首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic matter is strongly related to soil type, landscape morphology, and soil and crop management practices. Therefore, long-term (15–36-years) effects of six cropland management systems on soil organic carbon (SOC) pool in 0–30 cm depth were studied for the period of 1939–1999 at the North Appalachian Experimental Watersheds (<3 ha, Dystric Cambisol, Haplic Luvisol, and Haplic Alisol) near Coshocton, OH, USA. Six management treatments were: (1) no tillage continuous corn with NPK (NC); (2) no tillage continuous corn with NPK and manure (NTC-M); (3) no tillage corn–soybean rotation (NTR); (4) chisel tillage corn–soybean rotation (CTR); (5) moldboard tillage with corn–wheat–meadow–meadow rotation with improved practices (MTR-I); (6) moldboard tillage with corn–wheat–meadow–meadow rotation with prevalent practices (MTR-P). The SOC pool ranged from 24.5 Mg ha−1 in the 32-years moldboard tillage corn (Zea mays L.)–wheat (Triticum aestivum L.)–meadow–meadow rotation with straight row farming and annual application of fertilizer (N:P:K=5:9:17) of 56–112 kg ha−1 and cattle (Bos taurus) manure of 9 Mg ha−1 as the prevalent system (MTR-P) to 65.5 Mg ha−1 in the 36-years no tillage continuous corn with contour row farming and annual application of 170–225 kg N ha−1 and appropriate amounts of P and K, and 6–11 Mg ha−1 of cattle manure as the improved system (NTC-M). The difference in SOC pool among management systems ranged from 2.4 to 41 Mg ha−1 and was greater than 25 Mg ha−1 between NTC-M and the other five management systems. The difference in the SOC pool of NTC-M and that of no tillage continuous corn (NTC) were 16–21 Mg ha−1 higher at the lower slope position than at the middle and upper slope positions. The effect of slope positions on SOC pools of the other management systems was significantly less (<5 Mg ha−1). The effects of manure application, tillage, crop rotation, fertilizer rate, and soil and water conservation farming on SOC pool were accumulative. The NTC-M treatment with application of NPK fertilizer, lime, and cattle manure is an effective cropland management system for SOC sequestration.  相似文献   

2.
Soil erosion and depositional processes in relation to land use and soil management need to be quantified to better understand the soil organic carbon (SOC) dynamics. This study was undertaken on a Miamian soil (Oxyaquic Hapludalfs) under on-farm conditions in western Ohio with the objectives of evaluating the effects of degree of erosion on SOC stock under a range of tillage systems. Six farms selected for this study were under: no-till (NT) for 15, 10, 6 and 1.5 years; chisel till every alternate year with annual manure application (MCT); and annual chisel till (ACT). A nearby forest (F) site on the same soil was chosen as control. Using the depth of A horizon as an indicator of the degree of erosion, four erosion phases identified were: uneroded (flat fields under F, NT15, and on the summit of sloping fields under NT10, NT6, NT1.5 and MCT); deposition (NT10, NT6, NT1.5 and ACT); slight (NT10, MCT and ACT); and moderate erosion (NT10 and ACT). Core and bulk soil samples were collected in triplicate from four depths (i.e., 0–10, 10–20, 20–30 and 30–50 cm) for each erosional phase in each field for the determination of bulk density, and SOC concentrations and stocks. SOC concentration in NT fields increased at a rate of 5% year−1 for 0–10 cm and 2.5% year−1 for 10–20 cm layer with increasing duration under NT. High SOC concentration for NT15 is indicative of SOC-sequestration potential upon conversion from plow till to NT. SOC concentration declined by 19.0–14.5 g kg−1 in MCT and 11.3–9.7 g kg−1 in NT10 between uneroded and slight erosion, and 12.0–11.2 g kg−1 between slight and moderate erosion in ACT. Overall SOC stock was greatest in the forest for each of the four depths. Total SOC stock for the 50 cm soil layer varied in the order F (71.99 Mg ha−1) > NT15 (56.10 Mg ha−1) > NT10 (37.89 Mg ha−1) = NT6 (36.58 Mg ha−1) for uneroded phase (P < 0.05). The lack of uneroded phase in ACT indicated high erosion risks of tillage, as also indicated by the high SOC stock for deposition phase from 0 to 50 cm soil layer (ACT (56.56 Mg ha−1) > NT1.5 (42.70 Mg ha−1) > NT10 (30.97 Mg ha−1)). Tillage increased soil erosion and decreased SOC stock for top 10 cm layer for all erosional phases except deposition.  相似文献   

3.
Soil erosion is a major threat to global economic and environmental sustainability. This study evaluated long-term effects of conservation tillage with poultry litter application on soil erosion estimates in cotton (Gossypium hirsutum L.) plots using RUSLE 2.0 computer model. Treatments consisting of no-till, mulch-till, and conventional tillage systems, winter rye (Secale cereale L.) cover cropping and poultry litter, and ammonium nitrate sources of nitrogen were established at the Alabama Agricultural Experiment Station, Belle Mina, AL (34°41′N, 86°52′W), beginning fall 1996. Soil erosion estimates in cotton plots under conventional tillage system with winter rye cover cropping declined by 36% from 8.0 Mg ha−1 year−1 in 1997 to 5.1 Mg ha−1 year−1 in 2004. This result was largely attributed to cumulative effect of surface residue cover which increased by 17%, from 20% in 1997 to 37% in 2004. In conventional tillage without winter rye cover cropping, soil erosion estimates were 11.0 Mg ha−1 year−1 in 1997 and increased to 12.0 Mg ha−1 year−1 in 2004. In no-till system, soil erosion estimates generally remained stable over the study period, averaging 0.5 and 1.3 Mg ha−1 year−1with and without winter rye cover cropping, respectively. This study shows that cover cropping is critical to reduce soil erosion and to increase the sustainability of cotton production in the southeast U.S. Application of N in the form of ammonium nitrate or poultry litter significantly increased cotton canopy cover and surface root biomass, which are desirable attributes for soil erosion reduction in cotton plots.  相似文献   

4.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat (Triticum aestivum L.) and vetch (Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley (Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively).

SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM).

Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain.  相似文献   


5.
Application of urban refuse compost to agricultural soil could help to solve municipalities' problems related to the increasing production of waste only if soil property improvement and environmental conservation can be demonstrated. The use of low-pressure tractor tyres is another proposal in modern agriculture for reducing soil compaction. This study thus aimed to detect the effects of both compost and low-pressure tractor tyres on soil loss, runoff, aggregate stability, bulk density, penetrometer resistance and maize (Zea mays L.) yield. A 3-year field experiment was carried out on a hilly (15% slope) clay loam soil in central Italy. Twelve plots (200 m2 each) were monitored with tipping-pot devices for runoff and soil erosion measurement. Treatments were: compost addition (64 Mg ha−1), mineral fertilisation, use of low-pressure tyres, use of traditional tyres, with three replicates, in a fully randomised block design. Compost was applied once at the beginning of the experiment. Runoff reduction due to compost ranged between 7 and 399 m3 ha−1 during seasons, while soil erosion was reduced between 0.2 and 2.4 Mg ha−1. Mean weight diameter (MWD) of stable aggregates, measured on wheel tracks, increased by 2.19 mm, then progressively decreased. Compost significantly increased bulk density by 0.08 Mg m−3 due to its inert fraction content. This effect was less evident in the second and third year, probably due to harrowing. Maize yields were slightly, but significantly, reduced in composted plots by 1.72 Mg ha−1 in the third year. Low-pressure tyres significantly reduced soil loss in the third year by 1 Mg ha−1. Furthermore, they did not significantly influence runoff volumes and soil structural stability. Low-pressure tyres or compost addition were singly able to prevent an increase in penetrometer resistance due to agricultural machinery traffic. Low-pressure tyres increased the maize yield during the 3 years and the difference (0.4 Mg ha−1) became significant in the third year. In conclusion, results show the positive lasting effect of compost in ameliorating soil physical properties and reducing runoff and soil erosion. Low-pressure tyres appear justifiable both for the observed increase of grain production and reduction of soil compaction. This latter effect is, nevertheless, masked by compost addition which is also able to reduce penetrometer resistance. Further research is required to explain the causes of the slight inhibition of grain yield observed when compost was compared with mineral fertilisation.  相似文献   

6.
The objective of this study was to examine tillage effects and energy efficiencies of subsoiling and direct seeding on yield of second crop corn (Zea mays L.) for silage in light soil of Odemis located in the western part of Turkey. In this research, tillage and direct seeding were applied in dry and wet soil conditions after winter wheat (Triticum aestivum L.) harvesting in the years 2002 and 2003. The effects of conventional tillage method, reduced tillage methods that include one and cross pass subsoiling, and direct seeding applications on corn yield were examined. In the experiment, a regular four-row corn planter was used. Tillage speed, slip, fuel consumptions, seedling emergence, plant height, and yield were measured. From the data, total energy requirement and effectiveness of each method were calculated.

The highest fuel consumption was measured in conventional method (PLG) whereas the lowest value was found in direct seeding method (DIR) as 60.5 l ha−1 and 7.5 l ha−1 in 2002, respectively. The conventional method required seven times more fuel than the direct seeding method. For field efficiencies, as parallel to the finding in fuel consumption, the highest value was 1.34 ha h−1 in DIR and 0.40 ha h−1 in one pass subsoiling method (SUB I). DIR method had nine times more field efficiencies as compared to the conventional method. The highest yield was found in cross pass subsoiling method (SUB II) as 72.6 Mg ha−1 and 61.6 Mg ha−1 in the first and second year, respectively. Although DIR has minimum fuel consumption and maximum field efficiency, this method gave the lowest yield as 64.7 Mg ha−1 in the first year and 37.2 Mg ha−1 in the second year.  相似文献   


7.
Carbon sequestration in two Brazilian Cerrado soils under no-till   总被引:2,自引:0,他引:2  
A considerable proportion of the 200 million hectares of the Brazilian Cerrado is suitable for annual crops but little is known about the effects of tillage on the C dynamics of Cerrado soils. We evaluated the role of two representative Cerrado Oxisols (350 and 650 g clay kg−1) as sources or sinks of atmospheric C when managed under three tillage systems (conventional tillage (CT), reduced tillage (RT), and no-till (NT)) in 8- and 5-year long-term experiments. A literature review was also carried out and the mean C sequestration rates in no-till soils of tropical and subtropical regions of Brazil were calculated and compared with values for soils from temperate regions of the world. The original C stocks in 0–20 cm layer of soils under native Cerrado were higher in the clayey (54.0 Mg ha−1) than in the sandy clay loam soil (35.4 Mg ha−1), suggesting a higher physical stability of organic matter associated with variable clay minerals in the clayey Oxisol. The original C stocks of the native Cerrado soils appear not to have decreased after 23 years of conventional tillage in the sandy clay loam Oxisol, except when the soil had been subjected to erosion (15% loss of C), or after 25 years in the clayey Oxisol. Compared to conventionally tilled soil, the C stocks in no-till sandy clay loam Oxisol increased by 2.4 Mg ha−1 (C sequestration rate = 0.30 Mg ha−1 year−1) and in the clayey Oxisol by 3.0 Mg ha−1 (C sequestration rate = 0.60 Mg ha−1 year−1). The mean rate of C sequestration in the no-till Brazilian tropical soils was estimated to be 0.35 Mg ha−1 year−1, similar to the 0.34 Mg ha−1 year−1 reported for soils from temperate regions but lower than the 0.48 Mg ha−1 year−1 estimated for southern Brazilian subtropical soils. Considering the large area (about 70 million hectares) of the Cerrado which is currently used and potentially available for cropland, the adoption of no-till systems could turn the Cerrado soils into a significant sink for atmospheric C and contribute to the mitigation of global climate change.  相似文献   

8.
The effect of soil incorporations of lantana (Lantana spp.) biomass, an obnoxious weed, on physical environment of a silty clay loam soil (Typic Hapludalf) under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping was studied in a long-term field experiment conducted in a wet temperate region of north India. Fresh lantana biomass was incorporated into the plough layer at 10, 20 and 30 Mg ha−1 annually, 7–10 days before puddling. Plant-available water capacity (PAWC), non-limiting water range (NLWR) and NLWR:PAWC ratio were determined to characterize soil physical environment during wheat crop in the tenth cropping cycle.

Ten annual applications of lantana at 10, 20 and 30 Mg ha−1, increased organic carbon (OC) content over control by 12.6, 17.6 and 27.9% in 0–15 cm soil layer, and 17.1, 26.3 and 39.5% in 15–30 cm soil layer, respectively. The OC content in 0–15 and 15–30 cm soil layer of control plots was 11.1 and 7.6 g kg−1 soil. Bulk density decreased by 3–14% in 7.5–10.5 cm layer and 1–6% in 15–18 cm layer. Volumetric moisture contents at 10% air-filled porosity were 38.4, 40.0, 54.5 and 55.7% at 7.5–10.5 cm depth, and 31.4, 32.2, 33.9 and 34.6% at 15–18 cm depth corresponding to 0, 10, 20 and 30 Mg ha−1 lantana treatment, respectively. At 15–18 cm soil depth, volumetric moisture contents at 2 MPa soil penetration resistance were 26.9, 24.8, 23.0 and 19.6% in zero, 10, 20 and 30 Mg ha−1 lantana-treated plots, respectively. Lower soil water contents associated with 10% air-filled porosity and greater soil water contents associated with a limiting penetration resistance of 2 MPa resulted in a lower NLWR (4.3%) for control as compared to lantana-treated soil (7.4–15.1%). The PAWC showed slight increase from 12.9 to 13.4–14.9% due to lantana additions. The NLWR:PAWC ratio was also lower in control (0.33) as compared to lantana-treated soil (0.55–1.01). The NLWR was significantly and positively correlated with wheat grain yield (r=0.858**).  相似文献   


9.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   

10.
Soil translocation by tillage may be an important factor in land degradation in the humid tropics. The objective of this study was to evaluate tillage-induced soil translocation on an Oxisol with 25% and 36% slopes in Claveria, Philippines for three tillage systems: contour moldboard plowing (CMP), moldboard plowing up and downslope (UMP), and contour ridge tillage (CRT). Small rocks 3–4 cm in “diameter” were used as soil movement detection units (SMDU). The SMDUs were placed at 10 cm intervals in a narrow 5-cm-deep trench near the upper boundary of each plot, the position of each rock recorded, and the trench backfilled. Five tillage operations used to produce one corn crop were performed during a one month period: two moldboard plowing operations for land preparation (except for CRT), one moldboard plowing for corn planting, and two inter-culture (inter-row cultivation) operations. After these operations, over 95% of the SMDU were recovered manually and their exact locations recorded. Mean annual soil flux for the 25% slope was 365 and 306 kg m−1 y−1 for UMP and CMP, respectively. For the 36% slope, comparable values were 481 and 478 kg m−1 y−1. Estimated tillage erosion rates for the 25% slope were 456 and 382 Mg ha−1 y−1 for UMP and CMP, respectively, and increased to 601 and 598 Mg ha−1 y−1, respectively, for the 36% slope. The mean displacement distance, mean annual soil flux, and mean annual tillage-induced soil loss for both slopes were reduced by approximately 70% using CRT compared to CMP and UMP.  相似文献   

11.
Conservation farming practices are often considered effective measures to increase soil organic C (SOC) sequestration and/or to reduce CO2 emissions resulting from farm machinery operation. The long-term CO2 mitigation potentials of no-till (NT) versus conventional till (CT), stubble retention (SR) versus stubble burning (SB) and N fertilisation (NF) versus no N application (N0) as well as their interactions were examined on a Vertosol (Vertisol) in semi-arid subtropical Queensland, Australia by taking into account their impacts on SOC content, crop residue C storage, on-farm fossil fuel consumption and CO2 emissions associated with N fertiliser application. The experimental site had been cropped with wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) with a summer fallow for 33 years.

Where NT, SR or NF was applied alone, no significant effect on SOC was found in the 0–10, 10–20 and 0–20 cm depths. Nonetheless, the treatment effects in the 0–10 cm depth were interactive and maximum SOC sequestration was achieved under the NT + SR + NF treatment. Carbon storage in crop residues decreased substantially during the fallow period, to a range between 0.4 Mg CO2-e ha−1 under the CT + SB + NF treatment and 2.4 Mg CO2-e ha−1 under the NT + SR + N0 treatment (CO2-e stands for CO2 equivalent). The cumulative fossil fuel CO2 emission over 33 years was estimated to be 2.2 Mg CO2-e ha−1 less under NT than under CT systems. Cumulative CO2 emissions from N fertiliser application amounted to 3.0 Mg CO2 ha−1. The farm-level C accounting indicated that a net C sequestration of 4.5 Mg CO2-e was achieved under the NT + SR + NF treatment, whilst net CO2 emissions ranging from 0.5 to 6.0 Mg CO2-e ha−1 over 33 years occurred under other treatments.  相似文献   


12.
A 3-year field study was conducted to evaluate the effect of three tillage practices (conventional, zero and reduced/strip) with two nitrogen levels (120 and 150 kg N ha−1) applied in primary strips and three crop residue management practices (removal, burning and incorporation) in secondary strips in wheat after rice. Reduced tillage resulted in significantly higher overall mean wheat yield (5.10 Mg ha−1) compared to conventional (4.60 Mg ha−1) and zero tillage (4.75 Mg ha−1). Residue incorporation resulted in highest mean yield (5.86 Mg ha−1) during third year. Maximum mean yield (6.1 Mg ha−1) was obtained in reduced tillage followed by conventional tillage (5.8 Mg ha−1) under residue incorporation in third year. The weed dry weight recorded at 30 days after sowing was highest (0.3 Mg ha−1) under zero tillage and lowest under conventional tillage (0.16 Mg ha−1). Among crop residue management practices, the highest dry weight of weeds (0.22 Mg ha−1) was recorded under residue incorporation. The highest infiltration rate (1.50 cm h−1) was recorded in residue incorporation followed by residue burning (1.44 cm h−1) whereas; the lowest (0.75 cm h−1) in zero tillage. Soil bulk density was the highest (1.69 Mg m−3) under zero tillage and the lowest in residue incorporation (1.59 Mg m−3). There were no changes in soil available P and K after each crop sequence in relation to tillage practices during first 2 years. Higher organic carbon (5.1–5.4 g kg−1) was measured under zero tillage compared to other treatments. Residue incorporation increased soil organic carbon and available P while higher available K was monitored in burning treatment during the third year. These results suggest that reduced tillage and in situ incorporation of crop residues at 5 Mg ha−1 along with 150 kg N ha−1 were optimum to achieve higher yield of wheat after rice in sandy loam soils of Indo-Gangetic plains of India.  相似文献   

13.
Soil is a potential C sink and could offset rising atmospheric CO2. The capacity of soils to store and sequester C will depend on the rate of C inputs from plant productivity relative to C exports controlled by microbial decomposition. Management practices, such as no-tillage and high intensity cropping sequences, have the potential to enhance C and N sequestration in agricultural soils. An investigation was carried out to study the influence of long-term applications of fertilizers and manures on different organic C fractions in a Typic Haplustept under intensive sequence of cropping with maize–wheat–cowpea in a semi-arid sub-tropic of India. In 0–15 cm, the bulk density was lowest (1.52 Mg m−3) in plots treated with 100% NPK + FYM, while the control treatment showed the highest value (1.67 Mg m−3). Balanced application of NPK (100% NPK) showed significantly lower bulk density (1.56 Mg m−3) over either 100% N (1.67 Mg m−3) or 100% NP (1.61 Mg m−3) in surface soils. The application of super-optimal dose of NPK (150% NPK) showed higher total organic C (TOC) (12.9 g C kg−1) over either 50% NPK (9.3 g C kg−1) or 100% NPK (10.0 g C kg−1) in 0–15 cm soil layer. There was an improvement in TOC in 100% NPK or 100% NP (9.3 g C kg−1) over 100% N (8.7 g C kg−1) in the same depth. The application of FYM with 100% NPK showed 15.2, 9.9 and 5.2 g C kg−1 in 0–15, 15–30 and 30–45 cm, respectively. Application of graded doses of NPK from 50 to 150% of recommendation NPK significantly enhanced other organic C fractions like, microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidizable C (KMnO4–C) in all the three soil depths. The TOC in 0–45 cm soil depth in 150% NPK (63.5 Mg C ha−1) was increased by 39% over that in 50% NPK treatment (51.5 Mg C ha−1) and 29% over that in 100% NPK treatment (54.1 Mg C ha−1). Integrated use of farmyard manure with 100% NPK (100% NPK + FYM) emerged as the most efficient management system in accumulating largest amount of organic C (72.1 Mg C ha−1) in soil. Nevertheless, this treatment also sequestered highest amount of organic C (731 kg C ha−1 year−1). Particulate organic carbon, a physically protected carbon pool in soil, could well be protected in sub-surface soil layers than in surface soil layer as a means of carbon aggradations. Microbial metabolic quotient (qCO2) was significantly lower in 100% NPK + FYM over other treatments to indicate this to be the most efficient manuring practice to preserve organic carbon in soil where it facilitates aggradations of more recalcitrant organic C in soil. As compared to POC, total TOC proved to be a better predictor of MBC as it strongly correlated with total carbon mineralized from soil.  相似文献   

14.
Land configuration in combination with nutrient management has the potential to improve the productivity of Alfisols and Vertisols in the semi-arid tropics. A four year (1989–1990 and 1992–1993) field experiment was conducted at Coimbatore, India on Alfisols (Chromic Cambisol) to compare the effect of land configuration and nutrient management practices on yield of rainfed sorghum (Sorghum bicolor (L.) Moench). The land configuration treatments were flat bed (FB, the traditional practice), open ridging (OR, ridges, 45 cm apart and 30 cm high) and tied ridging (TR, same as OR plus ridges were tied randomly). The manure and fertilisers were farm yard manure (FYM, livestock excreta plus litter at 5 Mg ha−1) and coir dust (CD, by-product after the extraction of coir from the coconut (Cocos nucifera L.) husk at 12.5 Mg ha−1) in combination with nitrogen (N) and phosphorus (P) fertiliser levels. Tied ridges stored 14% more soil water and produced 14% and 11% more grain and straw yields of sorghum, respectively, than did flat bed. However, crop yield in TR was comparable with OR. Application of CD at 12.5 Mg ha−1 combined with 40 kg N ha−1 and 9 kg P ha−1 was beneficial for more soil water storage and increased yield of sorghum by 7% over FYM at 5 Mg ha−1 + 40 kg N ha−1 and 9 kg P ha−1. In Vertisols (Vertic Cambisols), experiments were conducted for two years (1991–1992 and 1992–1993) to evaluate land configuration practices. The treatments were broad bed furrow (BBF, 120 cm wide bed with 30 cm wide and 15 cm deep furrows on both sides), compartmental bunding (CB, bunds of 15 cm height formed in all the four sides to form a check basin of 6 m × 5 m size), ridging (RD, ridges were formed for each and every row of the crop manually at four weeks after sowing) and FB under sorghum + pigeonpea (Cajanus cajan (L.) Millsp) and pearl millet (Pennisetum glacum (L.) Stuntz) + cowpea (Vigna unguiculata (L.) Walp) intercropping separately. Compartmental bunding stored 22% more soil moisture and increased the yield of sorghum + pigeonpea intercropping than did FB in a low rainfall year. In a high rainfall year, BBF produced 34% and 33% more grain yield of sorghum and pearl millet base crops, respectively, over FB. However, BBF and CB were comparable. Pigeonpea intercrop under sorghum followed the same trend as its base crop, whereas, yield of cowpea differed compared to the pearl millet base crop. Tied ridging and application of manures (CD or FYM) in combination with inorganic N and P fertiliser can increase the soil water storage and yield of crops compared to traditional flat bed cultivation in rainfed Alfisol and related soils of semi-arid tropics. Similarly BBF and CB land configuration practices could be adopted on Vertisols for better water conservation to increase the soil fertility and productivity of intercropping systems.  相似文献   

15.
Tillage management and manure application are among the important factors affecting soil physical properties and crop yield. A 2-year field experiment was conducted on a silty clay loam soil (fine-loamy, mixed, thermic Typic Haplargids). Effects of two tillage systems (moldboard plowing as conventional tillage (T1) and disk harrowing as reduced tillage (T2)) at three farmyard manure rates (zero (M1), 30 (M2), 60 (M3) Mg ha−1) were studied on the soil physical properties and corn (Zea mays L.) yield. The experiment was carried out in split block design with three replications. Organic matter (OM) content, bulk density (BD), saturated hydraulic conductivity (KS), aggregate mean weight diameter (MWD) and dry biomass yield (DBY) were measured after harvesting in the second year. Manure application increased OM on both the row and inter-row tracks significantly. Manure application rate of 60 Mg ha−1 increased MWD (0.33, 0.40 and 0.75 mm for M1, M2 and M3, respectively) at the 0–5 cm soil layer, but the effect was not significant below 5 cm depth. Adding manure significantly decreased soil BD on the row tracks (1.39, 1.22 and 1.17 Mg m−3 for M1, M2 and M3 treatments, respectively), but did not have any significant effect on the inter-row tracks. Hydraulic conductivity was improved by manure applications both on the row and inter-row positions. Manure treatments M2 and M3 increased DBY compared to the M1 treatment. Although moldboard plowing increased the depth of root penetration significantly (43 cm for T1 and 30 cm for T2), the effect of tillage systems on yield and soil physical properties was not significant.  相似文献   

16.
Subsoil compaction may reduce the availability and uptake of water and plant nutrients thereby lowering crop yields. Among the management options for remediating subsoil compaction are deep tillage and the selection of crop rotations with deep-rooted crops, but little is known of the effects of applications of organic amendments on subsoil compaction. The objectives of this study were to determine the effects of subsoil compaction on corn yield and N availability in a sandy-textured soil and to evaluate the use of deep tillage and surface applications of poultry manure to remediate subsoil compaction. A field experiment planted to corn (Zea mays L.) was conducted from 2000 to 2001 on a Reelfoot fine sandy loam (fine-silty, mixed thermic Aquic Argiudolls) formed in silty alluvium located in southeast Missouri near the Mississippi River. Treatments were arranged in a factorial design with three levels of subsoil compaction and subsoiling and four rates (averaging 0, 6, 11 and 18 Mg ha−1) of poultry manure. Subsoil tillage to a depth of 30 cm had multiple effects, including overcoming a natural or tillage-induced dense layer or pan and increasing volumetric soil water content and crop N uptake, especially in the 2001 cropping year with low early season precipitation. N recovery efficiency (NRE) was significantly higher in the subsoil treatment compared to the highest compaction treatment in 2001. No significant interactions between manure rates and compaction and subsoiling treatments were observed for corn grain and silage yields, N uptake and NRE. Average increases in corn grain yields over all manure rates due to subsoil tillage of compacted soil were 2002 kg ha−1 in 2000 and 3504 kg ha−1 in 2001. Application of poultry manure had a consistent positive effect on increasing grain yields and N uptake in 2000 and 2001 but did not significantly alter measured soil physical properties. The results of this study suggest that deep tillage and applications of organic amendments are management tools that may overcome restrictions in both N and soil water availability due to subsoil compaction in sandy-textured soils.  相似文献   

17.
Spatial distribution of carbon (C) within a soil profile and across a landscape is influenced by many factors including vegetation, soil erosion, water infiltration, and drainage. For this reason, we attempted to determine the soil C distribution of an eroded soil. A three-dimensional (3D) map of a 0.72 ha field with a Dubuque silt loam soil which has three levels of erosion (slight, moderate, and severe) was developed using soil distribution and profile data collected using a profile cone penetrometer (PCP). This map displays the distribution of the total depth of the Ap and Bt1 horizons and the upper part of the 2Bt2 horizon. A map of soil C distribution was created for this landscape using C content information obtained from soil samples. Based on the C distribution in the upper two horizons, a 3D viewing was developed of soil C distribution for this eroded landscape. The 3D assessment of C distribution provides a better means of assessing the impact of soil erosion on C fate. It was estimated that there were 52 Mg ha−1 of total C in the surface (Ap) horizon and 61 Mg ha−1 in the Bt1 horizon for the 0.72 ha area. This increase in C with depth in the soil can be attributed to an increase in clay content and C leaching resulting in stable carbon–clay complexes. The C content was 16.0, 17.5, and 19.0 g kg−1 for the Ap horizon in the slight, moderate, and severe erosion levels, respectively. However, it was estimated that the total C amount in the respective Ap horizons was 28, 14, and 10 Mg ha−1 for the slight, moderate, and severe areas. The Bt1 horizon had 31, 19, and 11 Mg ha−1 of C in the slight, moderate, and severe areas, respectively. For the 0.72 ha area, 25% was severely eroded with 31 and 44% being moderate and slight, respectively. Soil C distribution information, such as that presented here, can be very valuable for soil management and could be used to determine possible C storage credits.  相似文献   

18.
In the Horqin Sandy Land of eastern Inner Mongolia in northern China, wind erosion in farmland is very common in a period from thawing of frozen surface soil in mid-March to sowing of crops in the end of April, largely because of dry and windy weather. However, little is known about the magnitude of wind erosion and associated nutrient losses due to erosion and the addition of nutrients by airborne dust deposition to farmlands during this period. A field experiment was conducted in an Entisol with sand origin under corn (Zea mays L.) production to investigate daily changes in wind speed and wind erosion intensity (as measured by soil transport rate) over a period from 20 March to 30 April 2001. We also measured daily rates of airborne dust deposition during the spring seasons with the high frequency of dust storm occurrence. The rates of soil transport by wind varied greatly from 13.2 to 1254.1 kg ha−1 per day, averaging 232.1 kg ha−1 per day, largely attributable to great variation between days in wind speed within the study period. The potential losses of nutrients through wind erosion were 0.26–24.95 kg ha−1 per day (averaging 4.62 kg ha−1 per day) in organic matter, 0.02–1.64 kg ha−1 per day (averaging 0.31 kg ha−1 per day) in nitrogen and 0.01–0.7 kg ha−1 per day (averaging 0.13 kg ha−1 per day) in phosphorus. The mean rates of airborne dust deposition ranged from 4.0 to 48.9 kg ha−1 per day, averaging 19.9 kg ha−1 per day, during the spring seasons. The potential addition of organic matter, nitrogen and phosphorus by dust input to the experimental field was, on average, 0.54, 0.04 and 0.02 kg ha−1 per day, respectively. Although the addition was a fraction of the losses due to erosion, nevertheless, dust input in the spring seasons is one of the major suppliers of soil nutrition. The fact that the addition of nutrients by dust is about 1/10 of the losses of soil nutrients through wind erosion suggests that developing and adopting more effective management practices to reduce soil erosion losses and to improve soil fertility are crucial to achieve a sustainable agricultural system in a fragile, semiarid sandy land environment.  相似文献   

19.
Crop rotation effects, due to emerging soil ecological interactions and processes that occur with time, can have a major impact on crop productivity and soil health. 2-year potato (Solanum tuberosum L.) rotation studies were conducted during an 11-year period on a fine sandy loam (Orthic Podzol) under a cool, humid climate in Prince Edward Island in eastern Canada. Rotation partners included Italian ryegrass (Lolium multiflorum Lam.), red clover (Trifolium pratense L.), and barley (Hordeum vulgare L.). The study objective was to assess trends in yield parameters, populations and diversity in nematodes and soil-borne pathogens, and soil structural stability and organic matter retention with time. Italian ryegrass had the largest biomass of both herbage (6.5 Mg ha−1) and roots (4.8 Mg ha−1), compared to red clover or barley. Averaged across 9 years, potato tuber yield was highest under Italian ryegrass (35.0 Mg ha−1) and lowest under red clover (31.1 Mg ha−1) rotations. Differences in tuber yield among rotations was associated with soil N limitation and nematode activity, but was not evident until Year 6. Population densities of specific plant parasitic nematodes recovered from roots and soil were generally low and varied according to host plant. Root lesion (Pratylenchus spp.) and root-knot (Meloidogyne spp.) nematodes were more prevalent under red clover compared to other rotational crops. Stunt (Merlinius spp. and Tylenchorhynchus spp.) nematodes were more common under Italian ryegrass. The main organisms associated with tuber-borne disease were Rhizoctonia solani, Streptomyces spp., Fusarium spp., and Helminthosporium solani. The greatest reduction in tuber-borne diseases occurred with the potato–red clover rotation but significant differences were infrequent. Soil structural form throughout the soil profile (to 30 cm depth) was not adversely affected by the rotational treatments during the duration of the study, while soil structural stability at the soil surface (0–10 cm) was significantly improved. Losses of soil organic C, during the 11-year period ranged from marginal (4%) for rotations with Italian ryegrass, to significant (16%) under the barley rotation. Computer simulations, using the Century model, illustrated the importance of C inputs to maintain soil organic matter levels. Overall, potato crop productivity and soil organic C were generally maintained in rotations that contained Italian ryegrass, but declined under rotations with red clover and barley.  相似文献   

20.
Field studies on soil properties and processes in southern Saskatchewan have clearly indicated the need to account for both lateral and vertical transfers of components in the landscape for a better understanding of soil dynamics at a given point. Extrapolation of these studies requires greater integration of the site-specific field results with the current generation of process models. In this paper, we use the results of a field study to assess the ability of the CENTURY model to describe the influence of soil redistribution on soil organic carbon (SOC) dynamics. After modifying the erosion input of CENTURY to account for soil deposition, the results from CENTURY were compared to measured SOC levels from a chronosequential study of cultivation effects on SOC levels in southern Saskatchewan. CENTURY closely simulated the effects of soil loss on SOC levels in landform segments with dominantly convex profile (i.e., downslope) curvature. CENTURY estimates of SOC changes for landform segments experiencing soil gain are less comparable to the field results; it overestimated SOC loss after 80 years by 16 Mg ha−1 for depressional complexes and 10 Mg ha−1 for footslope complexes. This leads to a 14% difference in total SOC loss on a landscape-weighted basis (estimated loss based on field data of 36 Mg ha−1 versus a CENTURY-simulated loss of 41 Mg ha−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号