首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Foot-and-mouth disease (FMD) is one of the most contagious diseases affecting wide range of host species with variable severity and decreased productivity. The present study was undertaken to compare the clinical and leucocytic changes in indigenous Indian cattle and buffaloes experimentally infected with FMD virus (FMDV) Asia 1. A mild type of disease was observed in the cattle, more so in buffaloes infected with FMDV. Difference in terms of type, site and healing of lesion was observed between cattle and buffaloes. Foot lesions were more common than tongue in buffaloes, which were mainly evident in bulb of the heel in contrast to interdigital foot lesions in cattle. Further, FMDV infection induced a transient moderate leucopenia with lymphopenia in both cattle and buffaloes, but monocyte levels diverged. Relationship between the raised body temperature, leucocytic changes and lesion development was observed. Microscopic changes were observed in the keratinized epithelium of tongue and foot. The findings of the present study indicated the need to investigate the early leucocytic changes in cattle and buffaloes in depth for better understanding of the disease process.  相似文献   

2.
Foot-and-mouth disease (FMD), the most contagious animal disease, is associated with persistent viral infection in ruminants, despite the induction of systemic immune response. The present study was performed to decipher the relation between the persistent FMD virus (FMDV) infection and cellular immune response in Indian cattle (Bosindicus) following experimental inoculation of FMDV Asia 1. Persistent viral infection (carriers) was detected by antigen capture RT-PCR on the oesophageal-pharyngeal fluid. Viral excretion was found to be intermittent and strongly variable among the persistently infected Indian cattle. Lymphocyte proliferative (LP) response, assessed as reactivity of peripheral blood mononuclear cells to FMDV Asia 1 antigen (Ag) was of low magnitude indicating a weak primary cellular immune response following infection. LP response to FMDV Ag was higher among the non-carriers than carriers of FMDV Asia 1. An enhanced LP response was associated with the lack of virus shedding in the OPF. The findings of this study are suggestive of relationship between cellular immune response and virus excretion during persistence of FMDV Asia 1 in infected cattle.  相似文献   

3.
Foot-and-mouth disease (FMD) is a highly contagious viral infection of significant financial importance to the export and trade of agricultural products. The occurrence of persistently infected "carriers" of FMD-virus (FMDV) in ruminant species adds further complications to disease control. There have been significant discrepancies in reports regarding the pathogenesis of FMDV infection in cattle with specific emphasis on the anatomical sites involved in early and persistent virus replication. In this study, collection of small biopsy samples from the dorsal soft palate (DSP) of live animals was used to investigate the level of FMDV RNA present at this site at sequential time points during the infection. Results were compared to measurements of virus excretion in samples of oropharyngeal fluid collected at corresponding time points. Possible sites of virus persistence were investigated through measurements of the levels of FMDV RNA in the DSP as well as mandibular and retropharyngeal lymph nodes beyond 28 days after infection. Results indicated only low levels of FMDV RNA present in samples of pharyngeal epithelia during both early and persistent phases of infection with significantly higher levels of virus detected in pharyngeal excretions. It is concluded that the targeted area for sampling within the DSP does not harbour significant levels of virus replication during acute or persistent FMDV infection in cattle. Furthermore, the DSP and the mandibular and retropharyngeal lymph nodes cannot be concluded to be principal sites for persistence of FMDV.  相似文献   

4.
In this study, we performed experiments to evaluate the extend of the process of apoptotic cell death by foot-and-mouth disease virus (FMDV). Apoptosis can also occur in some virus-infected cells, and ability of viruses to either inhibit or promote apoptosis may influence the pathologic outcome of infection. In this study, to determine if apoptosis plays a role in the outcome of FMDV infection in swine, we evaluated apoptosis in diseased tissues collected from pigs inoculated with two different stains of FMDV (O1 Campos and O Taiwan). And host cell DNA fragmentation in diseased tissue from animals which were infected with either virus was evaluated by occurrence of a laddering pattern characteristic of apoptosis. Infection of cultured keratinocytes from swine tongue failed to demonstrate apoptosis in the first few hours of infection, suggesting that cell-to-cell correlation between viral antigen and apoptotic changes, e.g. cytokine secretions by immune system cells, could be critical to initiating apoptosis. Consistent with this finding, we were able to detect the pro-inflammatory cytokine TNF-alpha in diseased tissues. A clear difference in the pathogenicity of the two different FMDV isolates to pigs was not demonstrated in our study.  相似文献   

5.
To investigate and optimise detection of carriers, we vaccinated 15 calves with an inactivated vaccine based on foot-and-mouth disease virus (FMDV) A Turkey strain and challenged them and two further non-vaccinated calves with the homologous virus four weeks later. To determine transmission to a sensitive animal, we put a sentinel calf among the infected cattle from 60 days post-infection until the end of the experiment at 609 days post-infection. Samples were tested for the presence of FMDV, viral genome, specific IgA antibodies, antibodies against FMDV non-structural (NS) proteins or neutralising antibodies. Virus and viral genome was intermittently isolated from probang samples and the number of isolations decreased over time. During the first 100 days significantly more samples were positive by RT-PCR than by virus isolation (VI), whereas, late after infection more samples were positive by virus isolation. All the inoculated cattle developed high titres of neutralising antibodies that remained high during the entire experiment. An IgA antibody response was intermittently detected in the oropharyngeal fluid of 14 of the 17 calves, while all of them developed detectable levels of antibodies to NS proteins of FMDV in serum, which declined slowly beyond 34 days post-infection. Nevertheless, at 609 days after inoculation, 10 cattle (60%) were still positive by NS ELISA. Of the 17 cattle in our experiment, 16 became carriers. Despite frequent reallocation between a different pair of infected cattle no transmission to the sentinel calf occurred. It remained negative in all assays during the entire experiment. The results of this experiment show that the NS ELISA is currently the most sensitive method to detect carriers in a vaccinated cattle population.  相似文献   

6.
Lu Z  Cao Y  Guo J  Qi S  Li D  Zhang Q  Ma J  Chang H  Liu Z  Liu X  Xie Q 《Veterinary microbiology》2007,125(1-2):157-169
Non-structural protein (NSP) 3ABC antibody is considered to be the most reliable indicator of present or past infection with foot-and-mouth disease virus (FMDV) in vaccinated animals. An indirect ELISA was established, using purified His-tagged 3ABC fusion protein as antigen, for detection of the antibody response to FMDV NSP 3ABC in different animal species. The method was validated by simultaneous detection of the early antibody responses to NSP and structural protein (SP) in FMDV Asia 1 infected animals. The performance of the method was also validated by detection of antibody in reference sera from the FMD World Reference Laboratory (WRL) in Pirbright, UK, and comparison with two commercial NSP ELISA kits. The results showed that the antibody response to SP developed more quickly than that to NSP 3ABC in FMDV infected animals. In contact-infected cattle, the antibody response to NSP 3ABC was significantly delayed compared with that to SP antibody. The early antibody responses to SP and NSP 3ABC in FMDV inoculated cattle and contact-infected or inoculated sheep and pigs were generally consistent. In pigs, 3ABC antibody was linked to the presence of clinical signs; however, in sheep, subclinical infection was detected by the development of 3ABC antibodies. Therefore, the antibody responses to 3ABC varied between host species. Eight out of 10 positive serum samples from FMD WRL were tested to be positive at cutoff value of 0.2. The rate of agreement with the ceditest FMDV-NS and the UBI NSP ELISA were 98.05% (302/308) and 93.2% (287/308), respectively. The prevalence of 3ABC antibodies reached 71.4% in some diseased cattle herds. The further work is required to evaluation the performance of this method in different animal species and different field situations.  相似文献   

7.
Humoral and mucosal (secretory antibody)immune response to FMDV type Asia 1 in cattle was analyzed after vaccination and infection using virus neutralizing test (VNT). Vaccination (1/16th the usual dose) failed to protect cattle from generalized clinical disease following experimental FMDV Asia 1 infection. Our results showed that infection induced higher and prolonged serum antibody titres indicating antigen mass is important for optimal immune response. Experimental FMDV infection induced significant secretory antibody (mucosal) response in cattle. Though, there was no difference in the serum antibody response between the cattle that developed generalized infection (unprotected) and those with only localized infection (protected), secretory antibody response differed, wherein the unprotected cattle had higher secretory response than protected cattle. Thus, FMDV Asia 1 infection stimulates a similar serum antibody response and a unique secretory antibody response among the infected cattle. An erratum to this article can be found at  相似文献   

8.
Tongue epithelia infected with each of the 7 serotypes of foot-and-mouth disease virus (FMDV) were used to evaluate in vivo and in vitro systems for the detection of FMDV. Cattle inoculated by the intradermal route in the tongue (IDL) and suckling mice inoculated intraperitoneally were compared for susceptibility to FMDV with freshly prepared bovine thyroid cell cultures; cultures from cryopreserved bovine thyroid, bone marrow, mammary gland, myocardium, tongue, ovary and kidney cells; cultures from cryopreserved embryonic ovine kidney, newborn ovine kidney, ovine testicle, bone marrow, and chloroid plexus cells; and the continuous porcine kidney cell lines MVPK-1 and S6. The mean titers determined for each serotype in each system were statistically compared. The FMDV titers obtained in freshly prepared bovine thyroid cell cultures and by cattle IDL inoculation were the highest and were statistically indistinguishable. The titers obtained by suckling mouse inoculation were significantly lower than the titers obtained in thyroid cultures for serotypes A, C, Asia 1, and SAT 3. The cattle IDL assay was significantly more sensitive than the mouse assay for serotype A. The cell cultures from the cryopreserved newborn ovine kidney and embryonic ovine kidney were significantly less susceptible to serotype Asia 1 when compared with the fresh bovine thyroid cultures, but not significantly different when compared with the cattle assay for all serotypes. Cryopreservation of bovine thyroid cells directly after trypsinization resulted in the loss of susceptibility to FMDV serotype SAT 2. The other cryopreserved cell culture systems exhibited no or minimal susceptibility to all 7 serotypes, or exhibited considerable inconsistency. The established cell lines MVPK-1 and S6 were not susceptible to serotype A, and were less sensitive to serotype C than other culture systems. Quality control of cell cultures used to evaluate field specimens for FMDV was critical. The cell cultures of cryopreserved ovine kidney cells provided the most practical diagnostic system.  相似文献   

9.
10.
Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infected cells and producing antiviral cytokines such as interferon gamma (IFN-γ). We developed a system for characterizing the bovine NK response to foot-and-mouth disease virus (FMDV), which causes a disease of cloven-hoofed animals and remains a threat to livestock industries throughout the world. IL-2 stimulation of PBMC resulted in poor killing of human K562 cells, which are often used as NK target cells, while lysis of the bovine BL3.1 cell line was readily detected. Depletion of NKp46-expressing cells revealed that 80% of the killing induced by IL-2 could be attributed to NKp46+ cells. In order to characterize the response of NK cells against FMDV in vivo, we infected groups of cattle with three different strains of the virus (A24 Cruzeiro, O1 Manisa, O Hong Kong) and evaluated the cytolytic ability of NK cells through the course of infection. We consistently observed a transient increase in cytolysis, although there was variation in magnitude and kinetics. This increase in cytolysis remained when CD3+ cells were removed from the preparation of lymphocytes, indicating that cytolysis was independent of MHC-T cell receptor interaction or γδ T cell activation. In contrast, animals monitored following vaccination against FMDV did not exhibit any increase in NK killing. These data suggest that NK cells play a role in the host immune response of cattle against FMDV, and contrast with the suppression of NK activity previously observed in swine infected with FMDV.  相似文献   

11.
Foot-and-mouth disease (FMD) is an acute,febrile and highly contagious animal disease caused by foot-and-mouth disease virus (FMDV),and has been recognized as the most important constraint to international trade in animals and animal products.An outstanding feature for FMDV infection is that the FMDV infected animals may remain as a carrier state,some of the animals exposed to FMDV may have a long term asymptomatic infection.This article will review the advance of FMDV in the following aspects,epidemiology,etiology and pathogenesis.  相似文献   

12.
口蹄疫(foot-and-mouth disease,FMD)是由口蹄疫病毒(foot-and-mouth disease virus,FMDV)引起的一种急性、热性、高度接触传染性动物疫病,是全球范围内家畜及其产品贸易最大的羁绊。FMDV通过逃避宿主的免疫监视建立持续性感染,使患畜持续向外界排毒,成为传染源。作者查阅了近几年FMDV的国内外研究进展,对其流行病学、病原学及致病机理进行了概述。  相似文献   

13.
Johne's disease is characterized by a chronic enteritis that results in granulomatous inflammation, cachexia, and eventual death of cattle infected with Mycobacterium paratuberculosis. The cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) have been associated with granuloma formation and wasting in other disease syndromes. The potential role of these cytokines in the development and progression of Johne's disease has not been investigated. Using the polymerase chain reaction (PCR) and specific bovine oligonucleotide cytokine primers and probes, we examined the expression of messenger RNA for these cytokines in whole blood from M. paratuberculosis infected and uninfected cattle. Cytokine mRNA levels were examined before and after in vitro incubation with E.coli lipopolysaccharide (LPS) and lipoarabinomannan (LAM) purified from M. paratuberculosis. Uninfected calves, experimentally infected calves, and naturally infected cattle all displayed similar cytokine mRNA expression patterns. However, individual animals demonstrated variability in the levels of IL-6 and TNF-alpha mRNA expression as determined by a semiquantitative PCR method using 32P-labelled oligonucleotide probes.  相似文献   

14.
To identify foot-and-mouth disease virus (FMDV) specific T-cell epitopes within the entire polyprotein sequence of the virus, 442 overlapping pentadecapeptides were tested in proliferation assays using lymphocytes from cattle experimentally infected with FMDV. Four months post-infection cells from all investigated animals (n = 4) responded by proliferation and interferon-gamma production to a peptide located on the structural protein 1D (VP1), amino acid residues 66-80. Major histocompatibility complex (MHC) serotyping of the investigated cattle indicated that all animals shared the MHC serotype A31 which comprises the class II allele DRB3 0701. This may explain the common recognition of this newly discovered epitope. Responses to other peptides could only be observed in one animal and rapidly declined during the time course of the study. These observations point to an immunodominant role of this epitope located on the protein 1D in cattle with MHC serotype A31.  相似文献   

15.
We investigated which variables possibly influence the amount of foot-and-mouth disease virus (FMDV) shed in secretions and excretions by FMDV infected animals, as it is likely that the amount of FMDV shed is related to transmission risk. First, in a separate analysis of laboratory data, we showed that the total amount of FMDV in secretions and excretions from infected animals is highly correlated with maximum titres of FMDV. Next, we collected data from 32 published scientific articles in which FMDV infection experiments were described. The maximum titres of FMDV reported in different secretions and excretions (the response variable) and the experimental conditions in which they occurred (the explanatory variables), were recorded in a database and analyzed using multivariate regression models with and without random effects. In both types of models, maximum titres of FMDV were significantly (p < 0.05) associated with types of secretions and excretions, animal species, stage of the disease and days post infection. These results can be used to prioritize biosecurity measures in contingency plans.  相似文献   

16.
FMDV infection can cause a long lasting virus carrier state in the oesophageal-pharyngeal (OP) region of cattle, sheep, goats, African buffalo, wildebeest and kudu. Virus can be recovered from OP fluids with low titres for several months up to more than 2 years. During this time phases of positive virus recovery are interrupted by negative phases. The number of virus carriers decreases as time progresses. The virus carrier state is always accompanied by FMDV antibodies in serum and OP fluid. Vaccinated animals also become virus carriers after FMDV infection, to the same extent as unvaccinated animals. No virus carrier state has been proven in pigs, but it cannot be excluded in some species of deer. Epizootic importance of carrier animals (in FMD) has not been found. Experimental contact transmissions of carrier virus to cattle, sheep and goats have failed. Only buffalo transmit carrier virus to the own species and perhaps to cattle. Nevertheless, virus carriers represent a natural reservoir of FMDV in infected areas and a potential source of antigenically altered virus variants, since continuous variations of the virus and selection of virus mutants take place in the animal during the carrier state.  相似文献   

17.
ABSTRACT: A series of challenge experiments were performed in order to investigate the acute phase responses to foot-and-mouth disease virus (FMDV) infection in cattle and possible implications for the development of persistently infected "carriers". The host response to infection was investigated through measurements of the concentrations of the acute phase proteins (APPs) serum amyloid A (SAA) and haptoglobin (HP), as well as the bioactivity of type 1 interferon (IFN) in serum of infected animals. Results were based on measurements from a total of 36 infected animals of which 24 were kept for observational periods exceeding 28 days in order to determine the carrier-status of individual animals. The systemic host response to FMDV in infected animals was evaluated in comparison to similar measurements in sera from 6 mock-inoculated control animals.There was a significant increase in serum concentrations of both APPs and type 1 IFN in infected animals coinciding with the onset of viremia and clinical disease. The measured parameters declined to baseline levels within 21 days after inoculation, indicating that there was no systemically measurable inflammatory reaction related to the carrier state of FMD. There was a statistically significant difference in the HP response between carriers and non-carriers with a lower response in the animals that subsequently developed into FMDV carriers. It was concluded that the induction of SAA, HP and type 1 IFN in serum can be used as markers of acute infection by FMDV in cattle.  相似文献   

18.
There are severe international trade restrictions on foot-and-mouth disease (FMD) affected areas. Because of endemic nature of FMD, India started FMD control programme (FMD-CP) using mass vaccination in selected states including Haryana (year 2003). Although no significant incidence of the disease was reported after launching FMD-CP in the state but in order to participate in international trade of animal and animal products, veterinary authorities have to prove that there is no FMD virus (FMDV) circulation in the animal population, for which it is necessary to differentiate the FMD infected and vaccinated animals. For this purpose, an in-house indirect ELISA utilizing baculovirus-expressed FMDV non-structural protein (NSP) 3A was used to find evidence for virus circulation (prevalence of anti-NSP 3A-specific antibodies) by examining serum samples that were collected either before start of FMD-CP or after completion of third phase (Pre-4th) of vaccination in Haryana (India). A significant reduction (P < 0.01) in prevalence of anti-NSP 3A-specific antibodies (possibly carriers) was observed 2 years after launching FMD-CP in Haryana. However, in cattle the percentage of animals with anti-NSP 3A-specific antibodies was found to be significantly higher (P < 0.01) than buffalo, both before (P < 0.01) and after (P < 0.01) launching FMD-CP in the state. The findings of this study suggest that use of FMDV vaccine in cattle and buffaloes in endemic areas reduces virus circulation (carriers) in the vaccinated herds and that the current 3ANSP-ELISA can be successfully used to monitor the FMDV circulation in endemic areas.  相似文献   

19.
20.
The O/Taiwan/99 foot-and-mouth disease virus (FMDV), a South Asian topotype of serotype O, was introduced into Taiwan in 1999. The Chinese yellow cattle infected by the virus did not develop clinical lesions under experimental and field conditions. A blocking enzyme-linked immunosorbent assay (ELISA) kit with the 3AB antigen, a polypeptide of FMDV non-structural (NS) proteins, was used to evaluate the development and duration of anti-3AB antibodies, proving active viral replication, in the Chinese yellow cattle. The specificity of the assay was 99%, as was established with negative sera from regularly vaccinated and from na?ve cattle. The sensitivity tested with sera from naturally infected animals was approximately 64% and it was lower than that obtained by serum neutralization (SN) test. Under experimental infection, the Chinese yellow cattle developed lower anti-3AB antibodies than that developed in other species. Duration of anti-3AB antibodies was traced in two herds of naturally infected animals, indicating that anti-3AB antibodies persisted for approximately 6 months after outbreaks. On the basis of this study, we propose that the Chinese yellow cattle may have natural resistance, which limits viral replication and reduces the development of anti-3AB antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号