首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

2.
Dissolved organic matter (DOM) is important for the cycling and transport of carbon (C) and nitrogen (N) in soil. In temperate forest soils, dissolved organic N (DON) partly escapes mineralization and is mobile, promoting loss of N via leaching. Little information is available comparing DOC and DON dynamics under tropical conditions. Here, mineralization is more rapid, and the demand of the vegetation for nutrients is larger, thus, leaching of DON could be small. We studied concentrations of DOC and DON during the rainy seasons 1998–2001 in precipitation, canopy throughfall, pore water in the mineral soil at 5, 15, 30, and 80 cm depth, and stream water under different land‐use systems representative of the highlands of northern Thailand. In addition, we determined the distribution of organic C (OC) and N (ON) between two operationally defined fractions of DOM. Samples were collected in small water catchments including a cultivated cabbage field, a pine plantation, a secondary forest, and a primary forest. The mean concentrations of DOC and DON in bulk precipitation were 1.7 ± 0.2 and 0.2 ± 0.1 mg L–1, respectively, dominated by the hydrophilic fraction. The throughfall of the three forest sites became enriched up to three times in DOC in the hydrophobic fraction, but not in DON. Maximum concentrations of DOC and DON (7.9–13.9 mg C L–1 and 0.9–1.2 mg N L–1, respectively) were found in samples from lysimeters at 5 cm soil depth. Hydrophobic OC and hydrophilic ON compounds were released from the O layer and the upper mineral soil. Concentrations of OC and ON in mineral‐soil solutions under the cabbage cultivation were elevated when compared with those under the forests. Similar to most temperate soils, the concentrations in the soil solution decreased with soil depth. The reduction of OC with depth was mainly due to the decrease of hydrophobic compounds. The changes in OC indicated the release of hydrophobic compounds poor in N in the forest canopy and the organic layers. These substances were removed from solution during passage through the mineral soil. In contrast, organic N related more to labile microbial‐derived hydrophilic compounds. At least at the cabbage‐cultivation site, mineralization seemed to contribute largely to the decrease of DOC and DON with depth, possibly because of increased microbial activity stimulated by the inorganic‐N fertilization. Similar concentrations and compositions of OC and ON in subsoils and streams draining the forested catchments suggest soil control on stream DOM. The contribution of DON to total dissolved N in those streams ranged between 50% and 73%, underscoring the importance of DOM for the leaching of nutrients from forested areas. In summary, OC and ON showed differences in their dynamics in forest as well as in agricultural ecosystems. This was mainly due to the differing distribution of OC and ON between the more immobile hydrophobic and the more easily degradable hydrophilic fraction.  相似文献   

3.
Dissolved organic matter (DOM) plays a central role in driving biogeochemical processes in soils, but little information is available on the relation of soil DOM dynamics to microbial activity. The effects of NO3 and NH4+ deposition in grasslands on the amount and composition of soil DOM also remain largely unclear. In this study, a multi-form, low-dose N addition experiment was conducted in an alpine meadow on the Qinghai–Tibetan Plateau in 2007. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha−1 yr−1. Soil samples from surface (0–10 cm) and subsurface layers (10–20 cm) were collected in 2011. Excitation/emission matrix fluorescence spectroscopy (EEM) was used to assess the composition and stability of soil DOM. Community-level physiological profile (CLPP, basing on the BIOLOG Ecoplate technique) was measured to evaluate the relationship between soil DOC dynamics and microbial utilization of C resources. Nitrogen (N) dose rather than N form significantly increased soil DOC contents in surface layer by 23.5%–35.1%, whereas it significantly decreased soil DOC contents in subsurface layer by 10.4%–23.8%. Continuous five-year N addition significantly increased the labile components and decreased recalcitrant components of soil DOM in surface layer, while an opposite pattern was observed in subsurface layer; however, the humification indices (HIX) of soil DOM was unaltered by various N treatments. Furthermore, N addition changed the amount and biodegradability of soil DOM through stimulating microbial metabolic activity and preferentially utilizing organic acids. These results suggest that microbial metabolic processes dominate the dynamics of soil DOC, and increasing atmospheric N deposition could be adverse to the accumulation of soil organic carbon pool in the alpine meadow on the Qinghai-Tibetan Plateau.  相似文献   

4.
This study aimed to gain insight into the generation and fate of dissolved organic carbon (DOC) in organic layers. In a Free Air CO2 Enrichment Experiment at the alpine treeline, we estimated the contribution of 13C-depleted recent plant C to DOC of mor-type organic layers. In an additional laboratory soil column study with 40 leaching cycles, we traced the fate of 13C-labelled litter-DOC (22 and 45 mg l−1) in intact Oa horizons at 2 and 15 °C. Results of the field study showed that DOC in the Oa horizon at 5 cm depth contained only 20 ± 3% of less than six-year-old C, indicating minor contributions of throughfall, root exudates, and fresh litter to leached DOC. In the soil column experiment, there was a sustained DOC leaching from native soil organic matter. Less than 10% of totally added litter-DOC was leached despite a rapid breakthrough of a bromide tracer (50 ± 7% within two days). Biodegradation contributed only partly to the DOC removal with 18-30% of added litter-DOC being mineralized in the Oa horizons at 2 and 15 °C, respectively. This was substantially less than the potential 70%-biodegradability of the litter-DOC itself, which indicates a stabilization of litter-DOC in the Oa horizon. In summary, our results give evidence on an apparent ‘exchange’ of DOC in thick organic layers with litter-DOC being retained and ‘replaced’ by ‘older’ DOC leached from the large pool of indigenous soil organic matter.  相似文献   

5.
Forest ecosystems on the Loess Plateau are receiving increasing attention for their special importance in carbon fixation and conservation of soil and water in the region. Soil respiration was investigated in two typical forest stands of the forest-grassland transition zone in the region, an exotic black locust (Robinia pseudoacacia) plantation and an indigenous oak (Quercus liaotungensis) forest, in response to rain events (27.7 mm in May 2009 and 19 mm in May 2010) during the early summer dry season. In both ecosystems, precipitation significantly increased soil moisture, decreased soil temperature, and accelerated soil respiration. The peak values of soil respiration were 4.8 and 4.4 μmol CO2 m−2 s−1 in the oak plot and the black locust plot, respectively. In the dry period after rainfall, the soil moisture and respiration rate gradually decreased and the soil temperature increased. Soil respiration rate in black locust stand was consistently less than that in oak stand, being consistent with the differences in C, N contents and fine root mass on the forest floor and in soil between the two stands. However, root respiration (Rr) per unit fine root mass and microbial respiration (Rm) per unit the amount of soil organic matter were higher in black locust stand than in oak stand. Respiration by root rhizosphere in black locust stand was the dominant component resulting in total respiration changes, whereas respiration by roots and soil microbes contributed equally in oak stand. Soil respiration in the black locust plantation showed higher sensitivity to precipitation than that in the oak forest.  相似文献   

6.
The objective of this study was to determine the effect of bedrock, mean annual precipitation and slope orientation on soil organic carbon (SOC) accumulation of Quercus pyrenaica Willd forests. Twelve different oak stands, along a rainfall gradient over two bedrock types (granites and schists), were selected for this study. Properties of the diagnostic soil horizons were determined. Bedrock type was the principal factor affecting soil development and fertility. Accumulated SOC varied between 33 and 185 Mg C ha− 1, the amounts of C accumulated over schists being significantly higher than over granites because of higher soil acidity, ‘silt + clay’ content and metal complexation. The SOC content in the entire profile was over 125 times higher than the C accumulated in the stand forest litter at the schist sites and 50 times higher at the granite sites. Soil acidity and metal complexation hampered microbial decomposition of soil organic matter, producing SOC accumulation and forming thick umbric Ah/AB-horizons, being thicker at sites with high values of mean annual precipitation than at sites with low ones. Mineral N release was low in these soils.  相似文献   

7.
本文选取我国中亚热带杉木人工林土壤进行短期增温以及减少50%降雨试验,利用光谱技术研究增温及减少降雨对土壤可溶性有机质(DOM)数量和结构的影响。试验设对照(CT)、增温(W,土壤温度增高5℃)、减少降雨(P,自然降雨量减少50%)、增温与减少降雨交互作用(WP)4种处理。结果表明:1)增温增加了土壤可溶性有机碳(DOC)数量,使DOM的芳香性指数和腐殖化指数减小,结构变得简单易于分解;0~10 cm土层的土壤DOM含有较多的烷烃,酯类物质较少;10~20 cm土层的DOM则含有较多的碳水化合物。2)减少降雨使土壤水分相对减少,土壤DOC的数量降低。0~10 cm土层土壤DOM的芳香性指数和腐殖化程度降低,DOM含有大量的烷烃;而10~20 cm土层土壤DOM的芳香性指数和腐殖化指数升高,碳水化合物少。减少降雨处理使土壤可溶性有机氮(DON)数量增加。3)增温和减少降雨的交互作用增加了DOC和DON的数量,降低了DOM的芳香化程度和腐殖化程度;使0~10 cm土层的DOM含有较多的碳水化合物,而10~20 cm土层的DOM碳水化合物较少。4)对于0~10 cm土壤,增温对土壤DOM的数量及结构的作用最强;随着土壤深度增加到10~20 cm,减少降雨的作用逐渐明显,其对DOM结构的影响也达到显著水平。温度及降水对DOM的数量及化学结构的变化具有重要意义,该研究结果可以为阐释全球气候变化背景下土壤DOM的动态周转及预测未来森林土壤碳氮的变化趋势提供科学依据。  相似文献   

8.
Freezing and thawing may substantially influence the rates of C and N cycling in soils, and soil frost was proposed to induce NO losses with seepage from forest ecosystems. Here, we test the hypothesis that freezing and thawing triggers N and dissolved organic matter (DOM) release from a forest soil after thawing and that low freezing temperatures enhance the effect. Undisturbed soil columns were taken from a soil at a Norway spruce site either comprising only O horizons or O horizons + mineral soil horizons. The columns were subjected to three cycles of freezing and thawing at temperatures of –3°C, –8°C, and –13°C. The control columns were kept at constant +5°C. Following the frost events, the columns were irrigated for 20 d at a rate of 4 mm d–1. Percolates were analyzed for total N, mineral N, and dissolved organic carbon (DOC). The total amount of mineral N extracted from the O horizons in the control amounted to 8.6 g N m–2 during the experimental period of 170 d. Frost reduced the amount of mineral N leached from the soil columns with –8°C and –13°C being most effective. In these treatments, only 3.1 and 4.0 g N m–2 were extracted from the O horizons. Net nitrification was more negatively affected than net ammonification. Severe soil frost increased the release of DOC from the O horizons, but the effect was only observed in the first freeze–thaw cycle. We found no evidence for lysis of microorganisms after soil frost. Our experiment did not confirm the hypothesis that soil frost increases N mineralization after thawing. The total amount of additionally released DOC was rather low in relation to the expected annual fluxes.  相似文献   

9.
Soil soluble organic nitrogen (SON) can play an important role in soil nitrogen (N) cycling in forest ecosystems. This study examined the effect of land-use change from a native forest (NF) to a first rotation (1R) and subsequent second rotation (2R) hoop pine (Araucaria cunninghamii) plantation on soil SON pools. The impact of residue management on SON pools was also investigated in the 2R forest, where SON was measured in tree rows (2R-T) and windrows (2R-W). Various extraction techniques were used to measure SON pool size in the 0-10, 10-20 and 20-30 cm layers of soil. The results showed that land-use change had a significant impact on soil SON pools. In the 0-10 cm layer, 3.2-8.7, 14-23, 20-28, 60-160 and 127-340 mg SON kg−1 were extracted by water, 0.5 M K2SO4, 2 M KCl, hot water and hot 2 M KCl, respectively. The size of the SON pools and the potential production of SON (PPSON) were generally highest in the NF soil and lowest in the 2R-T soil, and in all forest types decreased with soil depth. The larger SON pools in the NF soil coincided with lower soil, litter and root C:N ratios, suggesting that the difference in the size of SON pools between the NF and 1R soil may be related to differences in the quality of organic matter input under the different forest ecosystems. Differences in the size of SON pools between the 1R soil and the 2R soils and between the 2R-T soil and the 2R-W soil may be related to the quantity of organic matter input and time since disturbance. Significant relationships were found between the SON extracted by 0.5 M K2SO4 (SONps) and 2 M KCl (SONKCl), and also among the SON extracted by hot 2 M KCl (SONhKCl), hot water (SONhw) and water (SONw), suggesting that the organic N released by these groups of extracts may be at least partly from similar pools.  相似文献   

10.
A significant proportion of the total nutrient in soil solution can be bound to organic molecules and these often constitute a major loss from soil to freshwater. Our purpose was to determine whether chemical extractants used for measuring inorganic N could also be used to quantify dissolved organic nitrogen (DON) and carbon (DOC) in soil. In a range of soils, DOC and DON were extracted with either distilled water or 2 M KCl and the amount recovered compared with that present in soil solution recovered by centrifugal-drainage. The recovery of DON and DOC from soil was highly dependent upon the method of extraction. Factors such as soil sampling strategy (number of samples over space and time), sample preparation (sieving and drying), soil storage, extraction temperature, shaking time, and soil-to-extractant volume ratio all significantly affected the amount of DOC and DON extracted from soil. To allow direct comparison between independent studies we therefore propose the introduction of a standardized extraction procedure: Replicate samples of unsieved, field-moist soil extracted as soon as possible after collection with distilled water, 0.5 M K2SO4 or 2 M KCl at a 1:5 w/v ratio for 1 h at 20 °C.  相似文献   

11.
Dissolved organic matter (DOM) plays a central role in driving many chemical and biological processes in soil; however, our understanding of the fluxes and composition of the DOM pool still remains unclear. In this study we investigated the composition and dynamics of dissolved organic carbon (DOC) and nitrogen (DON) in five temperate coniferous forests. We subsequently related our findings to the inputs (litterfall, throughfall, atmospheric deposition) and outputs (leaching, respiration) of C and N from the forest and to plant available sources of N. With the exception of NO3?, most of the measured soil solution components (e.g. DOC, DON, NH4+, free amino acids, total phenolics and proteins) progressively declined in concentration with soil depth, particularly in the organic horizons. This decline correlated well with total microbial activity within the soil profile. We calculated that the amount of C lost by soil respiration each day was equivalent to 70% of the DOC pool and 0.06% of the total soil C. The rapid rate of amino acid mineralization and the domination of the low molecular weight soluble N pool by inorganic N suggest that the microbial community is C‐ rather than N‐limited and that C‐limitation increases with soil depth. Further, our results suggest that the forest stands were not N‐limited and were probably more reliant on inorganic N as a primary N source rather than DON. In conclusion, our results show that the size of the DON and DOC pools are small relative to both the amount of C and N passing through the soil each year and the total C and N present in the soil. In addition, high rates of atmospheric N deposition in these forests may have removed competition for N resources between the plant and microbial communities.  相似文献   

12.
利用田间试验,探讨生物炭与强还原处理(RSD)对退化设施蔬菜土壤可溶性有机质(DOM)的影响.处理为对照(CK)、生物炭修复(BC)、淹水(SF)、淹水覆膜(SFF)、强还原修复(RSD)、RSD与生物炭联合修复(RSD+BC),对比研究不同处理对0-20,20-40 cm 土壤DOM含量及光谱特征的影响.结果表明:0...  相似文献   

13.
There is now clear evidence for a prolonged increase in atmospheric CO2 concentrations and enrichment of the biosphere with N. Understanding the fate of C in the plant-soil system under different CO2 and N regimes is therefore of considerable importance in predicting the environmental effects of climate change and in predicting the sustainability of ecosystems. Swards of Lolium perenne were grown from seed in a Eutric Cambisol at either ambient (ca. 350 μmol mol−1) or elevated (700 μmol mol−1) atmospheric pCO2 and subjected to two inorganic N fertilizer regimes (no added N and 70 kg N ha−1 month−1). After germination, soil solution concentrations of dissolved organic C (DOC), dissolved inorganic N (DIN), dissolved organic N (DON), phenolics and H+ were measured at five depths down the soil profile over 3 months. The exploration of soil layers down the soil profile by roots caused transient increases in soil solution DOC, DON and phenolic concentrations, which then subsequently returned to lower quasi-stable concentrations. In general, the addition of N tended to increase DOC and DON concentrations while exposure to elevated pCO2 had the opposite effect. These treatment effects, however, gradually diminished over the duration of the experiment from the top of the soil profile downwards. The ambient pCO2 plus added N regime was the only treatment to maintain a notable difference in soil solution solute concentration, relative to other treatments. This effect on soil solution chemistry appeared to be largely indirect resulting from increased plant growth and a decrease in soil moisture content. Our results show that although plant growth responses to elevated pCO2 are critically dependent upon N availability, the organic chemistry of the soil solution is relatively insensitive to changes in plant growth once the plants have become established.  相似文献   

14.
ABSTRACT

Antecedent soil moisture before freezing can affect greenhouse gases (GHG) fluxes from soils during thaw, but their critical threshold values for GHG fluxes and the underlying mechanisms are still not clear. By using packed soil-core incubation experiments, we have studied nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from a mature broadleaf and Korean pine-mixed forest soil and an adjacent white birch forest soil with nine levels of soil moisture ranging from 10 to 90% water-filled pore space (WFPS) during a 2-month freezing at ?8°C and the following 10-day thaw at 10°C. The threshold values of soil moisture ranged from 50 to 70% WFPS for CH4 uptake and from 70 to 90% WFPS for N2O and CO2 emissions from the two soils during the freeze-thaw period. Under the optimum soil moisture condition, fulvic-like compounds with high bioavailability contributed more than 60% of dissolved organic matter (DOM) in the soil. Cumulative N2O emissions from forest soils during the freeze-thaw period were greatest when the concentration ratio of nitrate-N to dissolved organic carbon (DOC) was 0.04 g N g?1 C. Cumulative soil CO2 emissions and CH4 uptake during the freeze-thaw period were both regulated by the interaction between soil DOC and net N mineralization. The activities of β-1,4-glucosidase and β-1,4-N-acetyl-glucosaminidase, microbial biomass C and N, and the microbial biomass C-to-N ratios, were all significantly correlated to the soil N2O, CO2, and CH4 fluxes. Overall, upon a freeze-thaw period with different soil moistures, GHG fluxes from forest soils were jointly regulated by inorganic N and DOC concentrations, and related to the labile components of DOM released into the soil, which could be strictly controlled by the related microbial properties.  相似文献   

15.
We measured soil microbial biomass nitrogen (MBN), microbial uptake of 15N, potential net mineralization and net nitrification in the laboratory to determine the influence of tree species on nitrogen (N) transformations in soils of the Catskills Mountains, New York, USA. Organic horizon soils were taken from single species plots of beech (Fagus grandifolia), hemlock (Tsuga canadensis), red oak (Quercus rubra), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). 15NH4Cl was added to the soils and N pools were sampled at 1, 3, 10 and 28 days to examine microbial uptake of 15N over time. Soil MBN was about 60% lower in red oak and sugar maple soils than in the other three species. Soil pools of NO3 and rates of net nitrification were significantly greater in soils associated with sugar maple than hemlock, red oak and yellow birch. With the exception of sugar maple soils, microbial recovery of 15N was significantly greater after 10 and 28 days compared to 60 min and 1 day following 15N tracer addition. Microbial 15N recovery declined significantly within sugar maple stands within the first 3 days of incubation. Soil carbon to nitrogen ratio (C:N) was lowest in sugar maple soils and highest in red oak soils. However, correlations between soil C:N and MBN or rates of net mineralization and nitrification were not significant. Soil moisture could account for 22% of the variation in MBN and 36% of the variation in net mineralization. Soil microbial transformations of N vary among tree species stands and may have consequences for forest N retention and loss.  相似文献   

16.
Agricultural peat soils in the Sacramento-San Joaquin Delta, California have been identified as an important source of dissolved organic carbon (DOC) and trihalomethane precursors in waters exported for drinking. The objectives of this study were to examine the primary sources of DOC from soil profiles (surface vs. subsurface), factors (temperature, soil water content and wet-dry cycles) controlling DOC production, and the relationship between C mineralization and DOC concentration in cultivated peat soils. Surface and subsurface peat soils were incubated for 60 d under a range of temperature (10, 20, and 30 °C) and soil water contents (0.3-10.0 g-water g-soil−1). Both CO2-C and DOC were monitored during the incubation period. Results showed that significant amount of DOC was produced only in the surface soil under constantly flooded conditions or flooding/non-flooding cycles. The DOC production was independent of temperature and soil water content under non-flooded condition, although CO2 evolution was highly correlated with these parameters. Aromatic carbon and hydrophobic acid contents in surface DOC were increased with wetter incubation treatments. In addition, positive linear correlations (r2=0.87) between CO2-C mineralization rate and DOC concentration were observed in the surface soil, but negative linear correlations (r2=0.70) were observed in the subsurface soil. Results imply that mineralization of soil organic carbon by microbes prevailed in the subsurface soil. A conceptual model using a kinetic approach is proposed to describe the relationships between CO2-C mineralization rate and DOC concentration in these soils.  相似文献   

17.
Dissolved organic matter (DOM), typically quantified as dissolved organic carbon (DOC), has been hypothesized to play many roles in pedogenesis and soil biogeochemical cycles, however, most research to date concerning forest soils has focussed on the high molecular weight (HMW) components of this DOM. This review aims to assess the role of low molecular weight (LMW) DOM compounds in the C dynamics of temperate and boreal forest soils focussing in particular on organic acids, amino acids and sugars. The current knowledge of concentrations, mineralization kinetics and production rates and sources in soil are summarised. We conclude that although these LMW compounds are typically maintained at very low concentrations in the soil solution (<50 μM), the flux through this pool is extremely rapid (mean residence time 1-10 h) due to continued microbial removal. Due to this rapid flux through the soil solution pool and mineralization to CO2, we calculate that the turnover of these LMW compounds may contribute substantially to the total CO2 efflux from the soil. Moreover, the production rates of these soluble transitory compounds could exceed HMW DOM production. The possible impact of climate change on the behaviour of LMW compounds in soil is also discussed.  相似文献   

18.
Dissolved organic nitrogen (DON) plays a key role in the N cycle of many ecosystems, as DON availability and biodegradation are important for plant growth, microbial metabolism and N transport in soils. However, biodegradation of DON (defined as the sum of mineralization and microbial immobilization) is only poorly understood. In laboratory incubations, biodegradation of DON and dissolved organic carbon (DOC) from Oi and Oa horizons of spruce, beech and cypress forests ranged from 6 to 72%. Biodegradation of DON and DOC was similar in most samples, and mineralization of DON was more important than microbial immobilization. Nitrate additions (0-10 mg N L−1) never influenced either DON immobilization by microorganisms or mineralization. We conclude that soil microorganisms do not necessarily prefer mineral N over DON for meeting their N demand, and that biodegradation of DON seems to be driven by the microbial demand for C rather than N. Quantifying the dynamics of DON in soils should include consideration of both C and N demands by microbes.  相似文献   

19.
Forest nitrogen (N) retention and soil carbon (C) storage are influenced by tree species and their associated soil microbial communities. As global change factors alter forest composition, predicting long-term C and N dynamics will require understanding microbial community structure and function at the tree species level. Because atmospheric N deposition is increasing N inputs to forested ecosystems across the globe, including the northeastern US, it is also important to understand how microbial communities respond to added N. While prior studies have examined these topics in mixed-species stands, we focused on the responses of different tree species and their associated microbial communities within a single forest type - a northern hardwood forest in the Catskills Mountains, NY. Based on prior studies, we hypothesized that N additions would stimulate extracellular enzyme activities in relatively labile litters, but suppress oxidative enzyme activities in recalcitrant litters, and tested for independent tree species effects within this context. During the 2007 growing season (May-June), we measured enzyme activities and microbial community composition (using phospholipid fatty acid analysis - PLFA) of the forest floor in single-species plots dominated by sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis), red oak (Quercus rubra), American beech (Fagus grandifolia) and eastern hemlock (Tsuga canadensis), species whose litters range from relatively labile to recalcitrant. Half the plots were fertilized with N by adding NH4NO3 (50 kg ha−1 y−1) from 1997 to 2009. Non-metric multidimensional scaling (NMS) and multi-response permutation procedures (MRPP) were used to examine microbial community structure and relationship to enzyme activities.We found that in response to N additions, both microbial community composition and enzyme activities changed; however the strength of the changes were tree species-specific and the direction of these changes was and not readily predictable from prior studies conducted in mixed-species stands. For example, in contrast to other studies, we found that N additions caused a significant overall increase in fungal biomass that was strongest for yellow birch (24% increase) and weakest for sugar maple (1% increase). Contrary to our initial hypotheses and current conceptual models, N additions reduced hydrolytic enzyme activities in hemlock plots and reduced oxidative enzyme activity in birch plots, a species with relatively labile litter. These responses suggest that our understanding of the interactions between microbial community composition, enzyme activity, substrate chemistry, and nutrient availability as influenced by tree species composition is incomplete. NMS ordination showed that patterns in microbial community structure (PLFA) and function (enzyme activity) were more strongly influenced by tree species than by fertilization, and only partially agreed with the structure-function relationships found in other studies. This finding suggests that tree species-specific responses are likely to be important in determining the structure and function of northeastern hardwood forests in the future. Enhanced understanding of microbial responses to added N in single and mixed-species substrates with varying amounts of lignin and phenols may be needed for accurate predictions of future soil C and N dynamics.  相似文献   

20.
The quality of dissolved organic matter (DOM) is highly variable and little information is available on the relation of DOM quality to the structure and composition of its parent soil organic matter (SOM). The effect of increasing N inputs to forest soils on the structure and composition of both SOM and DOM also remains largely unclear. Here we studied the release of DOM, its specific UV absorption and two humification indices (HIX) derived from fluorescence spectra from Oa material of 15 North- and Central-European Norway spruce (Picea abies (L.) Karst.) stands. The Oa material was incubated aerobically at 15 °C and water holding capacity over a period of 10 months and extracted monthly with an artificial throughfall solution. Soil respiration was determined weekly. The influence of mineral N inputs on composition of DOM and on respiration rates was investigated on periodically NH4NO3-treated Oa samples of eight selected sites. Release of dissolved organic carbon (DOC) from untreated Oa material samples ranged from 0.0 to 58.6 μg C day−1 g C−1 and increased with increasing C-to-N ratio. One HIX and UV absorption of DOM were negatively correlated to the degree of oxidation of lignin-derived compounds and positively to the C-to-N ratio and – HIX only – to the aromatic C content of SOM. Mineral N addition had no distinct effect on respiration rates. In six of eight samples the N-treatment caused an increase in specific UV absorption or one HIX of DOM. However, these effects were not statistically significant. Addition of mineral N did not affect the rates of DOM release. Our results show that properties of SOM largely determine the amount and quality of DOM in forest floors. Changes of DOM quality due to mineral N additions are likely, but we cannot confirm significant changes of DOM release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号