首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
韦琴  黄婉星 《安徽农业科学》2014,(19):6379-6381,6457
[目的]优化胡萝卜渣膳食纤维的提取工艺.[方法]采用单因素试验,确定酸提胡萝卜渣中水溶性膳食纤维的最佳工艺条件;用中性蛋白酶去除以上残渣中的蛋白质,通过单因素、正交试验,确定α-淀粉酶提取水不溶性膳食纤维的最佳工艺条件.[结果]胡萝卜渣中水溶性膳食纤维的最佳提取条件是:pH为3,水浴温度为90℃,水浴时间为80 min,最佳料液比为1∶10 g/ml,此条件下水溶性膳食纤维的提取率为5.42%;水不溶性膳食纤维的最佳提取工艺条件是:pH为6,水浴温度70℃,水浴时间60 min,加α-淀粉酶量0.6%,此条件下水不溶性膳食纤维的提取率为77.63%.[结论]该方法可为进一步优化膳食纤维提取工艺条件提供科学依据.  相似文献   

2.
葡萄皮渣中可溶性膳食纤维提取工艺研究   总被引:3,自引:0,他引:3  
【目的】探讨酸法与酶法提取葡萄皮渣可溶性膳食纤维的最佳工艺组合,并比较8种酿酒葡萄皮渣中可溶性膳食纤维含量的差异。【方法】(1)用HCl提取葡萄皮渣中的可溶性膳食纤维,以HCl浓度、提取温度、提取时间、料液比4因素设计四因素三水平正交试验,确定酸法提取葡萄皮渣可溶性膳食纤维的最佳工艺条件;(2)以纤维素酶液提取葡萄皮渣中的可溶性膳食纤维,设计四因素三水平正交试验(4因素包括纤维素酶用量、提取温度、提取时间、料液比),确定酶法提取葡萄皮渣中可溶性膳食纤维的最佳工艺条件;(3)采用酸法和酶法获得的最佳工艺条件,比较8种酿酒葡萄皮渣中可溶性膳食纤维的含量。【结果】(1)酸法提取葡萄皮渣可溶性膳食纤维的最佳工艺组合为:HCl浓度0.389mol/L,提取温度75℃,提取时间75min,料液比1∶20;纤维素酶液提取葡萄皮渣可溶性膳食纤维的最佳工艺组合为:纤维素酶用量2.0%,提取温度55℃,提取时间210min,料液比1∶20。(2)在最佳工艺条件下,酸法提取8种酿酒葡萄皮渣中可溶性膳食纤维含量占葡萄皮渣干质量的27%~45%;纤维素酶液提取8种酿酒葡萄皮渣中可溶性膳食纤维含量占葡萄皮渣干质量的24%~42%。佳美葡萄所得的SDF含量最高,分别为455.2和421.0mg/g,其次为霞多丽(438.6和401.8mg/g),而西拉最低,分别为277.2和242.8mg/g。【结论】HCl与纤维素酶液提取葡萄皮渣中可溶性膳食纤维是可行的,且HCl提取的可溶性膳食纤维的产量普遍高于纤维素酶液,但差异不显著。  相似文献   

3.
酶法提取啤酒糟中水溶性膳食纤维的研究   总被引:1,自引:0,他引:1  
[目的]采用响应面法优化啤酒糟中水溶性膳食纤维的提取工艺,以期提高啤酒糟的综合利用价值。[方法]采用酶法提取啤酒糟中水溶性膳食纤维。在单因素试验基础上,以温度、纤维素酶量、固液比3个因素为自变量,水溶性膳食纤维得率为响应值,进行响应面分析,确定最佳工艺参数。[结果]啤酒糟中水溶性膳食纤维最佳提取条件:温度为50.8℃、纤维素酶量为6.7%、固液比(g∶m L)为1∶14。当满足最佳提取条件时,验证值为5.16%。根据最佳提取条件进行验证试验,水溶性膳食纤维的实际得率为5.09%,相对误差为1.36%。[结论]酶法提取提高了水溶性膳食纤维得率,且操作简单、可重复性强,适用于啤酒糟中水溶性膳食纤维的提取。  相似文献   

4.
【目的】建立酶法提取玉米芯膳食纤维方法,优化复合酶法改性玉米芯不溶性膳食纤维(IDF)制 备可溶性膳食纤维(SDF)工艺。【方法】以玉米芯为原料,通过单因素试验优化碱性蛋白酶、α- 淀粉酶和糖 化酶预处理提取玉米芯粗膳食纤维(TDF)条件,结合正交试验优化复合酶(纤维素酶和木聚糖酶)法改性 IDF 制备 SDF 工艺。【结果】生物酶法提取玉米芯 TDF 条件:料液比 1 ∶ 10、pH 9.0、1.4% 碱性蛋白酶 50 ℃酶解 60 min;pH 6.5、0.3% 的 α- 淀粉酶和糖化酶(1 ∶ 1)、60 ℃水解 60 min,IDF 得率为 69.35%。复合酶法改 性 IDF 最佳工艺为:pH 5.0、温度 50 ℃、纤维素酶 1.2%、木聚糖酶 1.2%、酶解时间为 6 h、料液比为 1 ∶ 10, SDF 得率可达 22.16%。处理后的 SDF 持水力为 6.55 g/g,膨胀性为 6.69 mL/g,持油力为 4.65 g/g,分别比改性前 提高 40.26%、48.67%、74.16%。【结论】复合酶法改性玉米芯 IDF 制备 SDF 得率较单一纤维素酶和单一木聚糖 酶处理的 SDF 得率高,且显著提高产物 SDF 的持水力、持油力和膨胀性。  相似文献   

5.
利用苹果皮渣制备膳食纤维的工艺研究   总被引:3,自引:0,他引:3  
以苹果皮渣为原料,进行了酸水解法提取苹果皮渣中的水溶性膳食纤维,酶法和化学法提取水不溶性膳食纤维试验。结果表明,提取水溶性膳食纤维的适宜条件为:水解温度80℃,pH 1.5,水解时间150 min,加水比为12∶1,水溶性膳食纤维的得率为13.54%,成品呈浅黄色。酶法提取水不溶性膳食纤维的最佳工艺条件为:α-淀粉酶的添加量是0.4%,酶解温度为70℃,酶解时间为40 min,木瓜蛋白酶的添加量为0.2%,酶解温度为45℃,酶解时间为40 min,水不溶性膳食纤维的产率高达39.01%,膨胀力为27 mL/g,持水力为13.14 g/g。化学法制得的水不溶性膳食纤维的产率仅为23.30%,膨胀力为18 mL/g,持水力为2.6 g/g。  相似文献   

6.
【目的】对超高压提取苹果渣中多酚的条件进行优化,以期获得最佳的苹果渣多酚提取参数。【方法】在对超高压压力、超高压提取时间、料(g)液(mL)比、乙醇质量分数4个单因素进行试验的基础上,通过响应面法优化设计,建立超高压法提取苹果渣中多酚工艺的二次多项式模型,对提取工艺参数进行优化。【结果】确立了超高压辅助提取苹果渣中多酚的最佳工艺参数:超高压压力160MPa,超高压提取时间9min,乙醇体积分数60%,料(g)液(mL)比1∶28,在此条件下苹果渣中多酚得率为2 087.22mg/kg。【结论】建立了超高压法提取苹果渣中多酚的二次多项式模型,获得了多酚得率较高的最佳工艺参数。  相似文献   

7.
以竹荪为原料,用微波辅助法提取其膳食纤维。在单因素试验结果的基础上,采用响应面法对提取工艺进行优化,以微波功率、微波提取温度、提取时间、液料比为自变量,利用Box-Behnken的中心组合设计原理进行响应面设计,优化提取工艺参数。结果表明:竹荪水溶性纤维(SDF)的最佳提取工艺条件为微波功率490 W、微波提取温度60℃、提取时间10 min、液料比20∶1,此条件下竹荪SDF得率可达12.26%,非水溶性纤维(IDF)得率为74.34%,该SDF得率与SDF得率的最大估计值比较,相对误差约为0.65%,且重复性也很好,因此,该优化提取工艺参数准确可靠。  相似文献   

8.
以莜麦麸皮不溶性膳食纤维为原料,采用碱法对原料改性工艺进行了研究。通过单因素试验、正交试验优化改性工艺条件,结果表明,碱法对莜麦麸皮中不溶性膳食纤维的最佳改性工艺为pH值14、碱解温度90℃、碱解时间120 min、料液比1∶60。在此条件下,改性得到的莜麦麸皮水溶性膳食纤维得率可达51.17%。  相似文献   

9.
以榨汁后的蓝莓果渣为原料,提取可溶性膳食纤维后采用碱法提取不溶性膳食纤维,在单因素试验基础上采用Design-Expert 8.0.6软件中的Box-Behnken设计响应面试验,考察液料比、浸提时间、碱液质量分数、浸提温度对不溶性膳食纤维提取率的影响,优化提取工艺。结果表明:最佳提取工艺条件为液料比20∶1(m L∶g)、浸提时间90 min、碱液质量分数5%、浸提温度50℃,蓝莓果渣中不溶性膳食纤维的得率为41.06%;该不溶性膳食纤维的持水力为13.19%,溶胀度为15.56 m L/g。同时利用扫描电子显微镜对蓝莓果渣不溶性膳食纤维的表面形态进行了表征。  相似文献   

10.
【目的】以三豆饮豆渣为原料制备膳食纤维,利用单因素试验和响应面法相结合优化制备工艺条件。【方法】通过在酸提单因素试验基础上,采用响应面法以料液比、提取时间、提取温度、提取pH为因素,豆渣膳食纤维含量为响应值,以获得最优酸提工艺。基于最优酸提工艺条件下提取过的豆渣,在碱提单因素试验基础上,采用响应面法以料液比、提取时间、提取温度、提取pH为因素,豆渣膳食纤维含量为响应值,以获得最优碱提工艺。【结果】最优酸提工艺为:料液比(1∶25)、提取时间2.8 h、提取温度87℃、提取pH 4.6。酸提后膳食纤维含量为59%,比原豆渣膳食纤维含量增加14.4%;最优碱提工艺为:料液比(1∶35)、提取时间4 h、提取温度56℃、提取pH 11.8。碱提后膳食纤维含量为75.7%,比原豆渣膳食纤维含量增加30.1%。【结论】经过工艺验证,豆渣中膳食纤维含量实测值和预测值基本一致,该工艺稳定可行,对三豆饮豆渣循环利用具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号