首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissipation of atrazine after pre-emergence application to irrigated grain sorghum was investigated in an experiment on a Birganbigil clay loam at Yanco Agricultural Research Centre in the Murrumbidgee Irrigation Areas of New South Wales. Dissipation followed first-order kinetics with a half-life of 70 days. This rate of disappearance did not differ significantly between application rates of 2.5 and 10 kg/ha. Removal of volunteer plant growth with non-residual chemicals or by cultivation during the winter fallow periods had no significant effect on the levels of atrazine residues in the soil and dissipation rate did not differ significantly between the 2 years of the experiment. A laboratory incubation experiment demonstrated that dissipation of atrazine in Birganbigil soil was more rapid than in three other soils from the Murrumbidgee and Murray Valleys. Dissipation rate and atrazine adsorption were both correlated with the organic carbon content of the soils, which ranged from 1.43% to 0.72%. There was no correlation between either dissipation rate or adsorption and clay content, even though clay contents ranged from 37 to 78%.  相似文献   

2.
The spatial variability in mineralization of atrazine, isoproturon and metamitron in soil and subsoil samples taken from a 135-ha catchment in north France was studied. Fifty-one samples from the top layer were taken to represent exhaustively the 31 agricultural fields and 21 soil types of the catchment. Sixteen additional samples were collected between depths of 0.7 and 10 m to represent the major geological materials encountered in the vadose zone of the catchment. All these samples were incubated with 14C-labelled atrazine under laboratory conditions at 28 degrees C. Fourteen selected surface samples which exhibited distinctly different behaviour for atrazine dissipation (including sorption and mineralization) were incubated with 14C-isoproturon and 14C-metamitron. Overall soil microbial activity and specific herbicide degradation activities were monitored during the incubations through measurements of total carbon dioxide and 14C-carbon dioxide respectively. At the end of the incubations, extractable and non-extractable (bound) residues remaining in soils were measured. Variability of herbicide dissipation half-life in soil surface samples was lower for atrazine and metamitron (CV < 12%) than for isoproturon (CV = 46%). The main contributor to the isoproturon dissipation variability was the variability of the extractable residues. For the other herbicides, spatial variability was mainly related to the variability of their mineralization. In all cases, herbicide mineralization half-lives showed higher variability than those of dissipation. Sorption or physicochemical soil properties could not explain atrazine and isoproturon degradation, whose main factors were probably directly related to the dynamics of the specific microbial degradation activity. In contrast, variability of metamitron degradation was significantly correlated to sorption coefficient (K(d)) through correlation with the sorptive soil components, organic matter and clay. Herbicide degradation decreased with depth as did the overall microbial activity. Atrazine mineralization activity was found down to a depth of 2.5 m; beyond that, it was negligible.  相似文献   

3.
BACKGROUND: Pesticide degradation and adsorption in soils are key processes determining whether pesticide use will have any impact on environmental quality. Pesticide degradation in soil generally results in a reduction in toxicity, but some pesticides have breakdown products that are more toxic than the parent compound. Adsorption to soil particles ensures that herbicide is retained in the place where its biological activity is expressed and also determines potential for transportation away from the site of action. Degradation and adsorption are complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behaviour of ionisable pesticides. This paper reports the sorption and degradation behaviour of four acidic pesticides in five soils from southern Spain. Results are used to investigate the influence of soil and pesticide properties on adsorption and degradation as well as the potential link between the two processes. RESULTS: Adsorption and degradation of four acidic pesticides were measured in four soils from Spain characterised by small organic matter (OM) contents (0.3-1.0%) and varying clay contents (3-66%). In general, sorption increased in the order dicamba < metsulfuron-methyl < 2,4-D < flupyrsulfuron-methyl-sodium. Both OM and clay content were found to be important in determining adsorption, but relative differences in clay content between soils were much larger than those in OM content, and therefore clay content was the main property determining the extent of herbicide adsorption for these soils. pH was negatively correlated with adsorption for all compounds apart from metsulfuron-methyl. A clear positive correlation was observed for degradation rate with clay and OM content (P < 0.01), and a negative correlation was observed with pH (P < 0.01). The exception was metsulfuron-methyl, for which degradation was found to be significantly correlated only with soil bioactivity (P < 0.05). CONCLUSIONS: Both OM and clay content were found to be important in determining adsorption, but relative differences in clay content between soils were much larger than those in OM content, and therefore clay content was the main property determining the extent of herbicide adsorption for soils of this type. pH was negatively correlated with adsorption for all compounds apart from metsulfuron-methyl. The contrasting behaviour shown for these four acidic pesticides indicates that chemical degradation in soil is more difficult to predict than adsorption. Most of the variables measured were interrelated, and different behaviours were observed even for compounds from the same chemical class and with similar structures.  相似文献   

4.
The potential for degradation of atrazine or isoproturon in the unsaturated zone of two boreholes was studied under laboratory conditions. Intact and uncontaminated samples were obtained from regular depths of 0–16.45 m and 0–9 m using a percussion coring technique. The results showed that the deep unsaturated zone contained micro-organisms capable of degrading atrazine or isoproturon. The rate of degradation was much faster in surface soil than in most unsaturated materials of both boreholes. The amount of atrazine remaining six months after incubation also varied between the two boreholes. A relatively small amount of atrazine was lost from sterilised samples, suggesting a significant role for microbial degradation. The addition of nutrient and energy sources into materials of low degradation capacity did not enhance the degradation of atrazine. Degradation rate was more related to the presence of a competent microbial population rather than to the presence of indigenous organic matter. However, the competent micro-organisms are more likely to be present when the organic matter content is high. The type and activity of these micro-organisms and their physical environment may have considerable influence on atrazine degradation and are likely to be responsible for much of the variation in the rate of degradation observed at different depths. © 1999 Society of Chemical Industry  相似文献   

5.
A study was conducted of the behaviour of oxamyl in Israeli soils of varying clay and organic matter contents. The adsorption isotherms for oxamyl were linear, and the adsorption coefficient (Kd) could be correlated to the clay content of the soils, as well as to the organic matter content of the soil. Oxamyl adsorption was underestimated by using published correlations between the adsorption and the chemical properties of pesticides, such as their solubility or octan-1-ol-water partition coefficient. The decomposition of oxamyl in soils followed first-order kinetics. The half-life ranged from 4 to 33 days in a Bet Dagan soil. The reaction rate increased with increasing moisture content of the soil until field capacity was reached, at which point it levelled off. The Arrhenius relationship was followed, with degradation proceeding more rapidly at higher temperatures. In several soils of varying composition, which were kept at field capacity, no difference in the degradation rates was observed. Oxamyl was applied to a Bet Dagan soil from a point source in a single pulse, as a split application, and on a continuous basis. The distribution patterns of oxamyl under the various treatments differed significantly. After the single-pulse application, oxamyl was leached out of the emitter zone. While the split application decreased the oxamyl-free zone, the best results were obtained by continuous application, which gave a nearly uniform distribution of oxamyl in the soil.  相似文献   

6.
农药在土壤中的吸附和淋溶特性是评价其环境行为的重要指标。采用批量平衡法和土柱淋溶法,研究了双氟磺草胺在小麦种植区3种代表性土壤中的吸附和淋溶特性。结果表明:双氟磺草胺在安徽黏土、山东砂质壤土和河南砂质黏壤土中的吸附规律均可以较好地用Freundlich方程描述,其吸附系数(Kf)在0.39~0.62之间;土壤有机碳归一化吸附系数(Koc)在66.91~81.35之间,表明双氟磺草胺在3种土壤中均属于难吸附型;吸附自由能(ΔG)在-10.90~-10.42kJ/mol之间,均属于物理吸附。双氟磺草胺在3种土壤中的淋出率在71.7%~74.1%之间,说明其在3种土壤中的淋溶性均较强。双氟磺草胺初始添加量和腐殖酸对淋出率具有一定影响。综合试验结果,认为双氟磺草胺在3种土壤中的吸附和淋溶可能受土壤有机质含量、黏粒含量、阳离子交换量和土壤pH值等多个因素的综合影响,其对地下水的污染风险较大,因此应引起高度重视。  相似文献   

7.
Adsorption-desorption of the herbicide flufenacet (FOE 5043) has been studied in five soils from different locations in India (Delhi, Ranchi, Nagpur, Kerala and Assam) varying in their physicochemical properties. The organic matter (OM) content varied from 0.072 to 0.864%, clay content from 2.5 to 43.7% and pH from 4.45 to 8.35. The adsorption studies were carried out using a batch equilibration technique. Ten grams of soil were equilibrated with 20 ml of aqueous 0.01 M CaCl2 solution containing different concentrations (0-30 mg litre-1) of flufenacet. After equilibration, an aliquot of supernatant was taken out for analysis. During desorption, the amount withdrawn for analysis was replenished with fresh 0.01 M CaCl2 solution and further equilibrated. Desorption studies were carried out with the 30 mg litre-1 concentration of flufenacet only. The adsorption studies revealed that there was moderate to high adsorption of flufenacet considering the comparatively low organic carbon content in the five test soils. Average Kd values ranged from 0.77 to 4.52 and Freundlich KF values from 0.76 to 4.39. The highest adsorption was observed in Kerala soil (OM 0.786%; clay 25%; pH 4.45) followed by Ranchi, Nagpur and Delhi soils, and the lowest in Assam soil (OM 0.553%; clay 2.5%; pH 6.87). The trend in adsorption could be attributed to the chemical nature of flufenacet and the physicochemical properties of the soil such as pH, OM and clay contents. OM and clay contents were positively correlated whereas pH was negatively correlated. Soils having low pH, high OM and high clay contents showed higher adsorption. Desorption studies revealed that there was a hysteresis effect in all the soils. Hysteresis coefficient values (ratio of n(ad) and n(des)) varied from 0.09 to 0.45. The study implies that, because of its moderate to high adsorption, flufenacet is likely to persist in soil for some time. However, the possibility of its movement by leaching or surface run off is less.  相似文献   

8.
Controlled-release herbicide formulations have been shown to decrease the leaching potential of several herbicides under laboratory and field conditions. The utility and efficacy of these formulations may be improved by combining several herbicides and a fertilizer source in a single formulation. The objective of these studies was to develop granular alginate formulations that were composed of a combination of the herbicides atrazine and alachlor with the slow-release nitrogen source oxamide (ethanediamide). Controlled release of the herbicides was obtained by addition of selected minerals, including calcium bentonite, fine-grind bentonite, montmorillonite K10, kaolinite and iron (III) oxide. A formulation without clay was used as a comparison. The formulations tested had herbicide active ingredient contents ranging from ∽0·02 to 0·54% and a nitrogen content of 21%. Release of the herbicides was studied by equilibrating the formulations with deionized water on a rotary shaker at 200 rev min-1 and sampling at regular time intervals up to 104 hours. The minerals used in the different formulations influenced the herbicide active ingredient composition, as well as the release properties of the individual formulations. The atrazine content of the formulations decreased in the order calcium bentonite>fine-grind bentonite>kaolinite>montmorillonite=iron oxide>no clay. For alachlor the content decreased in the order of calcium bentonite>fine-grind bentonite>montmorillonite>iron oxide>kaolinite>no clay. Controlled release of atrazine (i.e. reduction in release rate) varied in the order calcium bentonite>iron oxide>montmorillonite>fine-grind bentonite= kaolinite>no clay, and for alachlor fine-grind bentonite>calcium bentonite>montmorillonite>no clay=kaolinite=iron oxide. A certain percentage of the applied active ingredient of both alachlor and atrazine was not recovered. From 5 to 27% of the active ingredient was not released, with the greatest retention by the bentonite formulations. Release of nitrogen was not strongly influenced by mineral type, although a trend indicated greater release with formulations containing kaolinite. © 1998 SCI  相似文献   

9.
层状非均质包气带渗透性特征及其对降水入渗的影响   总被引:1,自引:0,他引:1  
不同的岩性界面影响了降水在包气带中的入渗、运移与再分布过程,其影响机制仍是有待研究的学科前沿问题。针对上述问题,基于层状非均质包气带6 m×4 m×5 m样方,开展了多场次自然降水入渗过程的原位试验监测,研究结果表明层状非均质结构对降水入渗过程和速率影响明显:(1)地层分界面处土壤含水率呈现陡降变化特征;(2)220 cm深度以上包气带中土壤含水率对降水入渗响应变化敏感,呈含水率陡变的多峰谷式脉冲响应变化特征,其中20~100 cm地层土壤含水率变化幅度为22.58%~29.76%,120~200 cm地层土壤含水率变化幅度为13.74%~20.74%;220 cm深度以下包气带中土壤含水率对降水入渗响应滞缓,年内呈现平缓单峰响应变化特征,反映了多场次降雨的累积效应,其中220~400 cm地层土壤含水率变化幅度为2.3%~12.15%,430~460 cm地层土壤含水率变化幅度为2.5%~3.41%;(3)层状非均质结构阻滞了水分的运移(湿润锋通过亚砂土-粉砂界面时,平均运移速度由10.53 cm·d~(-1)下降为0.77 cm·d~(-1);湿润锋通过亚砂土-亚粘土界面时,平均运移速度由12 cm·d~(-1)下降为1.86 cm·d~(-1)),当岩性界面处水分不断蓄积克服阻力后才能向下运移;受上部界面水分蓄积的影响,下部层状非均质结构的阻滞作用将被减弱甚至不明显。  相似文献   

10.
The adsorption of atrazine and mecoprop to soil at different levels below the surface was measured and compared with values calculated from the partition coefficient—between soil organic carbon and water—and the carbon content. With soil samples from the top layers, the calculated values were in fairly good agreement with the measured values. Below the top layers, the importance of the effect of clay content on the adsorption is reflected in the difference between the measured and calculated Kd values. Calculated values can be unrealistically low resulting in overestimates of leaching. © 1997 SCI.  相似文献   

11.
12.
BACKGROUND: Sorption coefficients (the linear KD or the non‐linear KF and NF) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 KD and 55 KF) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. RESULTS: The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon KD. The pedotransfer function is KD = 1.7822 + 0.0162 OC1.5 ? 0.1958 pH (KD in L kg?1 and OC in g kg?1). For low‐OC soils (OC < 6.15 g kg?1), clay and pH are most influential. The pedotransfer function is then KD = 0.9980 + 0.0002 clay ? 0.0990 pH (clay in g kg?1). Benchmarking KD estimations showed that functions calibrated on more specific subsets of the data perform better on these subsets than functions calibrated on larger subsets. CONCLUSION: Predicting isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site‐ or soil‐specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) KOC values calculated on a large dataset or (d) KOC values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
The degradation and formation of major chlorinated metabolites of terbuthylazine and atrazine in three soils (loamy clay, calcareous clay and high clay) were studied in laboratory experiments using molecules labelled with 14C on the s-triazine ring. Soil microcosms were treated with the equivalent of 1 kg ha-1 of herbicide and incubated in the dark for 45 days at 20(±1)°C. The quantity of [14C]carbon dioxide evolved in the soils treated with atrazine was negligible and could not be attributed to mineralization of the parent molecule. The mineralization of terbuthylazine accounted for 0·9–1·2% of the initial radioactivity. In the soils studied, the extrapolated half-lives varied from 88 to 116 days for terbuthylazine and 66 to 105 days for atrazine, with no significant differences for the three soils and the two molecules. The deethyl metabolites of the two s-triazines and the deisopropyl-atrazine metabolite appeared during the incubation in the three soils. The completely dealkylated metabolite was not detected in any of the soils. After 45 days of incubation, the non-extractable soil residues for the high clay, loamy clay and calcareous clay soils represented for terbuthylazine, 33·5, 38·3 and 43·1% and for atrazine, 19·8, 20·8 and 22·3% of the initial radioactivity. © 1997 SCI.  相似文献   

14.
包气带水是支持植被生长的关键因子,也是联系地表水与地下水、以及补给地下水的重要水源,为了解地表灌溉量和历时对包气带水分运移和滞留过程的影响,在陕西省泾惠渠试验站开展了夏玉米和冬小麦畦灌试验,应用实测数据和Hydrus-1D模型模拟包气带0~6 m土壤水分运移滞留过程,并对其水分平衡进行定量分析计算,结果表明:不同的灌水量、进水流量和灌溉历时会引起明显土壤水分运移滞留变化。夏玉米模拟期采用大流量、快速灌溉,剖面底部的渗漏量大,占地表总入水量的24.88%;冬小麦模拟期灌溉流量小、历时长,底部渗漏量小,占地表灌溉量的2.29%;夏玉米试验期内蒸发蒸腾量大于冬小麦,分别占地表总入水量的32.32%和27.33%,棵间蒸发量占蒸发蒸腾量的比例分别为18.15%和16.92%;夏玉米与冬小麦试验期内包气带土壤水分滞留比例分别为42.8%和70.38%,灌溉进水流量和历时是控制包气带水分滞留和进入地下水的关键因素。  相似文献   

15.
Data for the adsorption of ethyl methylphosphonofluoridate from aqueous and the vapour phases onto montmorillonite and kaolinite clays, onto soil organic matter preparations, and onto a limited number of soils are reported. These show that the phosphonofluoridate was absorbed from the vapour phase onto the dry clay preparations by physical-chemical forces but was not adsorbed by the organic soil materials. In a general way adsorption onto dry soils could be related to their clay contents when the organic matter contents were low. Water was found to compete effectively with the phosphonofluoridate for adsorption sites, and it is concluded that this molecule will be most effectively retained by dry soils low in organic matter and rich in clay. Mechanisms for its adsorption onto clays are discussed.  相似文献   

16.
The concentrations of atrazine in the shoots of wheat plants growing in 12 different soils were directly proportional to the soil solution concentrations of herbicide estimated from slurry adsorption measurements. There was a marked discrepancy between the total uptake of herbicide and the amount theoretically supplied by mass-flow in response to transpiration. This discrepancy was less when plants were grown in nutrient solutions. In an experiment with one soil only, the half-life of atrazine was 22 days and when the solution concentration in this soil was corrected for this change, a much closer prediction of atrazine uptake could be obtained. The ways in which interactions between adsorption, breakdown and transpiration rates may affect herbicide toxicity under field conditions are discussed.  相似文献   

17.
为了明确2种增效剂对除草剂的减量效应,为除草剂科学减施及增效剂安全使用提供数据基础,2019年在西北荒漠绿洲生态区春玉米田,以38.5%硝·精·莠去津CS和26.7%噻隆·异噁酮SC作为茎叶处理剂,测定了激健和辉丰2种增效剂在不同施药剂量下的除草效果.结果 表明:在38.5%硝·精·莠去津CS 2310 mL/hm和2...  相似文献   

18.
Atrazine is the most extensively used herbicide in the agricultural and forestry sectors. Nevertheless, along with the increasing usage amount of Atrazine, its harm exposed gradually, the main problem is its residues in the environment. Microbial adsorption may effectively reduce the pollution caused by atrazine residue in the environment. In this study, a strain of fungi with the function of adsorbing atrazine was selected using microbial screening technology. According to its phenotypic characteristics and 18S rDNA gene sequencing, this strain was of the species genus Aspergillus and was named ECUST-TXZC2018. By studying the dynamic adsorption effect of this strain on atrazine, we found that this strain adsorbed atrazine after 36 hr at pH=5–7, and 20–30°C with more than 70% adsorption. These results demonstrated that ECUST-TXZC2018 had potential application ability to control atrazine residue pollution through the biosorption function.  相似文献   

19.
A soil column experiment under outdoor conditions was performed to monitor the fate of 14C-ring-labelled sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione and atrazine, 6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine, in water leachates and in the ploughed horizon of a sandy loam soil. Two months after treatment, the cumulative amounts of herbicide residues leached from the soil were 14.5% and 7% of the applied radioactivity for sulcotrione and atrazine, respectively. Maximum leachate concentrations for each herbicide were observed during the first month following application: 120 and 95 microg litre(-1) for sulcotrione and atrazine respectively. After 2 weeks, 78% of the sulcotrione and atrazine was extractable from the soil, whereas after two months only 10 and 4%, respectively, could be extracted. The maximum sulcotrione content in the first 10 cm of soil was identical with that of atrazine. For both molecules, the content of non-extractable residues was low, being around 15%. Sulcotrione seems to be more mobile than atrazine but the consequences for water contamination are similar since lower doses are used.  相似文献   

20.
硝磺·莠去津550克/升悬浮剂高效液相色谱分析方法研究   总被引:2,自引:0,他引:2  
本文采用高效液相色谱法,以乙腈+0.05%H3PO4为流动相,使用ZORBAX80魡Extend-C18色谱柱和二极管阵列检测器,在222nm波长下对硝磺草酮和莠去津进行同柱分离和定量分析。结果表明,该方法测得硝磺草酮、莠去津的线性相关系数为1.0000、0.9998;标准偏差为0.05、0.14;变异系数为1.05%、0.30%;平均回收率为99.8%、100.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号