首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gill diseases cause serious losses in farming of Atlantic salmon and the number of agents involved increases. Salmon gill poxvirus (SGPV) and the gill disease in causes where SGPV apparently was the only disease‐causing agent were initially characterized. Recently, it was further shown that SGPV can be a common denominator in widely different multifactorial gill diseases. Here, we present the challenge of diagnosing gill disease with SGPV in salmon fry of 0,3–5 grams. Apoptosis of gill lamellar epithelial cells and hemophagocytosis was also observed in fry similar to findings in smolts and grow‐out fish. Using our newly developed immunohistochemistry method, we further demonstrate that some of the apoptotic epithelial cells covering the oral cavity were positive for SGPV. Thus, SGPV is not restricted to respiratory epithelium alone and may infect the fish at very early life stages. Furthermore, as the cases examined here are from Norway, Faroe Island and Scotland, we show that SGPV is more widespread than previously reported.  相似文献   

2.
In 2016, the Norwegian health monitoring programme for wild salmonids conducted a real‐time PCR‐based screening for salmon gill poxvirus (SGPV) in anadromous Arctic char (Salvelinus alpinus L.), anadromous and non‐anadromous Atlantic salmon (Salmo salar L.) and trout (Salmo trutta L.). SGPV was widely distributed in wild Atlantic salmon returning from marine migration. In addition, characteristic gill lesions, including apoptosis, were detected in this species. A low amount of SGPV DNA, as indicated by high Ct‐values, was detected in anadromous trout, but only in fish cohabiting with SGPV‐positive salmon. SGPV was not detected in trout and salmon from non‐anadromous water courses, and thus seems to be primarily linked to the marine environment. This could indicate that trout are not a natural host for the virus. SGPV was not detected in Arctic char but, due to a low sample size, these results are inconclusive. The use of freshwater from anadromous water sources may constitute a risk of introducing SGPV to aquaculture facilities. Moreover, SGPV‐infected Atlantic salmon farms will hold considerable potential for virus propagation and spillback to wild populations. This interaction should therefore be further investigated.  相似文献   

3.
Gill diseases are a complex and multifactorial challenge for marine farmed Atlantic salmon. Co‐infections with putative pathogens are common on farms; however, there is a lack of knowledge in relation to the potential effect co‐infections may have on pathology. The objective of this study was to determine the prevalence and potential effects of Neoparamoeba perurans, Desmozoon lepeophtherii, Candidatus Branchiomonas cysticola, Tenacibaculum maritimum and salmon gill poxvirus (SGPV) during a longitudinal study on a marine Atlantic salmon farm. Real‐time PCR was used to determine the presence and sequential infection patterns of these pathogens on gill samples collected from stocking until harvest. A number of multilevel models were used to determine the effect of these putative pathogens on gill health (measured as gill histopathology score), while adjusting for the effect of water temperature and time since the last freshwater treatment. Results indicate that between 12 and 16 weeks post‐seawater transfer (wpst), colonization of the gills by all pathogens had commenced and by week 16 of marine production each of the pathogens had been detected. D. lepeophtherii and Candidatus B. cysticola were by far the most prevalent of the potential pathogens detected during this study. Detections of T. maritimum were found to be significantly correlated with temperature showing distinct seasonality. Salmon gill poxvirus was found to be highly sporadic and detected in the first sampling point, suggesting a carryover from the freshwater stage of production. Finally, the model results indicated no clear effect between any of the pathogens. Additionally, the models showed that the only variable which had a consistent effect on the histology score was N. perurans.  相似文献   

4.
Elucidation of the role of infectious agents putatively involved in gill disease is commonly hampered by the lack of culture systems for these organisms. In this study, a farmed population of Atlantic salmon pre‐smolts, displaying proliferative gill disease with associated Candidatus Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Atlantic salmon gill pox virus (SGPV) infections, was identified. A subpopulation of the diseased fish was used as a source of waterborne infection towards a population of naïve Atlantic salmon pre‐smolts. Ca. B. cysticola infection became established in exposed naïve fish at high prevalence within the first month of exposure and the bacterial load increased over the study period. Ca. P. salmonis and SGPV infections were identified only at low prevalence in exposed fish during the trial. Although clinically healthy, at termination of the trial the exposed, naïve fish displayed histologically visible pathological changes typified by epithelial hyperplasia and subepithelial inflammation with associated bacterial inclusions, confirmed by fluorescent in situ hybridization to contain Ca. B. cysticola. The results strongly suggest that Ca. B. cysticola infections transmit directly from fish to fish and that the bacterium is directly associated with the pathological changes observed in the exposed, previously naïve fish.  相似文献   

5.
Previous work in our laboratory defined a method of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L. Gills of AGD‐affected fish were scraped and the debris placed into fish‐holding systems, eliciting AGD in naïve Atlantic salmon. While this method is consistently successful in inducing AGD, variability in the kinetics and severity of infections has been observed. It is believed that the infections are influenced by inherently variable viability of post‐harvest amoeba trophozoites. Here, a new method of experimental induction of AGD is presented that redefines the infection model including the minimum infective dose. Amoebae were partially purified from the gills of AGD‐affected Atlantic salmon. Trophozoites were characterized by light microscopy and immunocytochemistry and designated Neoparamoeba sp., possibly Neoparamoeba pemaquidensis. Cells were placed into experimental infection systems ranging in concentration from 0 to 500 cells L?1. AGD was detected by gross and histological examination in fish held in all systems inoculated with amoebae. The number of gross and histological AGD lesions per gill was proportional to the inoculating concentration of amoebae indicating that the severity of disease is a function of amoeba density in the water column. The implications of these observations are discussed in the context of the existing AGD literature base as well as Atlantic salmon farming in south‐eastern Tasmania.  相似文献   

6.
There is inconsistent evidence of resistance of Atlantic salmon, Salmo salar L., to amoebic gill disease (AGD). Here, evidence is presented that demonstrates that Atlantic salmon exposed and subsequently challenged with AGD are more resistant than naïve control fish. Seventy‐three per cent of Atlantic salmon previously exposed to AGD survived to day 35 post‐challenge compared with 26% exposed to Neoparamoeba sp. for the first time, yet the gill pathology of surviving naïve control or previously exposed fish was not significantly different. Development of resistance to AGD is associated with anti‐Neoparamoeba sp. antibodies that were detectable in serum of 50% of surviving Atlantic salmon previously exposed to AGD. However, anti‐Neoparamoeba sp. antibodies were not detectable in cutaneous mucus of resistant fish. Increased resistance of Atlantic salmon after secondary Neoparamoeba sp. infection and detection of specific serum antibodies provides support for the development of a vaccine for AGD.  相似文献   

7.
Neoparamoeba perurans is the causative agent of amoebic gill disease (AGD). Two loop-mediated isothermal amplification (LAMP) assays targeting the parasite 18S rRNA and the Atlantic salmon EF1α, used as internal control, were designed. The N. perurans LAMP assay did not amplify close relatives N. pemaquidensis and N. branchiphila, or the host DNA. This assay detected 106 copies of the parasite 18S rRNA gene under 13 min and 103 copies under 35 min. Five “fast-and-dirty” DNA extraction methods were compared with a reference method and further validated by TaqMan™ qPCR. Of those, the QuickExtract buffer was selected for field tests. Seventy-one non-lethal gill swabs were analysed from AGD-clinically infected Atlantic salmon. The pathogen was detected under 23 min in fish of gill score >2 and under 39 min for lower gill scores. About 1.6% of the tests were invalid (no amplification of the internal control). 100% of positives were obtained from swabs taken from fish showing gill score ˃3, but only ~50% of positives for lower gill scores. The present LAMP assay could be implemented as a point-of-care test for the on-site identification of N. perurans; however, further work is required to improve its performance for lower scores.  相似文献   

8.
Freshwater bathing is essential for control of amoebic gill disease (AGD) during the marine phase of the Tasmanian Atlantic salmon production cycle, a practice that is costly, production limiting and increasing in frequency. Although the pathogenesis of gill infection with Neoparamoeba sp. in naïve Atlantic salmon, Salmo salar, is now understood, the progression of re‐infection (post‐treatment) required elucidation. Here, we describe the weekly histopathological progression of AGD from first to second freshwater bath. Halocline cessation and increased water temperature appeared to drive the rapid onset of initial infection prior to bathing. Freshwater bathing cleared lesions of attached trophozoites and associated cellular debris. Subsequent gill re‐infection with Neoparamoeba sp. was evident at 2 weeks post‐bath and had significantly increased (P < 0.001), in severity by 4 weeks post‐bath. No significant difference in gross pathology was observed until 4 weeks post‐bath (P < 0.05). The re‐infective progression of AGD was characterized by localized host tissue responses juxtaposed to adhered trophozoites (epithelial oedema, hypertrophy and hyperplasia), non‐specific inflammatory cell infiltration (macrophages, neutrophils and eosinophilic granule cells) and finally advanced hyperplasia with epithelial fortification. During the post‐bath period, non‐AGD lesions including haemorrhage, necrosis and regenerative hyperplasia were occasionally observed, although no evidence of secondary colonization of these lesions by Neoparamoeba sp. was noted. We conclude that pathogenesis during the inter‐bath period was identical to initial infection although the source of re‐infection remains to be established.  相似文献   

9.
10.
Currently, there are two methods of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L.: cohabitation with infected fish or exposure to a suspension of amoebae. Amoebic gill disease cannot be induced with cultured amoebae; therefore, the only source of the infective organism is salmon with the disease. For experimental purposes and to maintain pathogen supply, salmon are kept in an infection tank and amoebae are isolated from salmon once the disease establishes. In this way, discrete batches of amoebae are collected periodically. This study investigated the infective ability of different batches of amoebae. Furthermore, the effect of stocking density of salmon on the progression of AGD was also examined. The infective ability of different batches of amoebae isolated periodically from AGD‐affected salmon varied in terms of quantifiable pathology. Salmon stocking density had a significant impact on survival after amoebae challenge, with morbidity beginning 23 days post challenge in tanks stocked at 5.0 kg m?3 and 29 days for those stocked at 1.7 kg m?3. For uniform initiation of AGD in multiple tanks, amoebae batches should be equally divided and added to tanks until the required concentration is reached and to maintain a standard biomass between replicate tanks and treatments.  相似文献   

11.
Amoebic gill disease (AGD), caused by Neoparamoeba perurans, is a major health challenge for Atlantic salmon aquaculture globally. While freshwater bathing for 2 hr is effective in reducing infection severity, there is need for more rapid and lower cost alternatives. To this end, a combination of sodium percarbonate (SPC) in freshwater was examined for its treatment efficacy. Initial in vitro studies showed a reduction in amoeba viability when exposed for 30 min to freshwater containing >500 mg/L SPC. Subsequently, AGD‐affected salmon were bathed for 30 min in 16°C freshwater containing 100, 500 or 1,000 mg/L SPC, or for 2 hr in 16°C freshwater to mimic industry practice. Treatment at the highest SPC concentration caused extensive gill damage and substantial mortality. Neither occurred to a significant extent at lower SPC concentrations. Gill pathology of surviving fish 10 days post‐treatment (dpt) was comparable to or more severe than pre‐treatment, and significantly (p < .001) more severe than in 2 hr freshwater bathed fish. N. perurans DNA was confirmed by qPCR in all treatment groups at 10 dpt. The data indicate that a 30‐min exposure to SPC in freshwater is not a suitable alternative to existing freshwater treatment of AGD.  相似文献   

12.
A 2-year study was carried out on amoebic gill disease (AGD) involving monthly samples of 1+ Atlantic salmon, Salmo salar L., smolts, histological assessment of the gills and analysis of environmental data. Gill pathology was seen before amoebae could be detected microscopically. These changes in gill integrity were associated with marine environmental conditions, particularly elevated ammonium, nitrite and chlorophyll levels. The results suggest that the environmental changes predispose salmon to colonization by amoebae and ciliates. High densities of histophagous scuticociliates were observed in the gills during periods of advanced gill pathology. A number of different amoebae were observed in close association with gill pathology. Neoparamoeba was not seen in high densities, nor was it associated with gill pathology, indicating that Neoparamoeba may not be the primary agent of the AGD in Irish salmonid culture.  相似文献   

13.
Several different viruses have been associated with myocarditis‐related diseases in the Atlantic salmon aquaculture industry. In this study, we investigated the presence of PMCV, SAV, PRV and the recently identified Atlantic salmon calicivirus (ASCV), alone and as co‐infections in farmed Atlantic salmon displaying myocarditis. The analyses were performed at the individual level and comprised qPCR and histopathological examination of 397 salmon from 25 farms along the Norwegian coast. The samples were collected in 2009 and 2010, 5–22 months post‐sea transfer. The study documented multiple causes of myocarditis and revealed co‐infections including individual fish infected with all four viruses. There was an overall correlation between lesions characteristic of CMS and PD and the presence of PMCV and SAV, respectively. Although PRV was ubiquitously present, high viral loads were with a few exceptions, correlated with lesions characteristic of HSMI. ASCV did not seem to have any impact on myocardial infection by PMCV, SAV or PRV. qPCR indicated a negative correlation between PMCV and SAV viral loads. Co‐infections result in mixed and atypical pathological changes which pose a challenge for disease diagnostic work.  相似文献   

14.
Amoebic gill disease (AGD) in farmed Atlantic salmon is caused by the amoeba Paramoeba perurans. The recent establishment of in vitro culture techniques for P. perurans has provided a valuable tool for studying the parasite in detail. In this study, flow cytometry was used to generate clonal cultures from single‐sorted amoeba, and these were used to successfully establish AGD in experimental Atlantic salmon. The clonal cultures displayed differences in virulence, based on gill scores. The P. perurans load on gills, determined by qPCR analysis, showed a positive relationship with gill score, and with clonal virulence, indicating that the ability of amoebae to proliferate and/or remain attached on gills may play a role in virulence. Gill scores based on gross signs and histopathological analysis were in agreement. No association between level of gill score and specific gill arch was observed. It was found that for fish with lower gill scores based on histopathological examination, gross examination and qPCR analysis of gills from the same fish were less successful in detecting lesions and amoebae, respectively.  相似文献   

15.
The current review for the first time summarizes the findings of the 30 years of research on cold‐water vibriosis (CWV). The diseased caused by Aliivibrio salmonicida (earlier known as Vibrio salmonicida) was for the first time described in 1986 and became one of the most important bacterial diseases in salmon aquaculture. The lack of appropriate vaccine hampered development of Atlantic salmon aquaculture until the late 1980s when a novel vaccine allowed dramatic increase in the Atlantic salmon farming. In December 2007, the genus Vibrio was split into two genera and several bacterial species including V. salmonicida were transferred to genus Aliivibrio. The change of the names create significant difficulties with the designation of the CWV disease agent since its abbreviation A. salmonicida became similar to another well‐known salmon pathogen Aeromonas salmonicida (A. salmonicida). The disease was considered as controlled by vaccination, but reappeared at Atlantic salmon farms in 2011, this time affecting vaccinated Atlantic salmon. The current review summarizes the knowledge on pathogenesis, vaccination and treatment of CWV and proposes further directions for studying the disease.  相似文献   

16.
Two aqueous fixation methods (modified Davidson's solution and modified Davidson's solution with 2% (w/v) Alcian blue) were compared against two non‐aqueous fixation methods (methacarn solution and methacarn solution with 2% (w/v) Alcian blue) along with the standard buffered formalin fixation method to (a) improve preservation of the mucous coat on Atlantic salmon, Salmo salar L., gills and (b) to examine the interaction between the amoebae and mucus on the gill during an infection with amoebic gill disease. Aqueous fixatives demonstrated excellent cytological preservation but failed to deliver the preservation of the mucus when compared to the non‐aqueous‐based fixatives; qualitative and semi‐quantitative analysis revealed a greater preservation of the gill mucus using the non‐aqueous methacarn solution. A combination of this fixation method and an Alcian blue/Periodic acid–Schiff staining was tested in gills of Atlantic salmon infected with amoebic gill disease; lectin labelling was also used to confirm the mucus preservation in the methacarn‐fixed tissue. Amoebae were observed closely associated with the mucus demonstrating that the techniques employed for preservation of the mucous coat can indeed avoid the loss of potential mucus‐embedded parasites, thus providing a better understanding of the relationship between the mucus and parasite.  相似文献   

17.
18.
A relationship between increasing water temperature and amoebic gill disease (AGD) prevalence in Atlantic salmon (Salmo salar) has been noted at fish farms in numerous countries. In Scotland (UK), temperatures above 12°C are considered to be an important risk factor for AGD outbreaks. Thus, the purpose of this study was to test for the presence of an association between temperature and variation in the severity of AGD in Atlantic salmon at 10 and 15°C. The results showed an association between temperature and variation in AGD severity in salmon from analysis of histopathology and Paramoeba perurans load, reflecting an earlier and stronger infection post‐amoebae exposure at the higher temperature. While no significant difference between the two temperature treatment groups was found in plasma cortisol levels, both glucose and lactate levels increased when gill pathology was evident at both temperatures. Expression analysis of immune‐ and stress‐related genes showed more modulation in gills than in head kidney, revealing an organ‐specific response and an interplay between temperature and infection. In conclusion, temperature may not only affect the host response, but perhaps also favour higher attachment/growth capacity of the amoebae as seen with the earlier and stronger P. perurans infection at 15°C.  相似文献   

19.
Previous studies have indicated that Atlantic salmon, Salmo salar L., affected by amoebic gill disease (AGD) are resistant to re‐infection. These observations were based upon a comparison of gross gill lesion abundance between previously infected and naïve control fish. Anecdotal evidence from Atlantic salmon farms in southern Tasmania suggests that previous infection does not protect against AGD as indicated by a lack of temporal change in freshwater bathing intervals. Experiments were conducted to determine if previous infection of Atlantic salmon with Neoparamoeba sp. would provide protection against challenge and elucidate the immunological basis of any protection. Atlantic salmon were infected with Neoparamoeba sp. for 12 days then treated with a 4‐h freshwater bath. Fish were separated into two groups and maintained in either sea water or fresh water for 6 weeks. Fish were then transferred to one tank with a naïve control group and challenged with Neoparamoeba sp. Fish kept in sea water had lower mortality rates compared with first time exposed and freshwater maintained fish, however, these data are believed to be biased by ongoing mortalities during the seawater maintenance phase. Phagocyte function decreased over exposure time and freshwater maintained fish demonstrated an increased ability to mount a specific immune response. These results suggest that under the challenge conditions herein described, antigen exposure via infection does not induce protection to subsequent AGD.  相似文献   

20.
Infections of gill amoebae that manifest as amoebic gill disease (AGD) occur in Atlantic salmon in Tasmania. The treatment of choice is freshwater bathing; however, the effectiveness of this treatment has declined over time. In this experiment, cage trials of chloramine‐T (Cl‐T) to treat AGD in Atlantic salmon were conducted over 3 months, and involved an initial bath in either freshwater or seawater with Cl‐T, followed by a second bath 6 weeks later. Amoeba densities were reduced to 50–80% of original values for both treatments. Neoparamoeba sp. density was not affected by bathing, and was not significantly different over the course of the experiment. Lesion prevalence was higher for Cl‐T‐treated fish than for freshwater‐treated fish, with overall prevalence levels of 14.30±1.00% and 8.03±0.57% respectively. This was also seen for gross gill scores. In the fortnight after each of the two baths, Cl‐T‐treated fish had significantly higher lesion levels, although this difference was then resolved by 4 weeks post bathing. The use of Cl‐T in seawater is at least as effective as freshwater at reducing amoebae density, and may be a more practical alternative when freshwater is in short supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号