首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The Western Ghats in India is one of the 25 global hotspots of biodiversity, and it is the hotspot with the highest human density. This study considers variations in the regional fire regime that are related to vegetation type and past human disturbances in a landscape. Using a combination of remote sensing data and GIS techniques, burnt areas were delineated in three different vegetation types and various metrics of fire size were estimated. Belt transects were enumerated to assess the vegetation characteristics and fire effects in the landscape. Temporal trends suggest increasingly short fire-return intervals in the landscape. In the tropical dry deciduous forest, the mean fire-return interval is 6 years, in the tropical dry thorn forest mean fire-return interval is 10 years, and in the tropical moist deciduous forest mean fire-return interval is 20 years. Tropical dry deciduous forests burned more frequently and had the largest number of fires in any given year as well as the single largest fire (9900 ha). Seventy percent, 56%, and 30% of the tropical moist deciduous forests, tropical dry thorn forests, and tropical dry deciduous forests, respectively have not burned during the 7-year period of study. The model of fire-return interval as a function of distance from park boundary explained 63% of the spatial variation of fire-return interval in the landscape. Forest fires had significant impacts on species diversity and regeneration in the tropical dry deciduous forests. Species diversity declined by 50% and 60% in the moderate and high frequency classes, respectively compared to the low fire frequency class. Sapling density declined by ca. 30% in both moderate and high frequency classes compared to low frequency class. In tropical moist deciduous ecosystems, there were substantial declines in species diversity, tree density, seedling and sapling densities in burned forests compared to the unburned forests. In contrast forest fires in tropical dry thorn forests had a marginal positive effect on ecosystem diversity, structure, and regeneration.  相似文献   

2.
Dendrochronological dating of fire scars was used to determine the history of forest fires, and the effects of the fires and of slash‐and‐burn cultivation on forest structure were studied in eastern Finland. A total of 67 fire years were dated over an area of 26 km2. Forest fires increased towards the end of the 17th century and again towards the end of the 18th century, but decreased markedly in the middle of the 19th century. The mean fire interval was shorter near the historically known slash‐and‐burn cultivation areas than elsewhere. A forest survey map from 1913 was used to reconstruct the forest structure after the cessation of slash‐and‐burn cultivation and forest fires. This map showed that most of the younger forests were situated near old slash‐and‐burn cultivation areas, while the older forests were situated farther away from these. The proportion of deciduous trees decreased with increasing distance from slash‐and‐burn cultivation areas.  相似文献   

3.
Most of world's forests of different climates have a history of fire, but with different severities. Fire regimes for broadleaf deciduous forests have return intervals that vary from many decades (or less) to centuries (or more). Iran has a total of 1.2 million ha of temperate forest in the north, where fires burn about 300–400 ha annually. This study focused on the impact of fire on forest structure, tree species quality, and regeneration composition (specially beech) in the Chelir forest of northern Iran. The results showed that forest fires changed the structure and had different effects on tree species composition between burned and control areas. Thin barked species such as oriental beech (Fagus orientalis Lipsky) and coliseum maple (Acer cappadocicum Gled.) have been affected more than those with thick bark, like hornbeam (Carpinus betulus L.) and chestnut-leaved oak (Quercus castaneifolia C.A. Mey). The density of oriental beech regeneration in the unburned area was greater than in the burned area, while the quantity of regeneration of hornbeam, coliseum maple and velvet maple (Acer velutinum Boiss) was higher in burned area. Forest fire had a greater effect on oriental beech quality, and changed regeneration composition in the burned area. Fire prevention activities should be considered as a silvicultural treatment for preserving these valuable forests.  相似文献   

4.
The paper described the natural conditions and forest types in Northwestern Region of China. Most forests in the region are distributed in subalpine areas. It is important to protect the existent forests in the region for maintaining ecological balance. According to the statistics results of 1991~2000, the paper analyzes the forest fires distribution and fire severity. Annually the numbers of forest fires range from 52 to 240. The incidence rate of forest fires in Northwestern Region is under 0.33 per ten thousand ha. There are 0.67-64.4 ha burned area per ten thousand ha forest. The main reasons for forest fires lie in the dry weather conditions, many firebrands, and high fuel loading. The strategies of fire management in the region are to stress the fire education in forest regions, strength the firebrands' management, emphasize the fuel management, and improve the fire monitoring and fire control ability.  相似文献   

5.
The role of forest fires in the soil dynamics and global carbon cycle has not been comprehensively studied in tropical forests as the effects of fire on tropical forest soils can be extremely variable. This study was aimed to understand how repeated fires affect physical and chemical properties of soil in a tropical dry deciduous forest and alter soil fertility and health. The study was carried out in the dry deciduous forest of Mudumalai Tiger Reserve. Soil samples were collected from unburned (B0) to six-time burned (B6) plots. Samples were collected from each plot from three different depths viz. 0–10 (Top), 10–20 (Middle), and 20–30 cm (Bottom) and analyzed for soil physical and chemical properties. Soil pH, EC, WHC decreased with increasing fire frequencies while bulk density increased. Organic Carbon, Total N, and available P decreased with increasing fire frequencies whereas extractable K initially increased but decreased with the very high frequency of fires. NO3?N slightly decreased with high fire frequencies but NH4?N decreased significantly with increasing fire frequency. These results provide a new insight regarding the influence of repeated fires on soil that will be valuable to understand the effect of fire on the recovery of soils and nutrient dynamics.  相似文献   

6.
在全球变暖背景下森林火灾发生的危险性持续增加,可燃物是唯一可人为调控的火环境因子.与天然林相比,人工林结构简单,且以富含油脂的纯林为主,同时多为中幼龄林,易发生森林火灾.文中从人工林可燃物特点及其与林火引燃和火行为的角度出发,综述了人工林可燃物管理技术,对管理中存在的问题进行了分析,建议今后人工林可燃物管理在降低森林易...  相似文献   

7.
8.
In densely populated areas like the Mediterranean, wildfire extent is mostly limited by fire suppression and fuel fragmentation. Fire is known to spread more easily through high fuel loads and homogenous terrain and it is supposed to reduce fuel amount and continuity, creating a negative feedback. Here we combine information from administration fire records, satellite imagery fire scars and land use/cover maps to asses the effects of fire on landscape structure and vice versa for three areas in Catalonia (NE Spain). We worked with three spatial focuses: the actual fire scar, 1 km2 squares and 10 km2 squares. In these regions agriculture land abandonment has lead to increased fuel continuity, paralleled by an increment of fire size. We confirm that fire spread is facilitated by land use/cover types with high fuel load and by homogeneous terrain and that fire reduces fuel load by transforming forests into shrublands. But we also found that fire increased landscape homogeneity, creating a positive feedback on fire propagation. We argue that this is possible in landscapes with finer grain than fire alone would create. The lack of discontinuities in the fuel bed diminishes the extinction capacity of fire brigades and increases the risk of large fires. We recommend that fire management should focus more on conservation of the traditional rural mosaic in order to prevent further increases in fuel continuity and fire risk.  相似文献   

9.
The effect of fires on Cerambycidae, Buprestidae and Lucanidae were studied at 23 sites within a chestnut forest in southern Switzerland. We compared six unburnt sites, two freshly burnt sites, eight sites which burned once at different times in the last 30 years, and seven sites where fires occurred repeatedly in the last 30 years. The diversity and the species composition of the three xylobiont families were related to various ecological variables at two levels of spatial scale, a small scale of 0.25 ha and a large scale of 6.25 ha. These variables were: fire frequency, time since the last fire, clear cutting after the fire, forest structure, amount of dead wood, and habitat mosaic. The fire does not have a direct effect on the xylobiont beetles community at small scale; however, fire has an indirect effect by maintaining a relatively open forest structure. The mosaic of forest areas burnt with different frequencies and at different times was an important factor influencing species richness and species composition at the large spatial scale.Data presented here supports the strategy to conserve the diversity and includes species composition of xylobiont fauna in deciduous forests: (i) at small spatial scale, to maintain highly structured and relatively open stands with large amounts of dead wood and big oak trees; (ii) at large spatial scale, to favour a mosaic of different forest habitats and successional stages. A forest offering a good structural diversity is important for maintaining landscape complexity and thus a high species richness of xylophagous beetles.  相似文献   

10.
Wild forest fires are one of the greatest environmental disasters affecting forest resources. Along the coastal zone of the Mediterranean region in Turkey,forested areas are classified as first-degree, fire-sensitive areas. Every year, thousands of hectares of forests have been destroyed in Turkey. In this study, fire-access zones were determined in the Mediterranean forests of Turkey, by utilizing geographic information systems(GIS) technology. The effective reach distance of fire hoses from both sides of roads was considered in order to delineate fireaccess zones. The effective reach distance can vary based on the technical capabilities and hydraulic capacity of fire trucks(minimum and maximum pressures on water pump);terrain structures(uphill, downhill and flat); and ground slope. These factors and their influences were studied in fire sensitive forest areas located in the eastern Mediterranean city of Kahramanmaras? in Turkey. First, terrain structures on both sides of the road network and groundslope classes were determined based on GIS data layers.Then, fire access zones were delineated according to water pressure data, terrain structures, and ground-slope classes.The results indicated that 69.30 % of the forested areas were within the fire-access zones, while the rest of the forest was out of reach the fire hoses. The accessible areas were also calculated for forested areas with different firesensitivity degrees. The accessible areas were 69.59, 69.96,and 67.16 % for the forested areas that are sensitive to fires at the first, second, and third degrees, respectively. This finding has implications for the monitoring and management of fire threats in areas outside of the reach distance.The outside areas should receive extra attention and monitoring during the fire season so that fires are detected ahead of time and management has sufficient time to react.Besides, new roads should be considered for these areas in order to access more lands in a shorter amount of time.  相似文献   

11.
森林可燃物管理研究进展   总被引:4,自引:0,他引:4  
立地条件、天气和可燃物决定了森林火灾的强度与烈度, 三大因素中, 只有对可燃物能进行有效的经营管理。研究表明:1)过去60~100年, 由于森林结构和组成的改变, 可燃物载量增加, 易发生高强度的森林火灾。2)林火模型、实践经验以及现场观察表明, 在特定的天气条件下, 林火行为受可燃物结构与组成的影响很大。3)减少重特大森林火灾的发生就必须降低地表可燃物的数量、密度、连续性, 移除过度可燃物, 或改造植被, 降低森林植被的燃烧性等。4)可燃物处理有效期评估涉及林火蔓延、林火强度、烈度、火场规模和扑火能力的研究, 景观尺度手段优于林分尺度。  相似文献   

12.
In boreal forests, historical variations in the area disturbed by natural disturbances or harvesting have rarely been compared. We measured temporal and spatial variations in areas affected by severe fires and clearcutting throughout the 20th century in a 57, 332 km2 section of the eastern Canadian boreal forest. We examined the effects of these disturbances on spatio-temporal variations in the abundance of forests >60 years. Natural variability for the abundance of forests >60 years was estimated from simulations of natural disturbance regimes. We also measured compositional and structural differences between three categories of stands originating from relatively recent disturbances (∼50 years; clearcutting, fires, and clearcutting followed by fires), and one category of stands that were undisturbed for at least 200 years. At the regional level, we observed that forests >60 years gradually became scarcer throughout the 20th century due to a gradual expansion of harvested areas, an effect most pronounced in the southern part of the region, where mature and old forest abundance was clearly outside the range of natural variability at the end of the studied period. At the stand level, forest composition and structure differed between stand-origin categories: clearcutting-origin stands contained more balsam fir (Abies balsamea), fire-origin stands more black spruce (Picea mariana), and fire/clearcutting-origin stands more hardwoods (Betula papyrifera and Populus tremuloides). Overall, we estimate that strict forest management targets based on natural disturbance regimes will be difficult to achieve in eastern North-American boreal forests, most notably because contemporary disturbance rates, including both clearcutting and fire, have gradually become higher than the fire rates observed during the preindustrial period.  相似文献   

13.
Within the eastern deciduous forest region, forest composition varies, with some areas dominated by a mix of oaks (Quercus spp.) and other areas dominated by a mix of sugar maple (Acer saccharum) and other tree species. Prescribed fire is being used on an experimental basis to assess its effectiveness in restoring and maintaining oak-dominated forests. Maple-dominated forests are susceptible to invasion by non-native earthworms, such as Lumbricus terrestris, given the palatability of leaf litter and suitable soil conditions, especially in northern parts of the region. What are the implications of this variation on leaf litter availability and habitat for ground-nesting songbirds? We investigated this question by comparing forest composition, leaf litter, and songbird communities in maple-dominated forests in west-central Indiana and oak-dominated forests, recently burned and unburned, in southeastern Ohio. We also assessed abundance of earthworms and decomposition rates of different types of leaves in the maple-dominated forests in Indiana. Leaf litter and ground-nesting bird species were abundant in unburned oak-dominated forests, but were absent or nearly absent in recently burned oak-dominated forests and in maple-dominated forests. The lack of leaf litter and absence of ground-nesting bird species in maple-dominated forests may be due to the combination of abundant non-native earthworms, alkaline and calcium-rich soils, palatable leaves, and rapid leaf litter decomposition rates. Effects of burning on leaf litter and ground-nesting bird species in oak-dominated forests are probably temporary, as long as prescribed fires are not applied on a frequent or widespread basis. Our study is the first one to show a correlation between forest composition, leaf litter availability, earthworm abundance, and songbird populations. Many researchers are investigating effects of non-native earthworm invasions on ecosystem properties in eastern deciduous forests. We recommend that researchers should also monitor songbird populations to assess whether declines in ground-nesting bird populations are occurring in response to these changes.  相似文献   

14.
Abstract

We discuss die human impact on the forests of northwestern Europe, especially changes in disturbance regimes and changes in the density of important features for biodiversity preservation. In southern Sweden, human impacts have decreased densities of old (>150 years) living trees and large (DBH > 40 cm) dead trees to less than 1% of their original densities. In the same fashion, forest fires have decreased enormously in extent during the last 300 years, except in southwestern Sweden where the original fire frequency was presumably lower. These changes have had a tremendous impact on forest biodiversity. The number of extinctions in Sweden increases rapidly from the north to the south both for forest living species and other species. The number of threatened species shows a similar pattern and it is probable that many of these species belong to the extinction debt, especially those species that are dependent on sun-exposed old living and dead deciduous trees. Rapid restoration measures, such as increasing the number of old sun exposed oaks and large dead deciduous trees in the vicinity of existing hot-spots, may prevent some impending extinctions. Fire is important to use when managing forests for preserving biodiversity, especially in areas where fires more recently have been suppressed and where a relict fire-adapted fauna is Still present.  相似文献   

15.
福建林火的发生特点与防治对策探讨   总被引:5,自引:0,他引:5  
对福建省近年发生的197起森林火灾归纳、分析表明,森林火灾发生频率最高的是生产用火,林火发生以2、3月份最多;上午10时至下午18时为林火发生的高峰;预防林火发生,应确定森林防火戒严期,开展火险预测预报,完善防火设施,以利于迅速扑火。  相似文献   

16.
Large forest fires have recently increased in frequency and severity in many ecosystems. Due to the heterogeneity in fuels, weather and topography, these large fires tend to form unburned islands of vegetation. This study focuses on a large forest fire that occurred in north-eastern Spain in 1998, which left large areas of unburned vegetation within its perimeter. Based on a satellite post-fire severity map we searched for the relative influence of biotic and abiotic factors leading to unburned island formation. We divided the area of the fire into individual units we called “slopes” which were meant to separate the differential microclimatic effects of contrasted aspects. The number of unburned islands and their areas were related to 12 variables that influence their formation (i.e. land cover composition, aspect, steepness, forest structure, two landscape indices and weather variables). We hypothesized that unburned vegetation islands would concentrate on northern aspects, in less flammable forests (i.e. broadleaf species) and higher fragmentation to interrupt the advance of fire. While north and western aspects did have a higher presence of unburned vegetation islands, our study suggests greater presence of islands in slopes that are larger (i.e. more continuous areas with relatively homogeneous aspect), with greater proportions of forest cover, with higher wood volumes and with lower proportions of broadleaf species. Climate also played a role, with relative humidity and wind speed positively and negatively correlated to island formation, respectively. Unburned vegetation was more frequent on slopes with lower diversity of land covers and higher dominance of one land cover in the slope. Since slopes with only one land cover (i.e. forests) had more islands than slopes with multiple cover types, we infer that under severe meteorological conditions, fragmented forests can be more affected by wind and by water stress, thus burning more readily than forests that are protected from this edge phenomenon. These results would reinforce forest management strategies that avoid linear features (fire-lines and fire-breaks), to enhance fuel treatments that focus on areas and minimize fragmentation.  相似文献   

17.
18.
Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura.Overall 10,957 individual trees belonging to 46 family,103 genera and 144 species were counted at ≥30 cm DBH(diameter at breast height) using 28 permanent belt transects with a size of 1 ha(10 m × 1000 m).Four different tree communities were identified.The primary forests was dominated by Shorea robusta(mean density 464.77 trees ha-1,105 species) and Schima wallichii(336.25 trees ha-1,82 species),while the secondary forests was dominated by Tectona grandis(333.88 trees ha-1,105 species) and Hevea brasiliensis(299.67 trees ha-1,82 species).Overall mean basal area in this study was 18.01m 2 ·ha-1 ;the maximum value was recorded in primary Shorea forest(26.21 m 2 ·ha-1).Mean density and diversity indices were differed significantly within four different communities.No significant differences were observed in number of species,genera,family and tree basal cover area.Significant relationships were found between the species richness and different tree population groups across the communities.Results revealed that species diversity and density were increased in those forests due to past disturbances which resulted in slow accumulation of native oligarchic small tree species.Seventeen species were recorded with <2 individuals of which Saraca asoka(Roxb.) de Wilde and Entada phaseoloides(L.) Merr.etc.extensively used in local ethno-medicinal formulations.The present S.robusta Gaertn dominated forest was recorded richer(105 species) than other reported studies.Moraceae was found more speciose family instead of Papilionaceae and Euphorbiaceae than other Indian moist deciduous forests.Seasonal phenological gap in such moist deciduous forests influenced the population of Trachypithecus pileatus and capped langur.The analysis of FIV suggested a slow trend of shifting the population of Lamiaceae group by Moraceae species in secondary T.grandis L.dominated community.  相似文献   

19.
Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and brush onto the surface fuel layer. Little data exist quantifying masticated fuel beds. Despite the paucity of data on masticated fuels, land managers desire fuel loading, potential fire behavior and fire effects such as tree mortality information for masticated areas. In this study we measured fuel characteristics before and after mastication and mastication plus prescribed burn treatments in a 25-year old ponderosa pine (Pinus ponderosa C. Lawson) plantation. In addition to surface fuel characteristics and tree data collection, bulk density samples were gathered for masticated material. Regressions were created predicting masticated fuel loading from masticated fuel bed depth. Total masticated fuel load prior to fire treatment ranged from 25.9 to 42.9 Mg ha−1, and the bulk density of masticated fuel was 125 kg m−3. Mastication treatment alone showed increases in most surface fuel loadings and decreases in canopy fuel loads. Masticated treatment in conjunction with prescribed burning reduced both surface and canopy fuel loads. Detailed information on fuel structure in masticated areas will allow for better predictions of fire behavior and fire effects for fire in masticated fuel types. Understanding potential fire behavior and fire effects associated with masticated fuels will allow managers to make decisions on the possibility of mastication to create fuel breaks or enhance forest health.  相似文献   

20.
Pre-fire woody fuel (diameter > 0.6 cm) structure and its consumption by fire were measured at experimental/prescribed fires and high intensity wildfires in eucalypt forests in southern Australia in order to better understand and model the dynamics of woody fuel consumption. Two approaches were used in model development: (1) a fire or plot level analysis, based on a dataset which includes the proportion of the pre-fire woody fuel load consumed at each fire; and (2) a stage level analysis, based on a dataset where woody fuel consumption was measured at a woody fuel particle level (i.e. pre-fire and post-fire diameter). For the plot level analysis a generalised linear model (GLM) approach identified the Forest Fire Danger Index (FFDI) as the best predictor of the proportion of woody fuel consumed, with an R2 of 0.58 and mean absolute error of 10%. The stage level analysis recognised the various combustion stages through which a burning woody particle would pass, but failed to develop an accurate model that predicted the ignition, partial and full consumption of woody fuels based on fuel, fire behaviour and environmental variables. Analysis showed that consumption of woody fuel particles is highly variable and that variation in fire behaviour potentially has a greater impact on woody fuel consumption, than does variation in fuel characteristics (e.g. state of decay, fuel suspension and interactions with other fuel particles). The FFDI GLM provides forest and fire managers with a tool to manage woody fuel consumption objectives and may assist fire managers with forecasting post-frontal fire behaviour. The FFDI GLM may also assist forest and fire managers to better meet land management goals and to comply with air quality and emission targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号