首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycosphaerella, one of the largest genera of ascomycetes, encompasses several thousand species and has anamorphs residing in more than 30 form genera. Although previous phylogenetic studies based on the ITS rDNA locus supported the monophyly of the genus, DNA sequence data derived from the LSU gene distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. Several important leaf spotting and extremotolerant species need to be disposed to the genus Teratosphaeria, for which a new family, the Teratosphaeriaceae, is introduced. Other distinct clades represent the Schizothyriaceae, Davidiellaceae, Capnodiaceae, and the Mycosphaerellaceae. Within the two major clades, namely Teratosphaeriaceae and Mycosphaerellaceae, most anamorph genera are polyphyletic, and new anamorph concepts need to be derived to cope with dual nomenclature within the Mycosphaerella complex.Taxonomic novelties: Batcheloromyces eucalypti (Alcorn) Crous & U. Braun, comb. nov., Catenulostroma Crous & U. Braun, gen. nov., Catenulostroma abietis (Butin & Pehl) Crous& U. Braun, comb. nov., Catenulostroma chromoblastomycosum Crous& U. Braun, sp. nov., Catenulostroma elginense (Joanne E. Taylor& Crous) Crous & U. Braun, comb. nov., Catenulostroma excentricum (B. Sutton & Ganap.) Crous & U. Braun, comb. nov., Catenulostroma germanicum Crous & U. Braun, sp. nov., Catenulostroma macowanii (Sacc.) Crous & U. Braun, comb. nov., Catenulostroma microsporum (Joanne E. Taylor & Crous) Crous & U. Braun, comb. nov., Catenulostroma protearum (Crous & M.E. Palm) Crous & U. Braun, comb. nov., Penidiella Crous & U. Braun, gen. nov., Penidiella columbiana Crous & U. Braun, sp. nov., Penidiella cubensis (R.F. Castañeda) U. Braun, Crous& R.F. Castañeda, comb. nov., Penidiella nectandrae Crous, U. Braun & R.F. Castañeda, nom. nov., Penidiella rigidophora Crous, R.F. Castañeda & U. Braun, sp. nov., Penidiella strumelloidea (Milko & Dunaev) Crous & U. Braun, comb. nov., Penidiella venezuelensis Crous & U. Braun, sp. nov., Readeriella blakelyi (Crous & Summerell) Crous & U. Braun, comb. nov., Readeriella brunneotingens Crous & Summerell, sp. nov., Readeriella considenianae (Crous & Summerell) Crous & U. Braun, comb. nov., Readeriella destructans (M.J. Wingf. & Crous) Crous & U. Braun, comb. nov., Readeriella dimorpha (Crous& Carnegie) Crous & U. Braun, comb. nov., Readeriella epicoccoides (Cooke & Massee) Crous & U. Braun, comb. nov., Readeriella gauchensis (M.-N. Cortinas, Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Readeriella molleriana (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Readeriella nubilosa (Ganap. & Corbin) Crous & U. Braun, comb. nov., Readeriella pulcherrima (Gadgil & M. Dick) Crous & U. Braun, comb. nov., Readeriella stellenboschiana (Crous) Crous & U. Braun, comb. nov., Readeriella toledana (Crous & Bills) Crous & U. Braun, comb. nov., Readeriella zuluensis (M.J. Wingf., Crous & T.A. Cout.) Crous & U. Braun, comb. nov., Teratosphaeria africana (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria alistairii (Crous) Crous & U. Braun, comb. nov., Teratosphaeria associata (Crous & Carnegie) Crous & U. Braun, comb. nov., Teratosphaeria bellula (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria cryptica (Cooke) Crous & U. Braun, comb. nov., Teratosphaeria dentritica (Crous & Summerell) Crous & U. Braun, comb. nov., Teratosphaeria excentrica (Crous& Carnegie) Crous & U. Braun, comb. nov., Teratosphaeria fimbriata (Crous & Summerell) Crous & U. Braun, comb. nov., Teratosphaeria flexuosa (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria gamsii (Crous) Crous & U. Braun, comb. nov., Teratosphaeria jonkershoekensis (P.S. van Wyk, Marasas & Knox-Dav.) Crous & U. Braun, comb. nov., Teratosphaeria maxii (Crous) Crous & U. Braun, comb. nov., Teratosphaeria mexicana (Crous) Crous & U. Braun, comb. nov., Teratosphaeria molleriana (Thüm.) Crous & U. Braun, comb. nov., Teratosphaeria nubilosa (Cooke) Crous & U. Braun, comb. nov., Teratosphaeria ohnowa (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria parkiiaffinis (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria parva (R.F. Park& Keane) Crous & U. Braun, comb. nov., Teratosphaeria perpendicularis (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria pluritubularis (Crous & Mansilla) Crous& U. Braun, comb. nov., Teratosphaeria pseudafricana (Crous & T.A. Cout.) Crous & U. Braun, comb. nov., Teratosphaeria pseudocryptica (Crous) Crous & U. Braun, comb. nov., Teratosphaeria pseudosuberosa (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria quasicercospora (Crous & T.A. Cout.) Crous & U. Braun, comb. nov., Teratosphaeria readeriellophora (Crous & Mansilla) Crous & U. Braun, comb. nov., Teratosphaeria secundaria (Crous & Alfenas) Crous & U. Braun, comb. nov., Teratosphaeria stramenticola (Crous & Alfenas) Crous& U. Braun, comb. nov., Teratosphaeria suberosa (Crous, F.A. Ferreira, Alfenas & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria suttonii (Crous & M.J. Wingf.) Crous & U. Braun, comb. nov., Teratosphaeria toledana (Crous & Bills) Crous& U. Braun, comb. nov., Teratosphaeriaceae Crous & U. Braun, fam. nov.  相似文献   

2.
Phylogenetic lineages in the Botryosphaeriaceae   总被引:1,自引:0,他引:1  
Botryosphaeria is a species-rich genus with a cosmopolitan distribution, commonly associated with dieback and cankers of woody plants. As many as 18 anamorph genera have been associated with Botryosphaeria, most of which have been reduced to synonymy under Diplodia (conidia mostly ovoid, pigmented, thick-walled), or Fusicoccum (conidia mostly fusoid, hyaline, thin-walled). However, there are numerous conidial anamorphs having morphological characteristics intermediate between Diplodia and Fusicoccum, and there are several records of species outside the Botryosphaeriaceae that have anamorphs apparently typical of Botryosphaeria s.str. Recent studies have also linked Botryosphaeria to species with pigmented, septate ascospores, and Dothiorella anamorphs, or Fusicoccum anamorphs with Dichomera synanamorphs. The aim of this study was to employ DNA sequence data of the 28S rDNA to resolve apparent lineages within the Botryosphaeriaceae. From these data, 12 clades are recognised. Two of these lineages clustered outside the Botryosphaeriaceae, namely Diplodia-like anamorphs occurring on maize, which are best accommodated in Stenocarpella (Diaporthales), as well as an unresolved clade including species of Camarosporium/Microdiplodia. We recognise 10 lineages within the Botryosphaeriaceae, including an unresolved clade (Diplodia/Lasiodiplodia/Tiarosporella), Botryosphaeria s.str. (Fusicoccum anamorphs), Macrophomina, Neoscytalidium gen. nov., Dothidotthia (Dothiorella anamorphs), Neofusicoccum gen. nov. (Botryosphaeria-like teleomorphs, Dichomera-like synanamorphs), Pseudofusicoccum gen. nov., Saccharata (Fusicoccum- and Diplodia-like synanamorphs),“ Botryosphaeriaquercuum (Diplodia-like anamorph), and Guignardia (Phyllosticta anamorphs). Separate teleomorph and anamorph names are not provided for newly introduced genera, even where both morphs are known. The taxonomy of some clades and isolates (e.g. B. mamane) remains unresolved due to the absence of ex-type cultures.Taxonomic novelties: Neofusicoccum Crous, Slippers & A.J.L. Phillips gen. nov., Neofusicoccum andinum (Mohali, Slippers& M.J. Wingf.) Mohali, Slippers & M.J. Wingf. comb. nov., Neofusicoccum arbuti (D.F. Farr & M. Elliott) Crous, Slippers& A.J.L. Phillips comb. nov., Neofusicoccum australe (Slippers, Crous & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum eucalypticola (Slippers Crous & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum eucalyptorum (Crous, H. Smith & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum luteum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum macroclavatum (Burgess, Barber & Hardy) Burgess, Barber & Hardy comb. nov., Neofusicoccum mangiferae (Syd. & P. Syd.) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum protearum (Denman & Crous) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum ribis (Slippers, Crous& M.J. Wingf.) Crous, Slippers & A.J.L. Phillips comb. nov., Neofusicoccum viticlavatum (Niekerk & Crous) Crous, Slippers& A.J.L. Phillips comb. nov., Neofusicoccum vitifusiforme (Niekerk & Crous) Crous, Slippers & A.J.L. Phillips comb. nov., Neoscytalidium Crous & Slippers gen. nov., Neoscytalidium dimidiatum (Penz.) Crous & Slippers comb. nov., Pseudofusicoccum (Mohali, Slippers & M.J. Wingf.) Mohali, Slippers & M.J. Wingf. gen. nov., Pseudofusicoccum stromaticum (Mohali, Slippers & M.J. Wingf.) Mohali, Slippers & M.J. Wingf. comb. nov.  相似文献   

3.
Calonectria pauciramosa is a pathogen of numerous plant hosts worldwide. Recent studies have indicated that it included cryptic species, some of which are identified in this study. Isolates from various geographical origins were collected and compared based on morphology, DNA sequence data of the β-tubulin, histone H3 and translation elongation factor-1α regions and mating compatibility. Comparisons of the DNA sequence data and mating compatibility revealed three new species. These included Ca. colombiana sp. nov. from Colombia, Ca. polizzii sp. nov. from Italy and Ca. zuluensis sp. nov. from South Africa, all of which had distinguishing morphological features. Based on DNA sequence data, Ca. brasiliensis is also elevated to species level.Taxonomic novelties: Calonectria brasiliensis (Bat. & Cif.) L. Lombard, M.J. Wingf. & Crous, comb. nov., Calonectria colombiana L. Lombard, Crous & M.J. Wingf., sp. nov., Calonectria polizzii L. Lombard, Crous & M.J. Wingf., sp. nov., Calonectria zuluensis L. Lombard, Crous & M.J. Wingf., sp. nov.  相似文献   

4.
The Capnodiales incorporates plant and human pathogens, endophytes, saprobes and epiphytes, with a wide range of nutritional modes. Several species are lichenised, or occur as parasites on fungi, or animals. The aim of the present study was to use DNA sequence data of the nuclear ribosomal small and large subunit RNA genes to test the monophyly of the Capnodiales, and resolve families within the order. We designed primers to allow the amplification and sequencing of almost the complete nuclear ribosomal small and large subunit RNA genes. Other than the Capnodiaceae (sooty moulds), and the Davidiellaceae, which contains saprobes and plant pathogens, the order presently incorporates families of major plant pathological importance such as the Mycosphaerellaceae, Teratosphaeriaceae and Schizothyriaceae. The Piedraiaceae was not supported, but resolves in the Teratosphaeriaceae. The Dissoconiaceae is introduced as a new family to accommodate Dissoconium and Ramichloridium. Lichenisation, as well as the ability to be saprobic or plant pathogenic evolved more than once in several families, though the taxa in the upper clades of the tree lead us to conclude that the strictly plant pathogenic, nectrotrophic families evolved from saprobic ancestors (Capnodiaceae), which is the more primitive state.Taxonomic novelties: Brunneosphaerella Crous, gen. nov., B. jonkershoekensis (Marinc., M.J. Wingf. & Crous) Crous, comb. nov., B. protearum (Syd. & P. Syd.) Crous, comb. nov., Devriesia hilliana Crous & U. Braun, sp. nov., D. lagerstroemiae Crous & M.J. Wingf., sp. nov., D. strelitziicola Arzanlou & Crous, sp. nov., Dissoconiaceae Crous & de Hoog, fam. nov., Hortaea thailandica Crous & K.D. Hyde, sp. nov., Passalora ageratinae Crous & A.R. Wood, sp. nov., P. armatae Crous & A.R. Wood, sp. nov., Rachicladosporium cboliae Crous, sp. nov.  相似文献   

5.
A study of microfungi associated with living Eucalyptus leaves and leaf litter revealed several novel and interesting taxa. Cladoriella eucalypti gen. et sp. nov. is described as a Cladosporium-like genus associated with litter collected in South Africa, while Fulvoflamma eucalypti gen. et. sp. nov. is newly described from leaf litter collected in Spain. Beta-conidia are newly reported for species of Pestalotiopsis, namely Pestalotiopsis disseminata in New Zealand, and a Pestalotiopsis sp. from Colombia. Satchmopsis brasiliensis is reported from litter in Colombia and Indonesia, while Torrendiella eucalypti is reported from leaf litter in Indonesia, and shown to have a Sporothrix-like anamorph. Leptospora rubella is reported from living Eucalyptus leaves in Colombia, where it is associated with leaf spots of Mycosphaerella longibasalis, while Macrohilum eucalypti is reported from leaf spots of Eucalyptus in New Zealand.Taxonomic novelties: Cladoriella eucalypti Crous gen. et sp. nov., Fulvoflamma eucalypti Crous gen. et sp. nov.  相似文献   

6.
Species of Calonectria are important plant pathogens, several of which have a worldwide distribution. Contemporary taxonomic studies on these fungi have chiefly relied on DNA sequence comparisons of the β-tubulin gene region. Despite many new species being described, there has been no phylogenetic synthesis for the group since the last monographic study almost a decade ago. In the present study, the identity of a large collection of Calonectria isolates from various geographic regions was determined using morphological and DNA sequence comparisons. This resulted in the discovery of seven new species; Ca. densa, Ca. eucalypti, Ca. humicola, Ca. orientalis, Ca. pini, Ca. pseudoscoparia and Ca. sulawesiensis, bringing the total number of currently accepted Calonectria species to 68. A multigene phylogeny was subsequently constructed for all available Calonectria spp., employing seven gene regions, namely actin, β-tubulin, calmodulin, histone H3, the internal transcribed spacer regions 1 and 2 and the 5.8S gene of the ribosomal RNA, 28S large subunit RNA gene and translation elongation 1-alpha. Based on these data 13 phylogenetic groups could be distinguished within the genus Calonectria that correlated with morphological features. Dichotomous and synoptic keys to all Calonectria spp. currently recognised are also provided.Taxonomic novelties: New combinations - Calonectria angustata (Crous & El-Gholl) L. Lombard, M.J. Wingf. & Crous, Ca. australiensis (Crous & H.D. Hyde) L. Lombard, M.J. Wingf.& Crous, Ca. canadensis (J.C. Kang, Crous & C.L. Schoch) L. Lombard, M.J. Wingf. & Crous, Ca. chinensis (Crous) L. Lombard, M.J. Wingf. & Crous, Ca. citri (H.S. Fawc. & Klotz) L. Lombard, M.J. Wingf. & Crous, Ca. curvata (Boedijn & Reitsma) L. Lombard, M.J. Wingf. & Crous, Ca. curvispora (Crous & D. Victor) L. Lombard, M.J. Wingf. & Crous, Ca. ecuadoriae (Crous& M.J. Wingf.) L. Lombard, M.J. Wingf. & Crous, Ca. gordoniae (Leahy, T.S. Schub. & El-Gholl) L. Lombard, M.J. Wingf. & Crous, Calonectria hawksworthii (Peerally) L. Lombard, M.J. Wingf. & Crous, Calonectria hurae (Crous) L. Lombard, M.J. Wingf. & Crous, Calonectria indonesiae (Crous) L. Lombard, M.J. Wingf. & Crous, Ca. leucothoës (El-Gholl, Leahy & T.S. Schub.) L. Lombard, M.J. Wingf. & Crous, Ca. malesiana (Crous) L. Lombard, M.J. Wingf. & Crous, Ca. multiphialidica (Crous, Simoneau & Risède) L. Lombard, M.J. Wingf. & Crous, Ca. pacifica (J.C. Kang, Crous & C.L. Schoch) L. Lombard, M.J. Wingf. & Crous, Ca. penicilloides (Tubaki) L. Lombard, M.J. Wingf. & Crous, Ca. pseudonaviculata (Crous, J.Z. Groenew. & C.F. Hill) L. Lombard, M.J. Wingf. & Crous, Ca. sumatrensis (Crous) L. Lombard, M.J. Wingf. & Crous. New species - Ca. densa L. Lombard, M.J. Wingf. & Crous, Ca. eucalypti L. Lombard, M.J. Wingf. & Crous, Ca. humicola L. Lombard, M.J. Wingf. & Crous, Ca. orientalis L. Lombard, M.J. Wingf. & Crous, Ca. pini L. Lombard, M.J. Wingf. & Crous, Ca. pseudoscoparia L. Lombard, M.J. Wingf. & Crous, Ca. sulawesiensis L. Lombard, M.J. Wingf. & Crous.  相似文献   

7.
Although morphologically similar, species of Cladophialophora (Herpotrichiellaceae) were shown to be phylogenetically distinct from Pseudocladosporium (Venturiaceae), which was revealed to be synonymous with the older genus, Fusicladium. Other than being associated with human disorders, species of Cladophialophora were found to also be phytopathogenic, or to occur as saprobes on organic material, or in water, fruit juices, or sports drinks, along with species of Exophiala. Caproventuria and Metacoleroa were confirmed to be synonyms of Venturia, which has Fusicladium (= Pseudocladosporium) anamorphs. Apiosporina, based on A. collinsii, clustered basal to the Venturia clade, and appears to represent a further synonym. Several species with a pseudocladosporium-like morphology in vitro represent a sister clade to the Venturia clade, and are unrelated to Polyscytalum. These taxa are newly described in Fusicladium, which is morphologically close to Anungitea, a heterogeneous genus with unknown phylogenetic affinity. In contrast to the Herpotrichiellaceae, which were shown to produce numerous synanamorphs in culture, species of the Venturiaceae were morphologically and phylogenetically more uniform. Several new species and new combinations were introduced in Cladophialophora, Cyphellophora (Herpotrichiellaceae), Exophiala, Fusicladium, Venturia (Venturiaceae), and Cylindrosympodium (incertae sedis).Taxonomic novelties: Cladophialophora australiensis Crous& A.D. Hocking, sp. nov., Cladophialophora chaetospira (Grove) Crous & Arzanlou, comb. nov., Cladophialophora hostae Crous, U. Braun & H.D. Shin, sp. nov., Cladophialophora humicola Crous& U. Braun, sp. nov., Cladophialophora potulentorum Crous & A.D. Hocking, sp. nov., Cladophialophora scillae (Deighton) Crous, U. Braun & K. Schub., comb. nov., Cladophialophora sylvestris Crous& de Hoog, sp. nov., Cylindrosympodium lauri Crous & R.F. Castañeda, sp. nov., Cyphellophora hylomeconis Crous, de Hoog& H.D. Shin, sp. nov., Exophiala eucalyptorum Crous, sp. nov., Fusicladium africanum Crous, sp. nov., Fusicladium amoenum (R.F. Castañeda & Dugan) Crous, K. Schub. & U. Braun, comb. nov., Fusicladium brevicatenatum (U. Braun & Feiler) Crous, U. Braun & K. Schub., comb. nov., Fusicladium fagi Crous & de Hoog, sp. nov., Fusicladium intermedium (Crous & W.B. Kendr.) Crous, comb. nov., Fusicladium matsushimae (U. Braun & C.F. Hill) Crous, U. Braun & K. Schub., comb. nov., Fusicladium pini Crous& de Hoog, sp. nov., Fusicladium ramoconidii Crous & de Hoog, sp. nov., Fusicladium rhodense Crous & M.J. Wingf., sp. nov., Venturia hystrioides (Dugan, R.G. Roberts & Hanlin) Crous & U. Braun, comb. nov.  相似文献   

8.
Cryphonectria havanensis is a fungus associated with Eucalyptus species in Cuba and Florida (U.S.A.). Until recently, there have been no living cultures of C. havanensis and it has thus not been possible to assess its taxonomic status. Isolates thought to represent this fungus have, however, emerged from surveys of Eucalyptus in Mexico and Hawaii (U.S.A.). Results of this study showed that these isolates represent C. havanensis but reside in a genus distinct from Cryphonectria sensu stricto, which is described here as Microthia. Isolates of an unidentified fungus occurring on Myrica faya in the Azores and Madeira also grouped in Microthia and were identical to other M. havanensis isolates. Cryphonectria coccolobae, a fungus occurring on sea grape (Coccoloba uvifera) in Bermuda and Florida, was found to be morphologically identical to Microthia and is transferred to this genus, but as a distinct species. Surveys for M. coccolobae on sea grape in Florida, yielded a second diaporthalean fungus from this host. This fungus is morphologically and phylogenetically distinct from M. coccolobae and other closely related taxa and is described as Ursicollum fallax gen. et sp. nov. Phylogenetic analyses in this study have also shown that isolates of C. eucalypti, a pathogen of Eucalyptus in South Africa and Australia, group in a clade separate from all other groups including that representing Cryphonectria sensu stricto. This difference is supported by the fact that Cryphonectria eucalypti has ascospore septation different to that of all other Cryphonectria species. A new genus, Holocryphia, is thus erected for C. eucalypti.Taxonomic novelties: Microthia Gryzenh. & M.J. Wingf. gen. nov., Microthia havanensis (Bruner) Gryzenh. & M.J. Wingf. comb. nov., Microthia coccolobae (Vizioli) Gryzenh. & M.J. Wingf. comb. nov., Holocryphia Gryzenh. & M.J. Wingf. gen. nov., Holocryphia eucalypti (M. Venter & M.J. Wingf.) Gryzenh. & M.J. Wingf. comb. nov., Ursicollum Gryzenh. & M.J. Wingf. gen. nov., Ursicollum fallax Gryzenh. & M.J. Wingf. sp. nov.  相似文献   

9.
The present study compares all known species of Cylindrocladium that have clavate vesicles. Several isolates were obtained from baited soils collected in various parts of the world, while others were associated with leaf litter or symptomatic plant hosts. Isolates were compared based on morphology, as well as DNA sequence data from their β-tubulin and histone gene H3 regions. Cylindrocladium australiense and Cy. ecuadoriae, are described as new species, a decision based on morphology and molecular data. A group of isolates associated with toppling disease of banana in the West Indies is identified as Cy. flexuosum. An epitype is designated for Cy. ilicicola, and a new name, Curvicladiella, proposed to replace the anamorphic genus Curvicladium, which is a homonym.Taxonomic novelties: Cylindrocladium australiense Crous& K.D. Hyde sp. nov., Cylindrocladium ecuadoriae Crous & M.J. Wingf. sp. nov., Curvicladiella Decock & Crous nom. nov., Curvicladiella cignea (Decock & Crous) Decock & Crous comb. nov.  相似文献   

10.
Ophiostoma species have diverse morphological features and are found in a large variety of ecological niches. Many different classification schemes have been applied to these fungi in the past based on teleomorph and anamorph features. More recently, studies based on DNA sequence comparisions have shown that Ophiostoma consists of different phylogenetic groups, but the data have not been sufficient to define clear monophyletic lineages represented by practical taxonomic units. We used DNA sequence data from combined partial nuclear LSU and β-tubulin genes to consider the phylogenetic relationships of 50 Ophiostoma species, representing all the major morphological groups in the genus. Our data showed three well-supported, monophyletic lineages in Ophiostoma. Species with Leptographium anamorphs grouped together and to accommodate these species the teleomorph-genus Grosmannia (type species G. penicillata), including 27 species and 24 new combinations, is re-instated. Another well-defined lineage includes species that are cycloheximide-sensitive with short perithecial necks, falcate ascospores and Hyalorhinocladiella anamorphs. For these species, the teleomorph-genus Ceratocystiopsis (type species O. minuta), including 11 species and three new combinations, is re-instated. A third group of species with either Sporothrix or Pesotum anamorphs includes species from various ecological niches such as Protea infructescences in South Africa. This group also includes O. piliferum, the type species of Ophiostoma, and these species are retained in that genus. Ophiostoma is redefined to reflect the changes resulting from new combinations in Grosmannia and Ceratocystiopsis. Our data have revealed additional lineages in Ophiostoma linked to morphological characters. However, these species are retained in Ophiostoma until further data for a larger number of species can be obtained to confirm monophyly of the apparent lineages.Taxonomic novelties: Ceratocystiopsis manitobensis (J. Reid& Hausner) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., Cop. parva (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., Cop. rollhanseniana (J. Reid, Eyjólfsd. & Hausner) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., Grosmannia abiocarpa (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. aenigmatica (K. Jacobs, M.J. Wingf. & Yamaoka) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. americana (K. Jacobs& M.J. Wingf.) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. aurea (R.C. Rob. & R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. cainii (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. clavigera (R.C. Rob. & R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. crassivaginata (H.D. Griffin) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. cucullata (H. Solheim) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. davidsonii (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. dryocoetidis (W.B. Kendr.& Molnar) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. europhioides (E.F. Wright & Cain) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. francke-grosmanniae (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. galeiformis (B.K. Bakshi) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. grandifoliae (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. huntii (R.C. Rob.) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. laricis (K. van der Westh., Yamaoka & M.J. Wingf.) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. leptographioides (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. olivacea (Math.-Käärik) Zipfel, Z.W. de Beer& M.J. Wingf. comb. nov., G. pseudoeurophioides (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. radiaticola (J.-J. Kim, Seifert, & G.-H. Kim) Z.W. de Beer & M.J. Wingf. comb. nov., G. robusta (R.C. Rob. & R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. sagmatospora (E.F. Wright & Cain) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. vesca (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov., G. wageneri (Goheen & F.W. Cobb) Zipfel, Z.W. de Beer & M.J. Wingf. comb. nov.  相似文献   

11.
Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general morphology, within the same geographic region, frequently differed phylogenetically, indicating that the application of European and American names to Asian taxa, and vice versa, was often not warranted.

Taxonomic novelties:

New genera - Pallidocercospora Crous, Phaeomycocentrospora Crous, H.D. Shin & U. Braun; New species - Cercospora eucommiae Crous, U. Braun & H.D. Shin, Microcyclospora quercina Crous & Verkley, Pseudocercospora ampelopsis Crous, U. Braun & H.D. Shin, Pseudocercospora cercidicola Crous, U. Braun & C. Nakash., Pseudocercospora crispans G.C. Hunter & Crous, Pseudocercospora crocea Crous, U. Braun, G.C. Hunter & H.D. Shin, Pseudocercospora haiweiensis Crous & X. Zhou, Pseudocercospora humulicola Crous, U. Braun & H.D. Shin, Pseudocercospora marginalis G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora ocimi-basilici Crous, M.E. Palm & U. Braun, Pseudocercospora plectranthi G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora proteae Crous, Pseudocercospora pseudostigmina-platani Crous, U. Braun & H.D. Shin, Pseudocercospora pyracanthigena Crous, U. Braun & H.D. Shin, Pseudocercospora ravenalicola G.C. Hunter & Crous, Pseudocercospora rhamnellae G.C. Hunter, H.D. Shin, U. Braun & Crous, Pseudocercospora rhododendri-indici Crous, U. Braun & H.D. Shin, Pseudocercospora tibouchinigena Crous & U. Braun, Pseudocercospora xanthocercidis Crous, U. Braun & A. Wood, Pseudocercosporella koreana Crous, U. Braun & H.D. Shin; New combinations - Pallidocercospora acaciigena (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora crystallina (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora heimii (Crous) Crous, Pallidocercospora heimioides (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora holualoana (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidocercospora konae (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidoocercospora irregulariramosa (Crous & M.J. Wingf.) Crous & M.J. Wingf., Phaeomycocentrospora cantuariensis (E.S. Salmon & Wormald) Crous, H.D. Shin & U. Braun, Pseudocercospora hakeae (U. Braun & Crous) U. Braun & Crous, Pseudocercospora leucadendri (Cooke) U. Braun & Crous, Pseudocercospora snelliana (Reichert) U. Braun, H.D. Shin, C. Nakash. & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin; Typifications: Epitypifications - Pseudocercospora angolensis (T. Carvalho & O. Mendes) Crous & U. Braun, Pseudocercospora araliae (Henn.) Deighton, Pseudocercospora cercidis-chinensis H.D. Shin & U. Braun, Pseudocercospora corylopsidis (Togashi & Katsuki) C. Nakash. & Tak. Kobay., Pseudocercospora dovyalidis (Chupp & Doidge) Deighton, Pseudocercospora fukuokaensis (Chupp) X.J. Liu & Y.L. Guo, Pseudocercospora humuli (Hori) Y.L. Guo & X.J. Liu, Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lyoniae (Katsuki & Tak. Kobay.) Deighton, Pseudocercospora lythri H.D. Shin & U. Braun, Pseudocercospora sambucigena U. Braun, Crous & K. Schub., Pseudocercospora stephanandrae (Tak. Kobay. & H. Horie) C. Nakash. & Tak. Kobay., Pseudocercospora viburnigena U. Braun & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin, Xenostigmina zilleri (A. Funk) Crous; Lectotypification - Pseudocercospora ocimicola (Petr. & Cif.) Deighton; Neotypifications - Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lonicericola (W. Yamam.) Deighton, Pseudocercospora zelkovae (Hori) X.J. Liu & Y.L. Guo.Key words: Capnodiales, Cercospora, cercosporoid, Mycosphaerella, Mycosphaerellaceae, Paracercospora, Pseudocercosporella, Multi-Locus Sequence Typing (MLST), systematics  相似文献   

12.
The phylogeny of the genera Periconiella, Ramichloridium, Rhinocladiella and Veronaea was explored by means of partial sequences of the 28S (LSU) rRNA gene and the ITS region (ITS1, 5.8S rDNA and ITS2). Based on the LSU sequence data, ramichloridium-like species segregate into eight distinct clusters. These include the Capnodiales (Mycosphaerellaceae and Teratosphaeriaceae), the Chaetothyriales (Herpotrichiellaceae), the Pleosporales, and five ascomycete clades with uncertain affinities. The type species of Ramichloridium, R. apiculatum, together with R. musae, R. biverticillatum, R. cerophilum, R. verrucosum, R. pini, and three new species isolated from Strelitzia, Musa and forest soil, respectively, reside in the Capnodiales clade. The human-pathogenic species R. mackenziei and R. basitonum, together with R. fasciculatum and R. anceps, cluster with Rhinocladiella (type species: Rh. atrovirens, Herpotrichiellaceae, Chaetothyriales), and are allocated to this genus. Veronaea botryosa, the type species of the genus Veronaea, also resides in the Chaetothyriales clade, whereas Veronaea simplex clusters as a sister taxon to the Venturiaceae (Pleosporales), and is placed in a new genus, Veronaeopsis. Ramichloridium obovoideum clusters with Carpoligna pleurothecii (anamorph: Pleurothecium sp., Chaetosphaeriales), and a new combination is proposed in Pleurothecium. Other ramichloridium-like clades include R. subulatum and R. epichloës (incertae sedis, Sordariomycetes), for which a new genus, Radulidium is erected. Ramichloridium schulzeri and its varieties are placed in a new genus, Myrmecridium (incertae sedis, Sordariomycetes). The genus Pseudovirgaria (incertae sedis) is introduced to accommodate ramichloridium-like isolates occurring on various species of rust fungi. A veronaea-like isolate from Bertia moriformis with phylogenetic affinity to the Annulatascaceae (Sordariomycetidae) is placed in a new genus, Rhodoveronaea. Besides Ramichloridium, Periconiella is also polyphyletic. Thysanorea is introduced to accommodate Periconiella papuana (Herpotrichiellaceae), which is unrelated to the type species, P. velutina (Mycosphaerellaceae).Taxonomic novelties: Myrmecridium Arzanlou, W. Gams & Crous, gen. nov., Myrmecridium flexuosum (de Hoog) Arzanlou, W. Gams& Crous, comb. et stat. nov., Myrmecridium schulzeri (Sacc.) Arzanlou, W. Gams & Crous var. schulzeri, comb. nov., Myrmecridium schulzeri var. tritici (M.B. Ellis) Arzanlou, W. Gams & Crous, comb. nov., Periconiella arcuata Arzanlou, S. Lee & Crous, sp. nov., Periconiella levispora Arzanlou, W. Gams& Crous, sp. nov., Pleurothecium obovoideum (Matsush.) Arzanlou& Crous, comb. nov., Pseudovirgaria H.D. Shin, U. Braun, Arzanlou& Crous, gen. nov., Pseudovirgaria hyperparasitica H.D. Shin, U. Braun, Arzanlou & Crous, sp. nov., Radulidium Arzanlou, W. Gams& Crous, gen. nov., Radulidium epichloës (Ellis & Dearn.) Arzanlou, W. Gams & Crous, comb. nov., Radulidium subulatum (de Hoog) Arzanlou, W. Gams & Crous, comb. nov., Ramichloridium australiense Arzanlou & Crous, sp. nov., Ramichloridium biverticillatum Arzanlou & Crous, nom. nov., Ramichloridium brasilianum Arzanlou & Crous, sp. nov., Ramichloridium strelitziae Arzanlou, W. Gams & Crous, sp. nov., Rhinocladiella basitona (de Hoog) Arzanlou & Crous, comb. nov., Rhinocladiella fasciculata (V. Rao & de Hoog) Arzanlou & Crous, comb. nov., Rhinocladiella mackenziei (C.K. Campb. & Al-Hedaithy) Arzanlou & Crous, comb. nov., Rhodoveronaea Arzanlou, W. Gams & Crous, gen. nov., Rhodoveronaea varioseptata Arzanlou, W. Gams & Crous, sp. nov., Thysanorea Arzanlou, W. Gams& Crous, gen. nov., Thysanorea papuana (Aptroot) Arzanlou, W. Gams & Crous, comb. nov., Veronaea japonica Arzanlou, W. Gams& Crous, sp. nov., Veronaeopsis Arzanlou & Crous, gen. nov., Veronaeopsis simplex (Papendorf) Arzanlou & Crous, comb.nov.  相似文献   

13.
In a survey for Cryphonectria and Chrysoporthe species on Myrtales in South Africa, a fungus resembling the stem canker pathogen Chrysoporthe austroafricana was collected from native Syzygium cordatum near Tzaneen (Limpopo Province), Heteropyxis canescens near Lydenburg (Mpumalanga Province) and exotic Tibouchina granulosa in Durban (KwaZulu-Natal Province). The fungus was associated with dying branches and stems on S. cordatum, H. canescens and T. granulosa. However, morphological differences were detected between the unknown fungus from these three hosts and known species of Chrysoporthe. The aim of this study was to characterise the fungus using DNA sequence comparisons and morphological features. Pathogenicity tests were also conducted to assess its virulence on Eucalyptus (ZG 14 clones), H. natalensis and T. granulosa. Plants of H. canescens were not available for inoculation. Results showed distinct morphological differences between the unknown fungus and Chrysoporthe spp. Phylogenetic analysis showed that isolates reside in a clade separate from Chrysoporthe and other related genera. Celoporthe dispersa gen. et sp. nov. is, therefore, described to accommodate this fungus. Pathogenicity tests showed that C. dispersa is not pathogenic to H. natalensis, but that it is a potential pathogen of Eucalyptus and Tibouchina spp.Taxonomic novelties: Celoporthe Nakab., Gryzenh., Jol. Roux& M.J. Wingf. gen. nov., Celoporthe dispersa Nakab., Gryzenh., Jol. Roux & M.J. Wingf. sp. nov.  相似文献   

14.
The genus Cladosporium is restricted to dematiaceous hyphomycetes with a coronate scar type, and Davidiella teleomorphs. In the present study numerous cladosporium-like taxa are treated, and allocated to different genera based on their morphology and DNA phylogeny derived from the LSU nrRNA gene. Several species are introduced in new genera such as Hyalodendriella, Ochrocladosporium, Rachicladosporium, Rhizocladosporium, Toxicocladosporium and Verrucocladosporium. A further new taxon is described in Devriesia (Teratosphaeriaceae). Furthermore, Cladosporium castellanii, the etiological agent of tinea nigra in humans, is confirmed as synonym of Stenella araguata, while the type species of Stenella is shown to be linked to the Teratosphaeriaceae (Capnodiales), and not the Mycosphaerellaceae as formerly presumed.Taxonomic novelties: Devriesia americana Crous & Dugan, sp. nov., Hyalodendriella Crous, gen. nov., Hyalodendriella betulae Crous sp. nov., Ochrocladosporium Crous & U. Braun, gen. nov., Ochrocladosporium elatum (Harz) Crous & U. Braun, comb. nov., Ochrocladosporium frigidarii Crous & U. Braun, sp. nov., Rachicladosporium Crous, U. Braun & Hill, gen. nov., Rachicladosporium luculiae Crous, U. Braun & Hill, sp. nov., Rhizocladosporium Crous & U. Braun, gen. nov., Rhizocladosporium argillaceum (Minoura) Crous & U. Braun, comb. nov., Toxicocladosporium Crous & U. Braun, gen. nov., Toxicocladosporium irritans Crous & U. Braun, sp. nov., Verrucocladosporium K. Schub., Aptroot & Crous, gen. nov., Verrucocladosporium dirinae K. Schub., Aptroot & Crous, sp. nov.  相似文献   

15.
The Cladosporium herbarum complex comprises five species for which Davidiella teleomorphs are known. Cladosporium herbarum s. str. (D. tassiana), C. macrocarpum (D. macrocarpa) and C. bruhnei (D. allicina) are distinguishable by having conidia of different width, and by teleomorph characters. Davidiella variabile is introduced as teleomorph of C. variabile, a homothallic species occurring on Spinacia, and D. macrospora is known to be the teleomorph of C. iridis on Iris spp. The C. herbarum complex combines low molecular distance with a high degree of clonal or inbreeding diversity. Entities differ from each other by multilocus sequence data and by phenetic differences, and thus can be interpreted to represent individual taxa. Isolates of the C. herbarum complex that were formerly associated with opportunistic human infections, cluster with C. bruhnei. Several species are newly described from hypersaline water, namely C. ramotenellum, C. tenellum, C. subinflatum, and C. herbaroides. Cladosporium pseudiridis collected from Iris sp. in New Zealand, is also a member of this species complex and shown to be distinct from C. iridis that occurs on this host elsewhere in the world. A further new species from New Zealand is C. sinuosum on Fuchsia excorticata. Cladosporium antarcticum is newly described from a lichen, Caloplaca regalis, collected in Antarctica, and C. subtilissimum from grape berries in the U.S.A., while the new combination C. ossifragi, the oldest valid name of the Cladosporium known from Narthecium in Europe, is proposed. Standard protocols and media are herewith proposed to facilitate future morphological examination of Cladosporium spp. in culture, and neotypes or epitypes are proposed for all species treated.Taxonomic novelties: Cladosporium antarcticum K. Schub., Crous & U. Braun, sp. nov., C. herbaroides K. Schub., Zalar, Crous & U. Braun, sp. nov., C. ossifragi (Rostr.) U. Braun & K. Schub., comb. nov., C. pseudiridis K. Schub., C.F. Hill, Crous& U. Braun, sp. nov., C. ramotenellum K. Schub., Zalar, Crous& U. Braun, sp. nov., C. sinuosum K. Schub., C.F. Hill, Crous& U. Braun, sp. nov., C. subinflatum K. Schub., Zalar, Crous& U. Braun, sp. nov., C. subtilissimum K. Schub., Dugan, Crous& U. Braun, sp. nov., C. tenellum K. Schub., Zalar, Crous & U. Braun sp. nov., Davidiella macrocarpa Crous, K. Schub. & U. Braun, sp. nov., D. variabile Crous, K. Schub. & U. Braun, sp. nov.  相似文献   

16.
Eight pestalotioid fungi were isolated from the Restionaceae growing in the Cape Floral Kingdom of South Africa. Sarcostroma restionis, Truncatella megaspora, T. restionacearum and T. spadicea are newly described. New records include Pestalotiopsis matildae, Sarcostroma lomatiae, Truncatella betulae and T. hartigii. To resolve generic affiliations, phylogenetic analyses were performed on ITS (ITS1, 5.8S, ITS2) and part of 28S rDNA. DNA data support the original generic concept of Truncatella, which encompasses Pestalotiopsis species having 3-septate conidia. The genus Sarcostroma is retained as separate from Seimatosporium.Taxonomic novelties: Pestalotiopsis matildae (Richatt) S. Lee & Crous comb. nov., Truncatella betulae (Morochk.) S. Lee& Crous comb. nov., Sarcostroma restionis S. Lee & Crous sp. nov., Truncatella megaspora S. Lee & Crous sp. nov., Truncatella restionacearum S. Lee & Crous sp. nov., Truncatella spadicea S. Lee & Crous sp. nov.  相似文献   

17.
Angular leaf spot of Phaseolus vulgaris is a serious disease caused by Phaeoisariopsis griseola, in which two major gene pools occur, namely Andean and Middle-American. Sequence analysis of the SSU region of nrDNA revealed the genus Phaeoisariopsis to be indistinguishable from other hyphomycete anamorph genera associated with Mycosphaerella, namely Pseudocercospora and Stigmina. A new combination is therefore proposed in the genus Pseudocercospora, a name to be conserved over Phaeoisariopsis and Stigmina. Further comparisons by means of morphology, cultural characteristics, and DNA sequence analysis of the ITS, calmodulin, and actin gene regions delineated two groups within P. griseola, which are recognised as two formae, namely f. griseola and f. mesoamericana.Taxonomic novelties: Pseudocercospora griseola (Sacc.) Crous & U. Braun comb. nov., P. griseola f. mesoamericana Crous & U. Braun f. nov.  相似文献   

18.
Ophiostoma represents a genus of fungi that are mostly arthropod-dispersed and have a wide global distribution. The best known of these fungi are carried by scolytine bark beetles that infest trees, but an interesting guild of Ophiostoma spp. occurs in the infructescences of Protea spp. native to South Africa. Phylogenetic relationships between Ophiostoma spp. from Protea infructescences were studied using DNA sequence data from the β-tubulin, 5.8S ITS (including the flanking internal transcribed spacers 1 and 2) and the large subunit DNA regions. Two new species, O. phasma sp. nov. and O. palmiculminatum sp. nov. are described and compared with other Ophiostoma spp. occurring in the same niche. Results of this study have raised the number of Ophiostoma species from the infructescences of serotinous Protea spp. in South Africa to five. Molecular data also suggest that adaptation to the Protea infructescence niche by Ophiostoma spp. has occurred independently more than once.Taxonomic novelties: Ophiostoma phasma Roets, Z.W. de Beer& M.J. Wingf. sp. nov., Ophiostoma palmiculminatum Roets, Z.W. de Beer & M.J. Wingf. sp. nov.  相似文献   

19.
Species of the ascomycete genus Mycosphaerella are regarded as some of the most destructive leaf pathogens of a large number of economically important crop plants. Amongst these, approximately 60 Mycosphaerella spp. have been identified from various Eucalyptus spp. where they cause leaf diseases collectively known as Mycosphaerella Leaf Disease (MLD). Species concepts for this group of fungi remain confused, and hence their species identification is notoriously difficult. Thus, the introduction of DNA sequence comparisons has become the definitive characteristic used to distinguish species of Mycosphaerella. Sequences of the Internal Transcribed Spacer (ITS) region of the ribosomal RNA operon have most commonly been used to consider species boundaries in Mycosphaerella. However, sequences for this gene region do not always provide sufficient resolution for cryptic taxa. The aim of this study was, therefore, to use DNA sequences for three loci, ITS, Elongation factor 1-alpha (EF-1α) and Actin (ACT) to reconsider species boundaries for Mycosphaerella spp. from Eucalyptus. A further aim was to study the anamorph concepts and resolve the deeper nodes of Mycosphaerella, for which part of the Large Subunit (LSU) of the nuclear rRNA operon was sequenced. The ITS and EF-1α gene regions were found to be useful, but the ACT gene region did not provide species-level resolution in Mycosphaerella. A phylogeny of the combined DNA datasets showed that species of Mycosphaerella from Eucalyptus cluster in two distinct groups, which might ultimately represent discrete genera.  相似文献   

20.
Colletogloeopsis zuluensis, previously known as Coniothyrium zuluense, causes a serious stem canker disease on Eucalyptus spp. grown as non-natives in many tropical and sub-tropical countries. This stem canker disease was first reported from South Africa and it has subsequently been found on various species and hybrids of Eucalyptus in other African countries as well as in countries of South America and South-East Asia. In previous studies, phylogenetic analyses based on DNA sequence data of the ITS region suggested that all material of C. zuluensis was monophyletic. However, the occurrence of the fungus in a greater number of countries, and analyses of DNA sequences with additional isolates has challenged the notion that a single species is involved with Coniothyrium canker. The aim of this study was to consider the phylogenetic relationships amongst C. zuluensis isolates from all available locations and to support these analyses with phenotypic and morphological comparisons. Individual and combined phylogenies were constructed using DNA sequences from the ITS region, exons 3 through 6 of the β-tubulin gene, the intron of the translation elongation factor 1-α gene, and a partial sequence of the mitochondrial ATPase 6 gene. Both phylogenetic data and morphological characteristics showed clearly that isolates of C. zuluensis represent at least two taxa. One of these is C. zuluensis as it was originally described from South Africa, and we provide an epitype for it. The second species occurs in Argentina and Uruguay, and is newly described as C. gauchensis. Both fungi are serious pathogens resulting in identical symptoms. Recognising them as different species has important quarantine consequences.Taxonomic novelty: Colletogloeopsis gauchensis M.-N. Cortinas, Crous & M.J. Wingf. sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号