首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The development, fecundity and survival ofStethorus gilvifrons Mulsant (Coleoptera: Coccinellidae) fed onTetranychus cinnabarinus Boisduval (Acari: Tetranychidae) were recorded at three constant temperatures (20, 25 and 30±1°C) and 50±10% relative humidity, under two photoperiods (16:8 L:D and 8:16 L:D) produced using artificial light (4000 lux). The development rate for the egg stage (r[Te]) increased linearly with increasing temperature (r[Te]=0.0132*T ? 0.0955; R2=0.95). The theoretical egg-development threshold was estimated to be 7.24°C; 75.75 degree-days (DD) were required for hatching. The total development time (r[Tt]) also decreased linearly with increasing temperature (r[Tt]=0.0039*T ? 0.0325; R2=0.98). The development threshold was estimated to be 8.33°C and full development from egg to adult required 256.41 DD. Higher temperatures resulted in a shorter generation time (T 0) and decreased net reproductive rate (R 0). The length of the previposition and postoviposition period, as well as longevity, decreased significantly with increasing temperature under both photoperiods. The oviposition and postoviposition periods, longevity, and total fecundity were not significantly affected by photoperiod. The values of both the intrinsic rate of increase (r m ) andR 0 were highest under the long-day photoperiod at 25°C. The mortality rate was lowest at 20°C under the short-day photoperiod. Of the conditions tested, the optimum temperature for rearingS. gilvifrons was 25°C and the optimum photoperiod was 16:8 L:D.  相似文献   

2.
In September, a high mortality among eggs ofAdoxophyes orana was observed. Temperature effects were believed to be responsible. In controlled conditions, constant temperatures of 13 or 14°C proved lethal to most eggs, but mortality was about halved when temperature changes were gradual. Low temperature (5°C or less) for 6h was lethal when eggs were exposed within a few hours of oviposition. This was also due to a rapid change in temperature. Survival of eggs ofA. orana is most affected by long cool periods and is slightly affected by cold nights.  相似文献   

3.
Microcosm studies were carried out to test the survival of Ralstonia solanacearum biovar 2 (race 3) in soil at the permanent wilting point (wp) water content and at field capacity (fc) water content and on various material. Soils were placed at permanent ?5°C, 4°C, 15°C and 20°C and weekly fluctuating ?10/0/+10°C and the material at 5, 15 °C, 20°C with relative humidity (rh) uncontrolled or at constant 10% or 90%. In soil, survival was clearly dependent on temperature independent of water content. At 20°C Ralstonia solanacearum could be reisolated up to 364 days, at 15°C up to 290 days, at 4°C up to 209 days and at fluctuating temperatures (?10/0/+10°C) only up to 18 days. The lower the temperature, the more the population declined. At 15°C and 20°C appr. 107 cfu/g soil were detected after 100 days, whereas at ?5°C only 102 cfu/g soil were detected after only 18 days. The pathogen was longer detectable in sandy-clay loam than in lighter sandy soil. It could be longer reisolated at wilting point and the populations did not decline as rapidly as at field capacity. Ralstonia solanacearum could best survive on material surfaces like rubber, plastic and varnished metal with maximum survival of 40 days at 5°C and 10% rh. In general there is a low risk of Ralstonia solanacearum overwintering under European climatic conditions when the fields are cleared of plant debris and the soil is frozen. Contamined material surfaces pose the risk of pathogen transmission to healthy tubers.  相似文献   

4.
Factors known to inhibit sporulation of bio trophic fungal pathogens were found to enhance sporulation of two necrotrophic fungi. The sporulating potential ofStemphyliurn botryosum f. sp.lycopersici on tomatoes and ofAlternaria porri f. sp.solani on potatoes increased with necrotization, reaching a maximum on dead leaves. Wetting the dead leaves for the whole period of incubation with increasing concentrations of glucose resulted in progressively decreasing sporulation of both pathogens. However, application of glucose during the first half of the incubation period inhibited sporulation ofS. botryosum f. sp.lycopersici on tomatoes only a little, and increased that ofA. porri f. sp.solani on potatoes. The capacity ofS. botryosum f. sp.lycopersici to sporulate on leaves lasted for 12 weeks at 29°C, and ofA. porri f. sp.solani for 12 weeks at 29°C and for over 21 weeks at 20°C. The results emphasized basic differences in sporulation between biotrophic and necrotrophic parasites. Specific techniques useful for studying sporulationin vivo are discussed.  相似文献   

5.

Background

Thermal history may induce phenotypic plasticity in traits that affect performance and fitness. One type of plastic response triggered by thermal history is acclimation. Because flight is linked to movement in the landscape, trapping and detection rates, and underpins the success of pest management tactics, it is particularly important to understand how thermal history may affect pest insect flight performance. We investigated the tethered-flight performance of Ceratitis capitata, Bactrocera dorsalis and Bactrocera zonata (Diptera: Tephritidae), acclimated for 48 h at 20, 25 or 30 °C and tested at 25 °C. We recorded the total distance, average speed, number of flight events and time spent flying during 2-h tests. We also characterized morphometric traits (body mass, wing shape and wing loading) that can affect flight performance.

Results

The main factor affecting most flight traits was body mass. The heaviest species, B. dorsalis, flew further, was faster and stopped less often in comparison with the two other species. Bactrocera species exhibited faster and longer flight when compared with C. capitata, which may be associated with the shape of their wings. Moreover, thermal acclimation had sex- and species-specific effects on flight performance. Flies acclimated at 20 °C stopped more often, spent less time flying and, ultimately, covered shorter distances.

Conclusion

Flight performance of B. dorsalis is greater than that of B. zonata and C. capitata. The effects of thermal acclimation are species-specific. Warmer acclimation temperatures may allow pest fruit flies to disperse further and faster. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

6.
H. Podoler  J. Henen 《Phytoparasitica》1983,11(3-4):167-176
The effect of constant temperatures on duration and rate of development and on survival of two species of predatory beetles of the genusChilocorus (Coleoptera: Coccinellidae) (one endemic and one imported) was studied. The observed data were analyzed and compared applying three different methods. The methods based on the logistic curve provided a better fit to the observed data as compared with the widely used Blünck-Bodenheimer equation. The imported speciesC. kuwanae had a faster rate of development than the endemic speciesC. bipustulatus at the lower temperatures tested (18°, 22°C), but it could not complete its development at 32°C. Survival ofC. kuwanae was considerably lower than that of the endemic species. As both species are active during the summer, it was concluded that the sensitivity ofC. kuwanae to high temperatures provides at least a partial explanation to the fact that this species has not become established yet in Israel.  相似文献   

7.
In recent years, spotting of ray florets of gerbera flowers has become an important problem. This type of small necrotic lesions may occur before, but especially shortly after harvesting the flowers.Botrytis cinerea was easily isolated from such lesions. Inoculation withB. cinerea only gave typical necrotic lesions, when dry conidia were dusted on the flowers with a short period of high rh after inoculation. At 18–25 °C a high rh for at least 5 hours was necessary. Rotting of ray florets and receptacles byB. cinerea occurred when inoculated flowers were kept wet for a few days. Spots consist of one to several necrotic, usually epidermal cells. A single conidium could give rise to a necrotic lesion after germination. Germination of conidia and lesion formation occurred between 4 and 25 °C; at 30 °C, germination and lesion formation did not occur. Between 18 and 25 °C, many lesions became visible within 1 day after inoculation; at 4 °C it took 2 to 3 days before lesions could be seen. If kept dry, conidia ofB. cinerea remained ungerminated on ray florets of gerbera flowers and could be removed from the ray florets. Within 1 day at high rh, germination occurred and lesions were produced. Conidia ofB. cinerea, stored dry, were able to survive much longer than the lifetime of a gerbera flower. Even after storage at room temperature for up to 14 months, some conidia were able to germinate in vitro and on ray florets and induce the formation of lesions. Addition of gerbera pollen diffusate stimulated germination and lesion formation.  相似文献   

8.
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a quarantine pest of cherries (Prunus spp.) in western North America that is managed primarily using insecticides. Different insecticides could vary in efficacy and ability to control flies depending on environmental factors. Here, the objective was to determine if temperature and food availability affect the efficacies of spinosad and malathion against R. indifferens in the laboratory. Fourteen- to 18-day old flies were exposed to sweet cherries with dried residues of spinosad and malathion at 19 or 21 versus 27 °C with or without yeast extract + sucrose food (‘food’). Deaths and oviposition were recorded over four days. In spinosad treatments, fly kill was greater at 27 °C than at lower temperatures when there was no food, but in the malathion treatments, kill did not differ between temperatures and it was greatest when there was no food. In spinosad treatments, lower oviposition occurred at 19 or 21 °C than 27 °C, with differences larger when there was food. However, in malathion treatments, oviposition was not affected by temperature although it was lower when there was no food. Results imply temperature and food availability could be factors affecting R. indifferens control in cherries, but whether temperature is such a factor depends on the insecticide used.  相似文献   

9.
The effects of three variable temperature regimes (18–24, 24–29, and 29–35°C) on the responses of two species of the genusAphytis Howard (Hymenoptera: Aphelinidae), parasitic upon the California red scale, were studied, and a test to analyze parasite behavior was developed.Aphytis lingnanensis Compere was generally more efficient thanA. melinus DeBach; however, whereas a high temperature regime (29–35°C) had a negative effect on the responses ofA. lingnanensis, it improved those ofA. melinus. The two species distributed their eggs in clumps, but were able to respond to increasing host density by reducing the number of eggs laid per encounter. The combined effects of numerical, and functional responses of the two species on host population were considered, with special reference to the mechanism of competitive displacement.  相似文献   

10.
In mosaic-diseased plants ofHippeastrum hybridum two viruses were found. One virus with a normal length of 706 nm caused local lesions onHyoscyamus niger test plants and mosaic symptoms in the leaves ofH. hybridum. This virus was identified with theHippeastrum mosaic virus (HMV) (*/*∶*/*∶E/E∶S/*) and had a dilution end point between 10?3 and 10?4, a thermal inactivation point between 55–60°C and a longevity at room temperature of 28–32 hours. The second virus had a normal length between 584 and 611 nm depending on the method used. It caused local lesions onGomphrena globosa andChenopodium quinoa leaves, and after inoculation ofH. hybridum was found to be present without showing symptoms. It was readily purified from inoculated leaf tissue ofC. quinoa andNicotiana clevelandii by differential centrifugation and ofH. hybridum by density-gradient centrifugation. Purified virus had an absorption minimum at 242 nm, a maximum at 262 nm and a 260/280 absorption ratio of 1.19. The dilution end point was between 10?3 and 10?4, the thermal inactivation point between 70 and 80°C and the longevity in vitro at room temperature 28–32 hours. Although no direct comparisons have been made with other members of the potexvirus group, the virus seems to be a new one now namedHippeastrum latent virus. Both viruses were not seed-borne.  相似文献   

11.
The monocyclic phase of Stemphylium vesicarium is part of its life cycle and a possible factor for forecasting and the integrated control of purple spot on asparagus. The purpose of the study was to model the flight, germination and germ tube growth of ascospores as basis for the development of a forecasting system. During 2014–2016, the flight period was determined by spore traps. The ascospores flew between March and early July, but most were released in early May. The cumulative percentage of trapped ascospores depending on the daily summed temperature (base 5 °C) on rainy days starting from February 1st was described best by a Chapman Richards function. The germination and germ tube length of ascospores depending on leaf wetness duration and temperature were investigated in laboratory trials. Ascospores germinated rapidly in a wide temperature range. The fitted Chapman Richards function with a temperature-dependent capacity and rate described germination adequately with a calculated optimal temperature of 31.0 °C. The germ tube length was modelled by a combined generalised beta-linear function and it was optimal at 30.4 °C with a narrow temperature range of 25–35 °C for values close to the optimum length. Therefore, the infection process is restricted more severely by the germ tube length than by germination. The ascospore flight is often finished before the end of the harvest, so fungicide treatments during the monocyclic phase might be ineffective in many production sites in Germany. The situation could be different for shorter harvest periods and in non-harvested young plants.  相似文献   

12.
A common mycoparasite,Verticillium biguttatum, was found to kill sclerotia ofRhizoctonia solani placed on an inert material (perlite) as well as in soil at 15°C and 20°C, but not at 10°C. Compared with the effectivity ofV. biguttatum, that ofGliocladium roseum, Gliocladium nigrovirens, Hormiactis fimicola andTrichoderma hamatum on sclerotia was only low. In laboratory experiments, treatment of sclerotia-bearing seed potatoes withV. biguttatum reduced disease symptoms in the first stage of growth of the potato plant.V. biguttatum was found to occur on the subterranean part of the potato plant. On untreated plants the surface of the sprouts was colonised byV. biguttatum originating from the soil, presumably partly in response to the presence ofR. solani mycelium. In a preliminary field experiment,Verticillium treatment did not reduce symptoms on the stem. However, there was a marked reduction in sclerotium formation on the newly formed potato tubers. This offers perspectives for a commercial use ofV. biguttatum in the control ofR. solani.  相似文献   

13.
Y. Levy 《Phytoparasitica》1984,12(3-4):177-182
Exserohilum turcicum (Pass.) Leonard and Suggs, the causal agent of northern leaf blight of corn, overwinters onSorghum halepense L. plants and on corn debris (dead leaves). Spqrulating lesions ofE. turcicum were observed on sorghum plants in the winter (February). Spores from these lesions were pathogenic to susceptible sweet corn plants cv. ‘Jubilee’. Infected sporulating leaves of corn were stored for 1 year at 20°C (40-60% relative humidity), at 5°C (60% relative humidity), or buried 5 cm underground. During the storage period, 32% and 22% of the spores formed chlamydospores, at 20° and 5°C, respectively. Leaves buried 5 cm underground were totally decomposed after 6 months. After 4 months, 25% of the spores in the buried leaves had formed chlamydospores. Spores with chlamydospores were pathogenic to corn plants. The viability of spores without chlamydospores stored at 20°, 5°C or buried underground was 0, 60 and 0%, respectively. In a parallel experiment infected leaves were stored under similar conditions and allowed to sporulate. No sporulation occurred on infected leaves buried in soil. Spores produced on infected leaves stored at 20° and 5°C were highly pathogenic to corn plants. In leaves treated with 0.1N glucose, chlamy dospore formation was significantly inhibited.  相似文献   

14.
The rearing of the honeydew moth,Cryptoblabes gnidiella Mill., is described. The toxicity at 27° and 22° C of diflubenzuron against eggs ofC. gnidiella was assayed by dipping in aqueous dilutions of a 5% liquid experimental formulation and of a 25% wettable powder (w.p.). The w.p. was more active than the liquid formulation, and toxicity at 27° was higher than at 22°C, for both formulations. The LC-50s of the w.p. were 0.00025 and 0.006%, and of the liquid formulation 0.009 and 0.095 a.i., at 27° and 22°C, respectively; the LC-90s of the w.p. were 0.0033 and 0.037%, and of the liquid formulation 0.36 and 2.5% a.i., at 27° and 22° C, respectively.  相似文献   

15.
Survival of Ralstonia solanacearum race 3 biovar 2 (phylotype II sequevar 1) in Egyptian soils and compost was studied under laboratory and field conditions. Survival of the pathogen under laboratory conditions varied with temperature, water potential and soil type, with temperature being the major determinant of survival of the pathogen. The effects of temperature and moisture content were variable between different experiments, but survival was generally longer at 15°C than at 4, 28 and 35°C respectively. Survival was also longer when moisture levels were constant compared with varying moisture levels at all temperatures. In experiments to compare the effects of progressive drying in sandy and clay soils there was a difference in survival times between the two soil types. In sandy soils, the pathogen died out more rapidly when soil was allowed to dry out than in controls where the soil was kept at constant water potential. In clay soils there was little difference between the two treatments, possibly due to the formation of a hard impermeable outer layer during the drying process, which retarded water loss from within. Survival in mature composts at 15°C was of the same order of magnitude as in soils but shorter at 28°C, possibly owing to increased biological activity at this temperature, or a resumption of the composting process, with concomitant higher temperatures within the compost itself. The maximum survival time recorded over all soil types and conditions during in vitro studies was around 200 days. In field studies, the maximum survival time in both bare sand and clay was around 85 days at depths up to 50 cm. The survival time was reduced in field experiments carried out in summer to less than 40 days and in one study when the ground was flooded for rice cultivation, the bacterium could not be detected 14 days after flooding. The maximum survival time of R. solanacearum in infected plant material or in infested soil samples incorporated into compost heaps was less than 2 weeks. At the culmination of field soil and compost experiments, no infection was detected in tomato seedlings up to 10 weeks after transplanting into the same soils or composts under glasshouse conditions at a temperature of 25°C.  相似文献   

16.
Black leaf mold (BLM), caused by Pseudocercospora fuligena is a serious threat to tomato production in the humid tropics. Accurate information about the incubation (IP) and latent period (LP) under various host susceptibility and weather favourability circumstances will help to formulate holistic approaches to manage this disease. In this study, effects of temperature, wetness duration, and leaf age on the monocyclic components (IP and LP) of BLM were studied from growth chamber (GC) and greenhouse (GH) experiments as well as detached leaf assays in growth cabins. Linear interpolation and inflection point (of logistic regression model) methods were used to determine IP and LP. These two methods were highly correlated in GC (r 2?=?0.89; P?<?0.0001) and GH experiments (r 2?=?0.90; P?<?0.0001) except when the epidemics were not asymptotic. Thus, IP and LP were estimated according to inflection point method. There was a delay of at least 5 days of IP and LP when plants were left in non-humid open environment than when exposed to wetness durations of 1, 2 or 3 days after inoculation. In general, IP and LP became shorter as the temperature increased from 20–24 and then to 28 °C. In growth chambers, there was more disease and consequently shorter IP and LP on young and unfolded tomato leaves that were 1-, 3-, or 5-week old at the time of inoculation than 7-week old leaves. In the greenhouse, there was about 50 % more disease incidence and sporulation on 1-week than 3-week old leaves. The shortest IP (8–11 days) and LP (12–13 days) were recorded from two out of three GH experiments on 1-week old leaves at an ambient mean temperature of 28.5 °C. This study implicated that fresh market tomatoes planted during warm temperatures in 50-mesh greenhouses and exposed to extended periods of wetness are highly prone to BLM infection at their young stages of growth.  相似文献   

17.
The effects of temperature, free moisture duration and inoculum concentration on infection caused byPseudomonas syringae pv.syringae (Pss), on sweet cherry (Prunus avium) were investigated. Epiphytic populations ofPss are an important source of inoculum for bacterial canker and it has been demonstrated that a cyclic pattern exists during the year, from undetectable during the warm and dry periods to large populations following cool and wet periods. The effects of temperature and inoculum concentration on the infection caused byPss on immature fruits and 1-yr-old twigs were significant (P<0.001). Fruit and twig infection increased linearly in proportion to the logarithm ofPss when bacterial concentrations were higher than 103 cfu ml−1 and temperatures were between 5 and 20°C. Regardless of the inoculum concentration and the free moisture duration, fruit and twig infection was either absent or low at 5°C but it increased linearly as temperature increased from 5 to 20°C. Growth ratein vitro was very slow (0.03–0.04 cfu h−1) at 5°C and fast (0.21–0.23 cfu h−1) at 20°C. Therefore, it is possible that multiplication of the epiphytic populations may be significantly reduced in the field with air temperatures below 5°C. A significant (P<0.001) effect of free moisture was obtained only when a low inoculum concentration (103 cfu ml−1) was used, and a significant linear response between free moisture and disease incidence was obtained only at 10°C. An apparent threshold population ofPss higher than 103 cfu ml−1 was needed to infect immature fruits and 1-yr-old twigs of sweet cherry. http://www.phytoparasitica.org posting July 10, 2002.  相似文献   

18.
The activity of diflubenzuron against eggs ofLobesia botrana Den. & Schiff. was assayed with a dipping procedure, at 22° and 27° C. The compound was much more active at 27°C (LC-50 = 0.0072%) than at 22°C (LC-50 = 0.195%).  相似文献   

19.
The present study dealt with the functional responses of the parasitoid,Eretmocerus longipes Compere (Hym., Aphelinidae) to the densities of the whitefly,Aleurotuberculatus takahashi David et Subramaniam (Hom., Aleurodidae) at different temperatures under the laboratory conditions. The results showed that when the initial densities ofA. takahashi-3rd instar were raised from 10 to 320 ind./leaf, the numbers of parasitized nymphs increased as well, ranging from 7.0 to 23.1 at 20°C, 9.8 to 42.9 at 25°C, 6.7 to 39.9 at 30°C, and 1.8 to 8.3 ind./leaf at 35°C, respectively. The Holling Disk Equation was introduced to build up the models of functional responses. The response curves remained type II, although the numbers of parasitized nymphs were significantly different under different temperatures. The suitable initial densities of the host whitefly for parasitization were about 80 individuals per leaf. A negative relation was observed between the initial densities of the whitefly and the parasitization rates by the parasitoid. An increase in the initial densities ofA. takahashi-3rd instars ranging from 10 to 320 ind./leaf resulted in a decrease in the parasitization rate byE. longipes ranging from 70.0% to 7.2% at 20°C, 98.0% to 13.4% at 25°C, 67.0% to 12.5% at 30°C and 18.0% to 2.6% at 35°C with a value of 0.2877 was significantly smaller than that at 20°C with a vlaue of 1.3354, that at 25°C with a value of 1.6465 and that at 30°C with a value of 1.1199, respectively (p<0.01). The handling time (Th) forE. longipes was 0.1521 at 35°C, significantly longer than 0.0510 at 20°C, 0.0289 at 25°C and 0.0320 at 30°C, respectively (p<0.01). The maximum loading number (K) of the parasitized nymphs with a value of 34.5 ind./leaf at 25°C was similar to that with a value of 31.2 ind./leaf at 30°C, about 1.8 times as high as that with a value of 19.6 ind./leaf at 20°C and 4 times more than that with a value of 6.6 ind./leaf at 35°C. It was suggested that temperature affected the functional response by balancing searching rate and handling time. The optimal temperature range for the functional responses ofE. longipes to the densities ofA. takahashi-3rd instar was 25° to 30°C.  相似文献   

20.
The development ofBracon vulgaris Ashmead (Hymenoptera: Braconidae), parasitoid of the cotton boll weevilAnthonomus grandis Boheman (Coleoptera: Curculionidae), was studied at constant temperatures of 18, 20, 23, 25, 28, 30, 33, 35 and 38°C, 70±10% r.h. and 14:10 L:D period. The period from egg to adult ofB. vulgaris varied from 8.6 (35°C) to 32.9 days (18°C). The eggs of this parasitoid became desiccated and did not hatch at 38°C. The lower development threshold (LDT) and thermal constants for development varied withB. vulgaris instar, but they were similar for males and females. The duration of the 1st, 2nd, 3rd and 4thB. vulgaris instars required, respectively, 9.36 degree-days above one LDT=12.27°C, 13.48 degree-days above one LDT=6.83°C, 11.65 degree-days above one LDT=9.41°C, and 12.82 degree-days above one LDT=10.78°C.B. vulgaris has physiological adaptations to different threshold temperatures and it shows high potential to be used againstA. grandis in cotton crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号