引物,反转录引物中的部分序列即3′接合器引物作为下游引物,克隆reBD-1cDNA的3′末端序列。另外,采用反向嵌套PCRRACE法,根据reBD-1cDNA的已知序列,设计1条5′末端磷酸化的特异性反转录引物和2对特异性反向嵌套PCR引物,首先进行反转录(RT),然后将mRNA反转录成的cDNA进行环化,最后进行反向嵌套巢式PCR,克隆reBD-1cDNA的5′末端序列。结果成功的克隆出了reBD-1cDNA的3′和5′末端序列,从而得到372bp的reBD-1cDNA全序列,其中包含44bp5′非翻译区(UTR)、192bp的开放读码框(ORF)、终止密码子TAA、118bp的3′UTR和poly(A)15。reBD-1cDNA全序列的获得为进一步研究其基因结构、基因表达和基因功能奠定了基础。  相似文献   

10.
为进一步研究驯鹿伊防御素-1(reBD-1)基因的分子结构,利用已克隆出的reBD-1部分片段,设计了1条特异性上游引物,并以反转录引物中的部分序列即3sites Adaptor Primer作为下游引物,采用3’RACE技术成功克隆了reBD-1 cDNA的3’末端序列。通过与已知reBD-1片段拼接,得到了192bp的完整开放读码框(ORF)、终止密码子TAA、118bp的3’非翻译区(3’UTR)以及poly(A)1S,其中ORF编码具有64个氨基酸残基的reBD-1前原肽。  相似文献   

11.
从雌性骆驼输卵管、子宫、子宫颈、阴道组织中提取总RNA,根据已发表的骆驼β-防御素-1基因的cDNA序列设计合成引物,采用RT—PCR扩增出了骆驼β-防御素-1基因;将扩增产物克隆于pBlueselect T载体后进行了序列分析。以伊肌动蛋白(pactin)基因作为内参,对扩增的β-防御素-1基因进行琼脂糖凝胶电泳后,应用凝胶成像分析系统,推断出了不同组织中β-防御素-1基因的表达量。结果,从雌性骆驼生殖各组织上皮均获得了203bp的β-防御素-1基因的扩增片段,且β-防御素-1基因在雌性骆驼生殖道各组织内的表达量不同。结果表明,β-防御素-1在雌性骆驼生殖组织的先天免疫中起重要作用。  相似文献   

12.
原位杂交(ISH)技术采用特异性探针在组织切片上与细胞内特定的基因进行分子杂交,从形态学角度对组织细胞内某特定基因通过光镜进行时空表达研究[1].使用Digoxin标记探针进行原位杂交具有高敏感性和特异性、操作简便、无同位素污染等优越性.β-防御素是近年来发现的一类富含精氨酸、带正电荷的抗微生物肽,主要由哺乳动物黏膜上皮细胞产生,分布于呼吸道、胃肠道、生殖道表面和腺体中,形成机体抵抗病原体的第一道防线,在机体的先天性免疫防御中发挥着重要作用[2].本研究用Digoxin标记的原位杂交技术来检测β-防御素mRNA在蒙古绵羊胎儿体内的表达,这对研究β-防御素在蒙古绵羊胎儿的先天性免疫防御机制具有重要意义.  相似文献   

13.
从蒙古绵羊输卵管、子宫、子宫颈、阴道组织中提取总RNA,根据GenBank中羊的β-防御素的cDNA序列设计合成引物,通过RT-PCR进行cDNA扩增,获得了301bp的片段。将该片段克隆于pMD-18T载体后进行序列分析,确认该PCR产物为β-防御素。通过相同的RT-PCR反应体系和条件后,对PCR产物进行琼脂糖凝胶电泳,以β-actin为参照,根据PCR产物的亮度推断不同组织中β-防御素的表达量。结果,蒙古绵羊雌性生殖道上皮各组织均有β-防御素表达,说明β-防御素在蒙古绵羊雌性生殖道的先天免疫中起重要作用。β-防御素的表达量在雌性生殖道各组织内不同,提示雌性生殖道各组织的防御功能强度不同。  相似文献   

14.
本研究旨在研究益生性鼠李糖乳酸杆菌LGA对体外培养的鸡小肠上皮细胞β-防御素-9 (AvBD9)表达的调节作用.选用鼠李糖乳酸杆菌LGA对体外培养的鸡小肠上皮细胞进行剂量依赖性及时间依赖性刺激实验,利用实时荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)从mRNA水平研究刺激后上皮细胞AvBD9基因表达水平的差异.结果表明,不同浓度(2×105、2×106、2×107 cfu· mL-1)鼠李糖乳酸杆菌LGA均能上调AvBD9mRNA的表达,且在不同细菌浓度之间AvBD9 mRNA的表达存在差异.热灭活鼠李糖乳杆菌LGA亦能上调AvBD9基因表达,且上调值显著高于活菌(P<0.05).鼠李糖乳杆菌LGA刺激上皮细胞后AvBD9表达存在时间依赖关系,12 h时AvBD9的表达达到峰值.Western blot检测结果显示,鼠李糖乳杆菌LGA刺激后的上皮细胞培养上清中存在AvBD9蛋白表达,表明AvBD9蛋白可以分泌到细胞外而发挥其生物学功能.益生性鼠李糖乳酸杆菌LGA与鸡肠道上皮细胞的相互作用过程中,鼠李糖乳酸杆菌LGA能够促进上皮细胞抗菌肽β-防御素-9的表达.本研究结果提示益生性乳杆菌可能通过促进肠道上皮抗菌肽的表达而发挥其益生作用.  相似文献   

15.
为了探讨奶牛子宫内膜组织中β-防御素、TNF-α和TLR4mRNA表达与炎症发生的关系。取奶牛子宫内膜组织,根据病理切片结果分成子宫内膜炎组和对照组,用RT-PCR分别测定各组的β-防御素、TNF-α和TLR4的mRNA。结果发现,子宫内膜炎组的LAP、BNBD5的mRNA表达极显著高于对照组(P<0.01),BNBD4的mRNA表达显著高于对照组(P<0.05),奶牛子宫内膜组织不表达TAP;且子宫内膜炎组的TNF-α和TLR4的mRNA表达显著高于对照组(P<0.05)。结果表明,奶牛子宫内膜炎的发生与β-防御素、TNF-α和TLR4都具有密切相关性,其中LAP、BNBD4和BNBD5这3种β-防御素参与奶牛子宫内膜炎的发生;TNF-α和TLR4可以作为炎症发生的信号分子。  相似文献   

16.
17.
为了获得梅花鹿β-防御素-1(sika deerβ-defensin-1,siBD-1)cDNA全序列,本试验以梅花鹿舌黏膜组织内提取的总RNA为模板,根据前期已获得的siBD-1cDNA的已知部分序列设计引物,采用5′-RACE和3′-RACE技术分别扩增5′-和3′-末端序列,将此扩增产物克隆入pMD18-T载体,进行PCR、双酶切鉴定及序列测定与分析。结果表明,成功克隆出长度约为172和299bp的siBD-1cDNA 5′-和3′-末端序列,从而得到418bp的siBD-1cDNA全序列(GenBank登录号:HM588696.1),其中包含89bp 5′-非翻译区(UTR)、192bp的开放阅读框(ORF)、终止密码子TAA、118bp的3′-UTR和Poly(A)16。同源性比对结果显示,siBD-1cDNA与水牛的肠防御素(BEBD)同源性最高,为90.6%,与牛(EBD、LAP、TAP、BNBD-4)、山羊(GBD-1、GBD-2)、驯鹿(reBD-1)、绵羊(sBD-1、sBD-2)和骆驼(caBD-1)的防御素cDNA的同源性较高,分别为83.2%、83.1%、87.3%、87.0%、87.5%、87.5%、84.4%、79.9%、77.1%和70.5%;与马(hoBD-1)和猪(pBD-1)的同源性较低,为60.3%和72.4%;而与人(hBD-2)的同源性最低,为16.0%。siBD-1成熟肽由38个氨基酸残基组成,其中包含9个带正电荷的氨基酸残基。  相似文献   

18.
《中国兽医学报》2019,(9):1821-1828
建立绵羊瘤胃外植体(ovine ruminal explants,OREs)模型,并根据组织学变化和E-钙黏蛋白(E-cadherin)的表达及CK-18和Ki-67的分布评估其活力。培养方案建立后,采用qPCR和ELISA方法检测β-葡聚糖刺激OREs对绵羊β-防御素-1(β-defensin-1,SBD-1)mRNA和蛋白表达水平的影响。HE染色,qPCR和免疫组织化学结果显示培养基内不添加血清培养24 h内的OREs的总体结构较完整,且具有活性。qPCR和ELISA显示,与对照组相比用β-葡聚糖刺激OREs后显著增加SBD-1的mRNA和蛋白表达(P0.05)。本试验确定了OREs体外培养的可行性和最佳条件,并证明β-葡聚糖可以激活瘤胃中抗菌肽SBD-1的分泌。  相似文献   

19.
《畜牧与兽医》2015,(12):25-30
β-防御素作为抗菌肽的一种,对机体防病抗病具有重要的意义。为研究牛β-防御素在牛各组织脏器的分布,本试验通过制备兔抗牛β-防御素(BNBD)4和5的多克隆抗体,利用免疫组化的方法观察健康牛肺、脾、肝、肾组织以及渗出性炎症、结核性肉芽肿、增生性炎症情况下牛肺组织中两种防御素的表达。结果发现牛β-防御素4、5主要分布于各组织中的淋巴细胞、巨噬细胞胞浆及其周围分泌物中,以及肺泡上皮细胞胞浆及其分泌物中;同健康组织相比,病变组织中BNBD-4表达量升高,而BNBD-5表达量降低。本研究为探讨β-防御素的功能奠定了基础。  相似文献   

20.
为了从塔里木马鹿的子宫黏膜上皮组织中提取总RNA,以此RNA为模板进行RT-PCR,根据已获得的梅花鹿β-防御素siBD-1基因序列设计并合成引物,采用RT-PCR技术进行扩增,双向克隆测序。结果表明:该基因序列为塔里木马鹿雌性生殖道黏膜β-防御素(TWSBD-1),包含由192个碱基组成的开放读码框(ORF),编码64个氨基酸残基的前原防御素,其中6个在特定位置上的保守半胱氨酸残基,符合β-防御素特征性结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号