首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, (co)variance components and genetic parameters in Nellore sheep were obtained by restricted maximum likelihood (REML) method using six different animal models with various combinations of direct and maternal genetic effects for birth weight (BW), weaning weight (WW), 6-month weight (6MW), 9-month weight (9MW) and 12-month weight (YW). Evaluated records of 2075 lambs descended from 69 sires and 478 dams over a period of 8 years (2007–2014) were collected from the Livestock Research Station, Palamaner, India. Lambing year, sex of lamb, season of lambing and parity of dam were the fixed effects in the model, and ewe weight was used as a covariate. Best model for each trait was determined by log-likelihood ratio test. Direct heritability for BW, WW, 6MW, 9MW and YW were 0.08, 0.03, 0.12, 0.16 and 0.10, respectively, and their corresponding maternal heritabilities were 0.07, 0.10, 0.09, 0.08 and 0.11. The proportions of maternal permanent environment variance to phenotypic variance (Pe2) were 0.07, 0.10, 0.07, 0.06 and 0.10 for BW, WW, 6MW, 9MW and YW, respectively. The estimates of direct genetic correlations among the growth traits were positive and ranged from 0.44(BW-WW) to 0.96(YW-9MW), and the estimates of phenotypic and environmental correlations were found to be lower than those of genetic correlations. Exclusion of maternal effects in the model resulted in biased estimates of genetic parameters in Nellore sheep. Hence, to implement optimum breeding strategies for improvement of traits in Nellore sheep, maternal effects should be considered.  相似文献   

2.
Genetic parameters and genetic trends for birth weight (BW), weaning weight (WW), 6-month weight (6MW), and yearling weight (YW) traits were estimated by using records of 5,634 Makooei lambs, descendants of 289 sires and 1,726 dams, born between 1996 and 2009 at the Makooei sheep breeding station, West Azerbaijan, Iran. The (co)variance components were estimated with different animal models using a restricted maximum likelihood procedure and the most appropriate model for each trait was determined by Akaike’s Information Criterion. Breeding values of animals were predicted with best linear unbiased prediction methodology under multi-trait animal models and genetic trends were estimated by regression mean breeding values on birth year. The most appropriate model for BW was a model including direct and maternal genetic effects, regardless of their covariance. The model for WW and 6MW included direct additive genetic effects. The model for YW included direct genetic effects only. Direct heritabilities based on the best model were estimated 0.15?±?0.04, 0.16?±?0.03, 0.21?±?0.04, and 0.22?±?0.06 for BW, WW, 6MW, and YW, respectively, and maternal heritability obtained 0.08?±?0.02 for BW. Genetic correlations among the traits were positive and varied from 0.28 for BW–YW to 0.66 for BW–WW and phenotypic correlations were generally lower than the genetic correlations. Genetic trends were 8.1?±?2, 67.4?±?5, 38.7?±?4, and 47.6?±?6 g per year for BW, WW, 6MW, and YW, respectively.  相似文献   

3.
The aim of this study was to estimate genetic parameters for BW of Angus cattle up to 5 yr of age and to discuss options for including mature weight (MW) in their genetic evaluation. Data were obtained from the American Angus Association. Only records from herds with at least 500 animals and with >10% of animals with BW at ≥ 2 yr of age were considered. Traits were weaning weight (WW, n = 81,525), yearling weight (YW, n = 62,721), and BW measured from 2 to 5 yr of age (MW2, n = 15,927; MW3, n = 12,404; MW4, n = 9,805; MW5, n = 7,546). Genetic parameters were estimated using an AIREML algorithm with a multiple-trait animal model. Fixed effects were contemporary group and departure of the actual age from standard age (205, 365, 730, 1,095, 1,460, and 1,825 d of age for WW, YW, MW2, MW3, MW4, and MW5, respectively). Random effects were animal direct additive genetic, maternal additive genetic, maternal permanent environment, and residual. Estimates of direct genetic variances (kg(2)) were 298 ± 71.8, 563 ± 15.1, 925 ± 52.1, 1,221 ± 65.8, 1,406 ± 80.4, and 1,402 ± 66.9; maternal genetic variances were 167 ± 4.8, 153 ± 6.1, 123 ± 9.1, 136 ± 12.25, 167 ± 18.0, and 110 ± 14.0; maternal permanent environment variances were 124 ± 2.9, 120 ± 4.3, 61 ± 7.5, 69 ± 11.9, 103 ± 15.9, and 134 ± 35.2; and residual variances were 258 ± 3.8, 608 ± 8.6, 829 ± 34.2, 1,016 ± 38.8, 1,017 ± 52.1, and 1,202 ± 63.22 for WW, YW, MW2, MW3, MW4, and MW5, respectively. The direct genetic correlation between WW and YW was 0.84 ± 0.14 and between WW and MW ranged from 0.66 ± 0.06 (WW and MW4) to 0.72 ± 0.11 (WW and MW2). Direct genetic correlations ranged from 0.77 ± 0.08 (YW and MW5) to 0.85 ± 0.07 (YW and MW2) between YW and MW, and they were ≥ 0.95 among MW2, MW3, MW4, and MW5. Maternal genetic correlations between WW and YW and MW ranged from 0.52 ± 0.05 (WW and MW4) to 0.95 ± 0.07 (WW and YW), and among MW they ranged from 0.54 ± 0.14 (MW4 and MW5) to 0.94 ± 0.07 (MW2 and MW3). Genetic correlations suggest that a genetic evaluation for MW may be MW2-based and that including BW from older ages could be accomplished by adjusting records to the scale of MW2.  相似文献   

4.
Breeding objectives were developed for Targhee sheep under rangeland production conditions. Traits considered were those for which EPD were available from the US National Sheep Improvement Program and included direct and maternal effects on 120-d weaning weight (WW and MM, respectively); yearling weight (YW); yearling fleece weight, fiber diameter, and staple length; and percent lamb crop (PLC), measured as the number of lambs born per 100 ewes lambing. A bioeconomic model was used to predict the effects of a change of 1 additive SD in EPD for each trait, holding all other traits constant at their mean, on animal performance, feed requirements, feed costs, and economic returns. Resulting economic weightings were then used to derive selection indexes. Indexes were derived separately for 3 prolificacy levels (1.41, 1.55, and 1.70 lambs/ewe lambing), 2 triplet survival levels (50 and 67%), 2 lamb pricing policies (with or without discounting of prices for heavy feeder lambs), and 3 forage cost scenarios (renting pasture, purchasing hay, or reducing flock size to accommodate increased nutrient requirements for production). Increasing PLC generally had the largest impact on profitability, although an increase in WW was equally important, with low feed costs and no discounting of prices for heavy feeder lambs. Increases in PLC were recommended at all 3 prolificacy levels, but with low triplet survival the value of increasing PLC eventually declined as the mean litter size increased to approximately 2.15 lambs/ewe lambing and above. Increasing YW (independent of WW) increased ewe maintenance costs and reduced profitability. Predicted changes in breeding values for WW and YW under index selection varied with lamb pricing policy and feed costs. With low feed costs or no discounts for heavy lambs, YW increased at a modest rate in association with increasing WW, but with high feed costs or discounting of heavy lambs, genetic trends in WW were reduced by approximately 50% to constrain increases in YW. Changes in EPD for MM or fleece traits generally had smaller effects on profitability than changes in PLC, WW, and YW. Two indexes designed to address current rangeland production conditions (low forage costs and discounting of heavy feeder lambs) or more intensive and integrated production with retained ownership and value-based marketing of lambs (higher forage costs and no discounting of heavy lambs) were anticipated to meet the needs of most Targhee producers.  相似文献   

5.
The genetic parameters for Brahman cattle under the tropical conditions of Mexico are scarce. Therefore, heritabilities, additive direct and maternal correlations, and genetic correlations for birth weight (BW) and 205 days adjusted weaning weight (WW205) were estimated in four Brahman cattle herds in Yucatan, Mexico. Parameters were estimated fitting a bivariate animal model, with 4,531 animals in the relationship matrix, of which 2,905 had BW and 2,264 had WW205. The number of sires and dams identified for both traits were 122 and 962, respectively. Direct heritability estimates for BW and WW205 were 0.41?±?0.09 and 0.43?±?0.09, and maternal heritabilities were 0.15?±?0.07 and 0.38?±?0.08, respectively. Genetic correlations between direct additive and maternal genetic effects for BW and WW205 were ?0.41?±?0.22 and ?0.50?±?0.15, respectively. The direct genetic, maternal, and phenotypic correlations between BW and WW205 were 0.77?±?0.09, 0.61?±?0.18, and 0.35, respectively. The moderate to high genetic parameter estimates suggest that genetic improvement by selection is possible for those traits. The maternal effects and their correlation with direct effects should be taken into account to reduce bias in genetic evaluations.  相似文献   

6.
The aim of this study was to estimate genetic parameters for growth traits in Mexican Nellore cattle. A univariate animal model was used to estimate (co)variance components and genetic parameters. The traits evaluated were birth weight (BW), weaning weight (WW), and yearling weight (YW). Models used included the fixed effects of contemporary groups (herd, sex, year, and season of birth) and age of dam (linear and quadratic) as a covariate. They also included the animal, dam, and residual as random effects. Phenotypic means (SD) for BW, WW, and YW were 31.4 (1.6), 175 (32), and 333 (70) kg, respectively. Direct heritability, maternal heritability, and the genetic correlation between additive direct and maternal effects were 0.59, 0.17, and −0.90 for BW; 0.29, 0.17, and −0.90 for WW; and 0.24, 0.15, and −0.86 for YW, respectively. The results showed moderate direct and maternal heritabilities for the studied traits. The genetic correlations between direct and maternal effects were negative and high for all the traits indicating important tradeoffs between direct and maternal effects. There are significant possibilities for genetic progress for the growth traits studied if they are included in a breeding program considering these associations.  相似文献   

7.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

8.
The objective of this study was to estimate genetic parameters, in Katahdin sheep, for total weight of litter weaned per ewe lambing (TW) and its components, number of lambs born (NB), number of lambs weaned (NW), and average weight of lambs weaned (AW) measured as traits of the ewe. Weaning weights of lambs (WW) were adjusted to 60 d of age and for effects of ewe age, lamb sex, and type of birth and rearing and averaged over all lambs in the litter to obtain AW. The 60-d age-adjusted WW were adjusted for ewe age and lamb sex and summed over all lambs in the litter to obtain TW. A total of 2,995 NB and NW records, 2,622 AW, and 2,714 TW records were available from 1,549 ewes (progeny of 235 sires) over 4 yr. Heritabilities were initially estimated for each trait from univariate REML analyses. Estimates of genetic correlations were obtained from bi- and trivariate analyses. Models for NB, NW, AW, and TW included random ewe additive and permanent environmental effects. A random service sire effect was also fit for AW and TW. Heritabilities of TW, NB, NW, and AW from univariate analyses were 0.12, 0.12, 0.09, and 0.13 (all P < 0.01), respectively. Permanent environmental effects were significant (P < 0.01) for TW and AW. Genetic correlations of TW with NB, NW, and AW ranged from 0.27 to 0.33, 0.88 to 0.91, and 0.72 to 0.76, respectively; those of NB with NW and AW ranged from 0.70 to 0.75 and -0.01 to 0.02, respectively; and that between NW and AW ranged from 0.40 to 0.55. Genetic parameters were also obtained for lamb survival to weaning (LS) and WW measured as traits of the lamb, and the relationships between WW of the ewe as a lamb and her subsequent records for NB and NW were also estimated. A total of 5,107 LS and 5,444 WW records were available. Models for WW and LS included random animal and maternal genetic, maternal permanent environmental, and litter effects. Heritability of WW ranged from 0.15 to 0.20. There was no evidence of genetic effects on LS. Direct genetic correlations of WW with NB and NW were not significantly different from zero. The correlation between maternal genetic effects on WW, and animal genetic effects on NW, averaged 0.35. Results of this study indicate that there are no major antagonisms among TW and its components, so that selection for TW would not have adverse effects on any component traits and vice versa. Maternally superior ewes for WW appear to also be somewhat superior for NW.  相似文献   

9.
Genetic and phenotypic parameters were estimated for lamb growth traits for the Dorper sheep in semi-arid Kenya using an animal model. Data on lamb growth performance were extracted from available performance records at the Sheep and Goats Station in Naivasha, Kenya. Growth traits considered were body weights at birth (BW0, kg), at 1 month (BW1, kg), at 2 months (BW2, kg), at weaning (WW, kg), at 6 months (BW6, kg), at 9 months (BW9, kg) and at yearling (YW, kg), average daily gain from birth to 6 months (ADG0–6, gm) and from 6 months to 1 year (ADG6–12, gm). Direct heritability estimates were, correspondingly, 0.18, 0.36, 0.32, 0.28, 0.21, 0.14, 0.29, 0.12 and 0.30 for BW0, BW1, BW2, WW, BW6, BW9, YW, ADG0–6 and ADG6–12. The corresponding maternal genetic heritability estimates for body weights up to 9 months were 0.16, 0.10, 0.10, 0.19, 0.21 and 0.18. Direct-maternal genetic correlations were negative and high ranging between −0.47 to −0.94. Negative genetic correlations were observed for ADG0–6–ADG6–12, BW2–ADG6–12, WW–ADG6–12 and BW6–ADG6–12. Phenotypic correlations ranged from 0.15 to 0.96. Maternal effects are important in the growth performance of the Dorper sheep though a negative correlation exists between direct and maternal genetic effects. The current study has provided important information on the extent of additive genetic variation in the existing flocks that could now be used in determining the merit of breeding rams and ewes for sale to the commercial flocks. The estimates provided would form the basis of designing breeding schemes for the Dorper sheep in Kenya. Implications of the study to future Dorper sheep breeding programmes are also discussed.  相似文献   

10.
Objectives of this study were to determine whether feeding high-linoleic safflower seed to gestating ewes increases cold tolerance and survival in lambs, and whether brown adipose tissue (BAT) stores in lambs are affected by prepartum safflower seed supplementation. In Trial 1, 234 gestating ewes (122 in yr 1 and 112 in yr 2; 75.5 and 81.2 +/- 0.6 kg initial BW for yr 1 and 2, respectively) were allotted randomly to one of two dietary treatments (four pens*treatment(-1)*yr(-1)). Ewes were fed alfalfa-based diets containing (DM basis) either 2.8 (LF) or 5.7% (HF) dietary fat beginning 55 (yr 1) and 42 (yr 2) +/- 1 d prepartum. In Trial 2, 40 Rambouillet cross ewes gestating twins (82.9 +/- 1.7 kg BW) were used in 2 yr (20/yr) and were fed diets containing (DM basis) either 1.9 (LF) or 4.9% (HF) dietary fat beginning 53.4 +/- 1.4 d prepartum. The basal diet was 37.5% each of grass and alfalfa hays and 25% corn silage (DM basis). Cracked safflower seeds (18% CP, 32% fat, 25.6% linoleic acid; DM basis) were used as the supplement in HF, whereas safflower meal and corn were used as the supplement in LF for both trials. At parturition, one lamb from each ewe was selected randomly for slaughter. Perirenal (PR) and pericardial (PC) BAT was excised and weighed, and the carcass was frozen for compositional analysis. In Trial 1, more lambs from HF 0.03; 15.4 vs. 5.8 +/- 2.8%), and dams survived (P = 0.03; 88.4 vs. 78.3 +/- 2.9%), fewer died due to starvation (P = there was a tendency for fewer to die due to pneumonia (P = 0.07; 0.0 vs. 1.7 +/- 0.6%). Ewes fed HF tended to wean more lambs per ewe (P = 0.09; 1.4 vs. 1.2 +/- 0.06) but had similar lamb weight weaned per ewe (P = 0.51; 23.1 +/- 1.22 kg). In Trial 2, prepartum ewe plasma NEFA and glucose concentrations increased with advancing gestation (P < 0.001). Lamb rectal temperature tended (P = 0.08) to be higher in LF lambs and tended (P = 0.06) to increase following parturition. Perirenal BAT weight did not differ among treatments (33.01 +/- 1.66 g; P = 0.28; 0.62 +/- 0.30% BW; P = 0.60). Lambs from LF dams tended (P = 0.08) to have greater PC BAT weight; however, the effect was not significant when expressed as a percentage of BW (0.13 +/- 0.007; P = 0.98). High-linoleic safflower seeds fed during the last 45 d of gestation may be beneficial in improving lamb survivability. Our data do not indicate this response was a result of increased BAT stores. More research is necessary to determine mechanisms that enhance lamb survival when high-linoleic saf-flower seed is fed during gestation.  相似文献   

11.
Covariance components were estimated for growth traits (BW, birth weight; WW, weaning weight; YW, yearling weight), visual scores (BQ, breed quality; CS, conformation; MS, muscling; NS, navel; PS, finishing precocity), hip height (HH), and carcass traits (BF, backfat thickness; LMA, longissimus muscle area) measured at yearling. Genetic gains were obtained and validation models on direct and maternal effects for BW and WW were fitted. Genetic correlations of growth traits with CS, PS, MS, and HH ranged from 0.20 ± 0.01 to 0.94 ± 0.01 and were positive and low with NS (0.11 ± 0.01 to 0.20 ± 0.01) and favorable with BQ (0.14 ± 0.02 to 0.37 ± 0.02). Null to moderate genetic correlations were obtained between growth and carcass traits. Genetic gains were positive and significant, except for BW. An increase of 0.76 and 0.72 kg is expected for BW and WW, respectively, per unit increase in estimated breeding value (EBV) for direct effect and an additional 0.74 and 1.43, respectively, kg per unit increase in EBV for the maternal effect. Monitoring genetic gains for HH and NS is relevant to maintain an adequate body size and a navel morphological correction, if necessary. Simultaneous selection for growth, morphological, and carcass traits in line with improve maternal performance is a feasible strategy to increase herd productivity.  相似文献   

12.
In good environments, cow intake is sufficient for their own growth and for milk production to support their calf. In poor environments, cows lose BW or may reduce milk supply to maintain themselves. Heritability for direct genetic and maternal components of weaning weight as well as the correlations between these components might be expected to vary according to these circumstances. The purpose of this study was to estimate heritability and genetic correlations for the direct genetic and maternal components of weaning weight classified in 2 environments according to maternal BW gain and to identify whether a single heritability estimate is appropriate for the differing environments experienced by cows from year to year. Data used in this analysis was obtained from the Red Angus Association of America and consisted of 96,064 cow BW observations and 27,534 calf weaning weight observations. A dam's change in BW from one year to the next was used to classify each calf's weaning weight into 1 of 2 environmental groups, those being good or poor. Best linear unbiased estimates of the change in cow BW with age were obtained from analysis of cow BW using a repeatability model. If the phenotypic change in cow BW exceeded this average BW change, the calf's weaning weight associated with the end of this time frame was classified as having been observed in a good environment. If not, the calf's corresponding weaning weight was classified as having occurred in a poorer than average environment. Heritability estimates of 0.24 +/- 0.03, 0.24 +/- 0.03, 0.13 +/- 0.02, and 0.14 +/- 0.02 were obtained for weaning weight good direct, poor direct, good maternal, and poor maternal, respectively. Correlations between direct genetic and maternal weaning weight components in the good and poor environments were -0.47 +/- 0.08 and -0.20 +/- 0.09, respectively. These variance components are not sufficiently distinct to warrant accounting for dam nutritional environment in national cattle evaluation.  相似文献   

13.
The Network Project on Sheep Improvement (NWPSI)–Madras Red field unit is a group breeding scheme involving 198 farmers’ flocks of Madras Red sheep in which selection for growth traits and rotation of rams have been practised for over two decades. Growth data collected from these flocks were used to evaluate the performance and understand the direct and expected responses to selection based on genetic parameters. The body weight at birth (BW), weaning weight (WW), 6-month weight (6W), 9-month weight (9W), 12-month weight (YW), pre-weaning average daily gain (ADG1, birth to 3 months), post-weaning ADG2 (3–6 months), ADG3 (6–9 months), ADG4 (9–12 months) and ADG5 (3–12 months) were 2.67, 10.05, 14.56, 18.36, 21.36, 80.13, 49.05, 43.00, 34.21 and 41.18 g, respectively. Univariate analyses were carried out using animal and sire models to estimate variance components. Heritability obtained from animal model for BW was 0.36 and the values for other body weight traits were almost unity. Heritability estimate for pre-weaning ADG1 was 0.31. Very high genetic variability was observed in spite of long-term selection and this sustenance of variability is one of the main advantages of a group breeding scheme, combining several flocks of smaller size. An increasing genetic and phenotypic trend was noticed for almost all the traits studied. The expected responses calculated based on genetic parameters also indicated scope for improvement.  相似文献   

14.
Data on 2,034 F1 calves sired by Angus, Hereford, Polled Hereford, Charolais, Limousin, Simmental, Gelbvieh, and Tarentaise bulls with Hereford or Angus dams and data on 3,686 three-breed-cross calves with 700 F1 dams of the same breed crosses were used for this study. Traits analyzed were birth, weaning, yearling, and 420-d weights (BWT, WW, YW, and W420, respectively) of F1 calves and WW of three-breed-cross calves. Expected progeny differences from national cattle evaluation programs for sires of F1 calves and cows for BWT, WW, YW, and net maternal ability (milk) were used to assess their value in prediction of crossbred performance. Regressions of actual F1 calf performance on sire EPD were positive for BWT (1.09 +/- .12 kg/kg of BWT EPD), WW (.79 +/- .14 kg/kg of WW EPD), YW (1.44 +/- .16 kg/kg of YW EPD), and W420 (1.66 kg/kg of YW EPD). These regression coefficients were similar to the expected value of 1.0 for BWT and WW but were larger than expected for YW and W420. Regressions of actual three-breed-cross calf WW on milk and WW EPD of their maternal grandsires were .95 +/- .14 and .42 +/- .10 kg/kg, respectively, and differed little from their expectations of 1.0 and .5, respectively. Observed breed of sire means for each trait were adjusted for sire sampling by using EPD regressions to adjust them to the average EPD of all sires of each breed born in 1970.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Records for Afshari sheep were retrieved from data collected between 2000 and 2005 at the Zanjan University experimental flock, at Zanjan, Iran. (Co)variance components and corresponding genetic parameters for birth weight (BW), weaning weight (WW), 6-month weight (W6), average daily gain from birth to weaning (ADGa), from birth to 6 months (ADGb), from weaning to 6 months (ADGc), Kleiber ratio at weaning (WWKR) and Kleiber ratio at 6 months of age (W6KR) were estimated using univariate and bivariate analyses by the DFREML procedure. The Kleiber ratio, defined as growth rate/metabolic weight, has been suggested to be a useful indicator of growth efficiency and an indirect selection criterion for feed conversion. Estimates of direct heritability ( h 2) were 0.23, 0.27, 0.11, 0.22, 0.07, 0.01, 0.13 and 0.06 for BW, WW, W6, ADGa, ADGb, ADGc, WWKR and W6KR, respectively. Maternal genetic effects represented a relatively large proportion of the total phenotypic variance for BW ( m 2 = 0.22), whereas maternal permanent environmental effects were significant for W6 ( c 2 = 0.15), ADGb ( c 2 = 0.16), ADGc ( c 2 = 0.14) and W6KR ( c 2 = 0.16). Results of bivariate analyses indicated the variable genetic correlations between traits. The largest positive genetic relationships were between adjacent measurements. The moderate estimates of h 2 for early growth traits indicate that in Afshari sheep faster genetic improvement through selection is possible for these traits. In order to increase the efficiency of feed conversion, use of Kleiber ratio in selection programmes was recommended.  相似文献   

16.
Records of birth weight (BW), weaning weight (WW) and condition score (CS) from 1,467 Brahman and Brahman X Angus crossbred calves from Brahman and crossbred Brahman sires and Brahman, crossbred Brahman and Angus dams were collected at the Subtropical Agricultural Research Station, Brooksville, Florida, from 1971 to 1982. Best linear unbiased estimates (BLUE) of Brahman sire and dam group additive genetic effects (as deviations from Angus) and Brahman X Angus dam and calf group nonadditive (intralocus) genetic effects (as deviations from intralocus group genetic effects in the parental breeds) were obtained. Linear combinations of these were used to compute direct and maternal Brahman additive and Brahman X Angus nonadditive (intralocus) group genetic effects. The respective BLUE of these four effects were 5.99 +/- 2.08, -5.70 +/- 1.91, .52 +/- 1.81 and 2.85 +/- .72 kg for BW; 9.60 +/- 10.29, 8.76 +/- 9.47, 9.47 +/- 8.96 and 20.95 +/- 3.56 kg for WW; and -1.10 +/- .55, 1.64 +/- .50, 1.47 +/- .47 and .05 +/- .19 units for CS. Linear combinations of the BLUE of sire, dam and calf group genetic effects can be used to predict the genetic worth of crossbred groups composed of any combination of Brahman and Angus breeding. Nonadditive maternal group genetic effects were the most important factor for BW and WW, whereas nonadditive direct group genetic effects were the most important for CS.  相似文献   

17.
Data for the current study were obtained from a divergent selection experiment in which the selection criterion was the average serum IGF-I concentrations of 3 postweaning blood samples collected from purebred Angus calves. Multiple-trait derivative-free REML procedures were used to obtain genetic parameter estimates for IGF-I concentrations and for BW and BW gains measured from birth to the conclusion of a 140-d postweaning performance test. Included in the analysis were 2,674 animals in the A(-1) matrix, 1,761 of which had valid records for IGF-I concentrations. Direct heritability estimates +/- SE for IGF-I concentration at d 28, 42, and 56 of the postweaning period and for mean IGF-I concentrations were 0.44 +/- 0.07, 0.51 +/- 0.08, 0.42 +/- 0.07, and 0.52 +/- 0.08, respectively. Heritability estimates for maternal genetic effects ranged from 0.10 +/- 0.05 to 0.20 +/- 0.06. The proportion of total phenotypic variance due to the maternal permanent environmental effect was essentially zero for all measures of IGF-I concentrations. Genetic correlations of IGF-I concentrations with weaning and post-weaning BW ranged from 0.07 +/- 0.12 to 0.32 +/- 0.11 and generally demonstrated an increasing trend during the postweaning period. Averaged across the various measures of IGF-I, the genetic correlation of IGF-I with preweaning gain was 0.14, whereas the genetic correlation with postweaning gain was 0.29. Genetic correlations between IGF-I and BW gain were positive during all time intervals, except between weaning and the beginning of the postweaning test and from d 84 to 112 of the postweaning period. Environmental and phenotypic correlations of IGF-I with BW and BW gains were generally positive, but small. These results indicate that postweaning serum IGF-I concentration is moderately to highly heritable and has small positive genetic, environmental, and phenotypic correlations with BW other than birth weight and with pre- and postweaning gain. Therefore, if IGF-I proves to be a biological indicator of an economically important trait (e.g., efficiency of feed use for growth) in beef cattle, it should be possible to rapidly change IGF-I concentrations via selection without significantly altering live weight or rate of gain.  相似文献   

18.
A 300 cow Brahman herd kept on improved pasture was subjected to a selection and management programme based on a limited breeding season. Artificial insemination using mainly progeny tested bulls was used in part of the herd and the rest were bred in single sire herds. Of the 200 sires used during the 30 year period, 82% were homebred and selected principally for high estimated breeding value of 18-month weight. Variance components of birth (BW), weaning (205 W) and 18-month (548 W) weights of 6130 calves born 1968 through to 1997 were estimated by the Restricted Maximum Likelihood method (REML) using uni- and bivariate animal models. For each weight the animal's direct and maternal genetic and the dam's permanent environmental effects were considered random and those of sex, year and month of birth and age of cow were considered fixed, but the models differed as far as the number of significant interactions included. Adjusted least squares means for BW, 205 W and 548 W were 28, 158 and 292 kg. Phenotypic and direct and maternal genetic trends from univariate analysis were for BW: 0.156, 0.061 and −0.001 kg; for 205 W: 0.471, 0.126 and 0.044 kg; for 548 W: 1.973, 0.486 and 0.251 kg per year. Direct and maternal heritabilities from univariate analyses were for BW, 205 W and 548 W, 0.33 and 0.08; 0.07 and 0.14; 0.13 and 0.08, respectively. Genetic direct-maternal correlations for the three weights were −0.37, −0.13 and 0.49 and permanent environmental variance of the dam as proportion of phenotypic variance (c2) had values of 0.03, 0.16 and 0.01, respectively. Direct and maternal genetic correlations were for BW: 205 W, 0.64 and 0.74; for BW: 548 W, 0.35 and 0.74; and for 205 W: 548 W, 0.64 and 0.96. Future genetic work in the herd should put more emphasis on the improvement of cow efficiency for sustainable beef production on native and improved pasture.  相似文献   

19.
Data and pedigree information used in the present study were 3,022 records of kids obtained from the breeding station of Raini goat. The studied traits were birth weight (BW), weaning weight (WW), average daily gain from birth to weaning (ADG) and Kleiber ratio at weaning (KR). The model included the fixed effects of sex of kid, type of birth, age of dam, year of birth, month of birth, and age of kid (days) as covariate that had significant effects, and random effects direct additive genetic, maternal additive genetic, maternal permanent environmental effects and residual. (Co) variance components were estimated using univariate and multivariate analysis by WOMBAT software applying four animal models including and ignoring maternal effects. Likelihood ratio test used to determine the most appropriate models. Heritability ( \texth\texta2 ) \left( {{\text{h}}_{\text{a}}^2} \right) estimates for BW, WW, ADG, and KR according to suitable model were 0.12 ± 0.05, 0.08 ± 0.06, 0.10 ± 0.06, and 0.06 ± 0.05, respectively. Estimates of the proportion of maternal permanent environmental effect to phenotypic variance (c 2) were 0.17 ± 0.03, 0.07 ± 0.03, and 0.07 ± 0.03 for BW, WW, and ADG, respectively. Genetic correlations among traits were positive and ranged from 0.53 (BW-ADG) to 1.00 (WW-ADG, WW-KR, and ADG-KR). The maternal permanent environmental correlations between BW-WW, BW-ADG, and WW-ADG were 0.54, 0.48, and 0.99, respectively. Results indicated that maternal effects, especially maternal permanent environmental effects are an important source of variation in pre-weaning growth trait and ignoring those in the model redound incorrect genetic evaluation of kids.  相似文献   

20.
The (co)variance components of BW at weaning (WW) were estimated for a Colombian multibreed beef cattle population. A single-trait animal model was used. The model included the fixed effect of contemporary group (sex, season, and year), and covariates including age of calf at weaning, age of cow, individual and maternal heterozygosity proportions, and breed percentage. Direct genetic, maternal genetic, permanent environmental, and residual effects were included as random effects. Direct, maternal, and total heritabilities were 0.23 +/- 0.047, 0.15 +/- 0.041, and 0.19, respectively. The genetic correlation between direct and maternal effects was -0.42 +/- 0.131, indicating that there may be antagonism among genes for growth and genes for maternal ability, which in turn suggests that improving WW by direct and maternal EPD may be difficult. A greater value for the direct heterosis effect compared with the maternal heterosis effect was found. Furthermore, the greater the proportion of Angus, Romosinuano, and Blanco Orejinegro breeds, the less the WW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号