首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Hoop pine (Araucaria cunninghamii) is a nitrogen (N)-demanding native Australian softwood plantation species. Litter quality and its effects on soil mineral N and 15N transformations have not been well studied in the hoop pine plantation and adjacent native forest. The present study was conducted to determine the impact of 15N injection depth and litter additions on the dynamics and fate of mineral 15N and also to compare the difference in litter quality, 15N dynamics, and fate between the hoop pine plantation (HP) and the adjacent native forest (NF).

Materials and methods

The experiments were done in the Yarraman State Forest (26°52′ S, 151°51′ E), southeastern Queensland. Materials of litter addition were prepared on the basis of ten random samples of litters taken from the NF and HP sites using a 1?×?1-m quadrat. Litter additions were defined as: SL represented the average condition of forest floor in the forest ecosystems and DL represented the double average amount of litters in the forest ecosystem. Experiment 1 covered 2 forest types (NF and HP)?×?3 litter rates (nil litter, SL, and DL)?×?3 15N injection depths (0, 2.5, and 5.0 cm). Experiment 2 included 2 forest types (NF and HP)?×?2 litter rates (nil litter and SL)?×?3 injection depths (0, 2.5, and 5.0 cm) of distilled water. The in situ core incubation method was used with an incubation period of 28 days. The isotope ratio of mineral N or/and total N (soil and litter) were analyzed using an isotope ratio mass spectrometer with a Eurovector elemental analyzer (Isoprime-EuroEA 3000).

Results

Total N and δ 15N were significantly higher, and C/N ratios and δ 13C were significantly lower in the NF litters than in the HP litters. The NF litters had significantly lower total 15N and total 15N recovery than the HP litters after 15N addition. Litter addition had no significant effect on mineral 15N transformations and δ 15N in the NF soil, but decreased 15NO 3 ? –N, mineral 15N, and δ 15N and increased immobilized 15N in the HP soil. The depth of added 15NH 4 + significantly altered total 15N, δ 15N, and total 15N recovery in the litters, whereas it did not influence 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, or immobilized 15N in soils in the two forest ecosystems.

Discussion

The NF litters had significantly higher δ 15N than the HP litters, indicating that the NF soil had a higher rate of nitrification than the HP soil. Higher litter quality in the NF was an important driving force for N cycling to promote strong N dynamics in the NF soil over the HP soil. The HP litters had significantly higher total 15N than the NF litters after 15N addition, implying that soil mineral N was relatively deficient in the HP in comparison with the NF. Litters decreased nitrification and increased immobilization in the HP soil, showing forest litters resulted in more N immobilization to prevent the loss of substantial quantities of NO 3 ? through leaching or denitrification. The depth of 15N injection did not significantly alter concentrations of 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, and immobilized 15N in the NF and HP soils, suggesting that the depth of 15N injection had no significant influence on the evaluation of soil N transformations.

Conclusions

The NF litters had significantly higher total N and δ 15N and lower C/N ratios and δ 13C than the HP litters. Mineral N was relatively insufficient in the HP soil relative to the NF soil. The HP litters facilitated more N immobilization in the soil to reduce the loss of substantial quantities of NO 3 ? through leaching or denitrification. The depth of 15N added did not significantly alter concentrations of 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, and immobilized 15N in the NF and HP soils. The application of 15N solution by uniform sprinkling onto the soil surface can be used to study in situ field N (including mineral 15N) transformations in the 10-cm depth soils of both forest ecosystems.  相似文献   

2.
Upland soils are the most important terrestrial sink for the greenhouse gas CH4. The oxidation of CH4 is highly influenced by reactive N which is increasingly added to many ecosystems by atmospheric deposition and thereby also alters the labile C pool in the soils. The interacting effects of soil N availability and the labile C pool on CH4 oxidation are not well understood. We conducted a laboratory experiment with soil columns consisting of homogenised topsoil material from a temperate broad-leaved forest to study the net CH4 flux under the combined or isolated addition of NO 3 ? and glucose as a labile C source. Addition of NO 3 ? and glucose reduced the net CH4 uptake of the soil by 86% and 83%, respectively. The combined addition of both agents led to a nearly complete inhibition of CH4 uptake (reduction by 99.4%). Our study demonstrates a close link between the availability of C and N and the rate of CH4 oxidation in temperate forest soils. Continued deposition of NO 3 ? has the potential to reduce the sink strength of temperate forest soils for CH4.  相似文献   

3.
The effects of elevated atmospheric SO 4 2? deposition on S cycling in forest soils were assessed in an irrigation experiment using stable S isotopes. Over a period of 20 months, core lysimeters of five acidic forest soils from Southern Germany with different parent material and pedogenesis were irrigated with solutions chemically similar to canopy throughfall. Sulfate deposition in three experimental variants corresponded to 23, 42 and 87 kg S ha?1 yr?1. The SO 4 2? used for irrigation had aδ 34S ratio of +28.0‰ CDT (Canon Diablo Troilite standard), differing by more than +25‰ from natural and anthropogenic S in Southern Germany. A combination of chemical and isotopic analyses of soil and seepage water samples was used to elucidate the fluxes and transformations of simulated wet SO 4 2? deposition in each soil core. Retention of experimentally deposited S ranged from 57±5% in coarse-grained soils low in sesquioxides and clay, to 80±8% in loamy soils with high sesquioxide content. The sesquioxide content proved to be the major factor governing S retention. The ratio of S retained as inorganic SO 4 2? (mainly by adsorption) to that incorporated into organic compounds (presumably by microbial synthesis) ranged from 2 to 4. For the organic S pool, the amount of S retained as C-bonded S exceeded by far that immobilized as ester sulfate in four of the five soils. Application of34S-enriched SO 4 2? appears to be a suitable experimental tool to assess fluxes and transformations of deposited S in forest soils, if aerobic conditions are maintained. In contrast to radioactive S tracers, the concept should be applicable not only in laboratory and lysimeter experiments, but also in long term studies of whole forest ecosystems (e.g., experimental watersheds).  相似文献   

4.
Karst watersheds are a major source of drinking water in the European Alps. These watersheds exhibit quick response times and low residence times, which might make karst aquifers more vulnerable to elevated nitrogen (N) deposition than non-karst watersheds. We summarize 13 years of monitoring NO 3 ? , NH 4 + , and total N in two forest ecosystems, a Norway spruce (Picea abies (L.) Karst.) forest on Cambisols/Stagnosols (IP I) and a mixed beech (Fagus sylvatica L.) spruce forest on Leptosols (IP II). N fluxes are calculated by multiplying concentrations, measured in biweekly intervals, with hydrological fluxes predicted from a hydrological model. The total N deposition in the throughfall amounts to 26.8 and 21.1 kg/ha/year in IP I and IP II, respectively, which is high compared to depositions found in other European forest ecosystems. While the shallow Leptosols at IP II accumulated on average 9.2 kg/ha/year of N between 1999 and 2006, the N budgets of the Cambisols/Stagnosols at IP I were equaled over the study period but show high inter-annual variation. Between 1999 and 2006, on average, 9 kg/ha/year of DON and 20 kg/ha/year of DIN were output with seepage water of IP I but only 4.5 kg/ha/year of DON and 7.7 kg/ha/year of DIN at IP II. Despite high DIN leaching, neither IP I nor IP II showed further signs of N saturation in their organic layer C/N ratios, N mineralization, or leaf N content. The N budget over all years was dominated by a few extreme output events. Nitrate leaching rates at both forest ecosystems correlated the most with years of above average snow accumulation (but only for IP I this correlation is statistically significant). Both snow melt and total annual precipitation were most important drivers of DON leaching. IP I and IP II showed comparable temporal patterns of both concentrations and flux rates but exhibited differences in magnitudes: DON, NO 3 ? , and NH 4 + inputs peak in spring, NH 4 + showed an additional peak in autumn; the bulk of the annual NO 3 ? and DON output occurred in spring; DON, NO 3 ? , and NH 4 + output rates during winter months were low. The high DIN leaching at IP I was related to snow cover effects on N mineralization and soil hydrology. From the year 2004 onwards, disproportional NO 3 ? leaching occurred at both plots. This was possibly caused by the exceptionally dry year 2003 and a small-scale bark beetle infestation (at IP I), in addition to snow cover effects. This study shows that both forest ecosystems at Zöbelboden are still N limited. N leaching pulses, particularly during spring, dictate not only annual but also the long-term N budgets. The overall magnitude of N leaching to the karst aquifer differs substantially between forest and soil types, which are found in close proximity in the karstified areas of the Northern Limestone Alps in Austria.  相似文献   

5.

Purpose

Nitrous oxide (N2O) production and reduction rates are dependent on the interactions with each other and it is therefore important to evaluate them within the context of simultaneously operating N2O emission and reduction. The objective of this study was to quantify the simultaneously occurring N2O emission and reduction across a range of subtropical soils in China, to gain a mechanistic understanding of potential N2O dynamics under the denitrification condition and their important drivers, and to evaluate the potential role of the subtropical soils as either sources or sinks of N2O through denitrification.

Materials and methods

Soils (45, from a range of different land uses and soil parent materials) were collected from the subtropical region of Jiangxi Province, China, and tested for their potential capacity for N2O emission and N2O reduction to N2 during denitrification. N2O emission and reduction were determined in a closed system under N2 headspace after the soils were treated with 200?mg?kg?1 NO 3 ? -N and incubation at 30?°C for 28?days. The soil physical and chemical properties, the temporal variations in headspace N2O concentration, and NO 3 ? -N and NH 4 + -N concentrations in the soil slurry were measured.

Results and discussion

Variations in N2O concentration (N) over incubation time (t) were consistent with an equation in which average R 2?=?0.84?±?0.11 (p?<?0.05): $ N = A \times \left( {1 - \exp \left( { - {k_1} \times t} \right)} \right) - B \times \exp \left( {{k_2} \times t} \right) $ , where A is the total N2O emission during the incubation, B is a constant, and k 1 and k 2 are the N2O emission constant and reduction constants, respectively. The results of the simulation showed that k 1 was greater than k 2. The reduced amount of NO 3 ? -N in the first 7?days of incubation and the N2O emission rate (the percentage of A value relative to the amount of NO 3 ? -N reduced during the 28-day incubation, R n) were able to explain 82.9?% (p?<?0.01) of the variation in total N2O emission (A) during the incubation for the soil samples studied, indicating that the total amount of N2O emitted was determined predominately by denitrification capacity. Soil organic carbon content and soil nitrogen mineralization are the key factors that determine differences in the amounts of reduced NO 3 ? -N among the soil samples. The R n value decreased with increasing k 2 (p?<?0.01), indicating that soils with higher N2O reduction capacity under these incubation conditions would emit less N2O per unit of denitrified NO 3 ? -N than the other soils. Results are valuable in the evaluation of net N2O emissions in the subtropical soils and the global N budget.

Conclusions

In a closed, anaerobic system, variations in N2O concentration in the headspace over the incubation time were found to be compatible with a nonlinear equation. Soil organic carbon and the amount of NH 4 + -N mineralized from the organic N during the first 7?days of incubation are the key factors that determine differences in the N2O emission constant (k 1), the N2O reduction constant (k 2), the total N2O emission during the incubation (A) and the N2O emission rate (R n).  相似文献   

6.
A laboratory incubation experiment was conducted to investigate the effects of direct incorporation of either wheat straw or its biochar into a cultivated Chernozem on gross N transformations calculated by the 15N pool dilution technique and nitrous oxide (N2O) production rates. Incorporation of wheat straw stimulated gross NH 4 + (ammonium) and NO 3 ? (nitrate) immobilization rates by 302 and 95.2?%, respectively, suppressed gross nitrification rates by 32.2?%, and increased N2O production by 37.7?%. In contrast, the addition of a biochar produced from the wheat straw did not influence any of the above N cycling processes. Therefore, application of biochar could be a possible management strategy for long-term C sequestration (through soil storage of stable C contained in the biochar) in soils without increasing N2O production rates, but could not effectively immobilize NO 3 ? in the soil.  相似文献   

7.
The fate of 15N-labeled potassium nitrate (8.5% 15N excess) was determined in 3-year-old Valencia orange trees grown in 1-m3 containers filled with different textured soils (sandy and loamy). The trees were fertilized either in spring (24 March) or summer (24 July). Spring fertilized trees gave higher fruit yields in sandy than in loamy soils, which exceeded summer fertilized trees in both cases. Summer fertilized trees had greater leaf biomass than spring fertilized trees. Fibrous root weight was 1.9-fold higher in sandy than in loamy soil. At the end of the cycle, tree N recovery from spring application was 45.7% for sandy and 37.7% for loamy soil; from summer fertilization, N recovery was 58.9% and 51.5% for sandy and loamy soils, respectively. The 15N recovered in the inorganic soil fraction (0?C90?cm) was higher for loamy (1.3%) than for sandy soil (0.4%). Fertilizer N immobilized in the organic matter was lower in sandy (2.5%) than in loamy soil (6.0%). Potential nitrate leaching from fertilizer (15NO 3 ? ?CN in the 90?C110-cm soil layer plus 15NO 3 ? ?CN in drainage water) was 34.8% higher in sandy than in loamy soil. The low N levels in sandy soil resulted from both higher NO 3 ? ?CN leaching losses and higher N uptake of plants grown in the former. The great root mass and higher soil temperatures could account for raised plant N uptake in sandy soil and in summer, respectively.  相似文献   

8.
The effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N transformations and composition of ammonia-oxidizing bacteria (AOB) communities was investigated at the centimeter scale in a microcosm experiment under laboratory conditions. After 28 days, samples were collected from soil treated with urea or urea and DMPP at increasing distance from the fertilizer zone; this distance ranged from 0 to 5 cm in both horizontal and vertical directions. The results showed that DMPP application significantly increased soil pH and NH 4 + -N and mineral N (NH 4 + -N, NO 3 ? -N, and NO 2 ? -N) concentrations but decreased (NO 3 ? + NO 2 ? )-N concentration, and such effect was decreased by increasing the distance from the fertilizer zone. Fingerprint profiles of denaturing gradient gel electrophoresis showed that the number of bands decreased by increasing the distance from the fertilizer zone due to decreasing NH 4 + -N concentrations in the urea treatment. Compared to urea applied alone, DMPP application increased NH 4 + -N concentrations and decreased AOB diversity from 0 to 3 cm but promoted diversity from 3 to 5 cm distance from the fertilizer zone. A phylogenetic analysis showed that AOB communities were dominated by Nitrosospira cluster 3. Therefore, the nitrification inhibitor DMPP modified the composition of AOB communities by increasing the distance from the fertilizer zone and this probably was related to the changes in soil pH and inorganic N concentration.  相似文献   

9.
Nitrogen dioxide gas was rapidly absorbed by soil. After a 15 min incubation at 25°C, soil at a moisture content of 16% absorbed 99% of the NO2 introduced into the gas-phase volume of a closed system. The presence of microorganisms hatl no influence on the rate of absorption of the gas by soil. The absorption of NO2 by sandy clay loam soil was not an oxygen- or temperature-dependent process nor did it depend upon the moisture content of the soil. These physical factors acquired significance only in determining the initial rate of absorption of the gas and the rate at which NO2 diffused through the soil. Exposure of soil to NO2 resulted in substantial increases in the levels of NO inf2 sup? N in the soil. Chemical oxidation of the NO inf2 sup? N resulted in an increase in NO inf3 sup? N levels. During a 14-day incubation, NO inf2 sup? N concentrations in sterile soil exposed to an atmosphere containing 100 μg ml?1 of NO2 decreased from 190 μg g?1 of soil to 105 μg g?1 with an accompanying increase in NO inf3 sup? N from 2 μg g? 1 to 63 μg g?1 of soil. Nitrogen dioxide severely inhibited the growth of both aerobic and anaerobic asymbiotic N2-fixing bacteria in soil. After a 48 h incubation at 25°C, soil aggregates exposed to an atmosphere containing 100 μg ml?1 of NO2 contained 88% and 98% fewer aerobic and anaerobic N2-fixing bacteria, respectively. C2H2-reduction measurements showed that nitrogenase synthesis and activity in artificial soil aggregates amended with 2% glucose were inhibited by 20% and 48%, respectively, when exposed to atmospheric concentrations of 35 and 3.5 μg ml?1 of NO2, respectively.  相似文献   

10.

Purpose

The aim of this study was to evaluate the behaviour of P in saline Spolic Technosols flooded with eutrophic water, with and without plant rhizosphere, in order to assess the role of these soils as sinks or sources of this nutrient.

Materials and methods

Samples were taken from basic (pH?~7.8), carbonated and acidic (pH?~6.2), de-carbonated soils of salt marshes polluted by mine wastes. Three treatments were assayed: pots with Sarcocornia fruticosa, pots with Phragmites australis and pots without plants (bare soil). The pots were flooded for 15?weeks with eutrophic water (PO 4 3? ~6.92?mg?L?1) and pH, Eh and water-soluble organic carbon and PO 4 3? concentrations were monitored in the soil solution. A soil P fractionation was applied before and after the flooding period.

Results and discussion

The PO 4 3? concentration in the soil solution decreased rapidly in both soils, with and without plant, being diminished by 80?C90?% after 3?h of flooding. The Fe/Mn/Al oxides and the Ca/Mg compounds played an important role in soil P retention. In pots with S. fruticosa, the reductive conditions due to flooding induced P release from metal oxides and P retention to Ca/Mg compounds. In turn, P. australis may have favoured the release of P from carbonates, which was transferred to Fe/Mn/Al compounds.

Conclusions

The retention of P by the soil was the main mechanism involved in the removal of PO 4 3? from the eutrophic flooding water but to evaluate the capacity of these systems as long-term P sinks, the combined effect of metals, Ca/Mg compounds and specific plant species should be considered.  相似文献   

11.
This study assessed the foliar uptake of 15N-labelled nitrogen (N) originating from wet deposition along with leaf surface conditions, measured by wettability and water storage capacity. Foliar 15N uptake was measured on saplings of silver birch, European beech, pedunculate oak and Scots pine and the effect of nitrogen form (NH 4 + or NO 3 ? ), NH 4 + to NO 3 ? ratio and leaf phenology on this N uptake was assessed. Next to this, leaf wettability and water storage capacity were determined for each tree species and phenological stage, and the relationship with 15NH 4 + and 15NO 3 ? uptake was examined. Uptake rates were on average five times higher (p?<?0.05) for NH 4 + than for NO 3 ? and four times higher for deciduous species than for Scots pine. Developing leaves showed lower uptake than fully developed and senescent leaves, but this effect was tree species dependent. The applied NH 4 + to NO 3 ? ratio did only affect the amount of N uptake by senescent leaves. The negative correlation between measured leaf contact angles and foliar N uptake demonstrates that the observed effects of tree species and phenological stage are related to differences in leaf wettability and not to water storage capacity.  相似文献   

12.
Increased concentrations of solutes in drainage waters following forest clearcutting may affect downstream water quality. The objective of this study was to evaluate some of the processes regulating concentrations of trace metals and Fe in soil solutions and streamwater in a clearcut watershed by determining changes in metal release by soil horizon, stand vegetation and elevation. Commercial whole-tree harvesting of a watershed at the Hubbard Brook Experimental Forest, NH, U.S.A. resulted in increased loss of NO inf3 sup? from the study watershed. This N0 inf3 sup? loss resulted in acidification of soil solutions, which was associated with release of Mn and Zn from mineral soil to soil solutions and streamwater. Significant correlations of Pb and Fe with dissolved organic C (DOC) suggested that mobilization of these metals was linked to DOC transfer. However, there was little evidence of increased release of DOC, Fe, or Pb following the whole-tree harvest, except in a high elevation spruce-fir zone with shallow soils.  相似文献   

13.
Soil N fertilization stimulates the activity of the soil bacterial species specialized in performing the different steps of the denitrification processes. Different responses of these bacterial denitrifiers to soil N management could alter the efficiency of reduction of the greenhouse gas N2O into N2 gas in cultivated fields. We used next generation sequencing to show how raising the soil N fertility of Canadian canola fields differentially modifies the diversity and composition of nitrite reductase (nirK and nirS) and nitrous oxide reductase (nosZ) gene-carrying denitrifying bacterial communities, based on a randomized complete blocks field experiment. Raising soil N levels increased up to 60% the ratio of the nirK to nirS genes, the two nitrite reductase coding genes, in the Brown soil and up to 300% in the Black soil, but this ratio was unaffected in the Dark Brown soil. Raising soil N levels also increased the diversity of the bacteria carrying the nitrite reductase gene nirK (Simpson index, P = 0.0417 and Shannon index, 0.0181), and changed the proportions of the six dominant phyla hosting nirK, nirS, and nosZ gene-carrying bacteria. The level of soil copper (Cu) and the abundance of nirK gene, which codes for a Cu-dependent nitrite reductase, were positively related in the Brown (P = 0.0060, R2 = 0.48) and Dark Brown (0.0199, R2 = 0.59) soils, but not in the Black soil. The level of total diversity of the denitrifying communities tended to remain constant as N fertilization induced shifts in the composition of these denitrifying communities. Together, our results indicate that higher N fertilizer rate increases the potential risk of nitrous oxide (N2O) emission from canola fields by promoting the proliferation of the mostly adaptive N2O-producing over the less adaptive N2O-reducing bacterial community.  相似文献   

14.
Ungulate grazing is known to play a crucial role in regulating nutrient cycling and controlling plant community structure and productivity in grassland ecosystems. However, little is known about the effects of grazing intensities on soil bacterial community structure and diversity, particularly at the long-term scale. In this study, we measured plant biomass and diversity, soil characteristics and bacterial community structure, and diversity in a 16-year field experiment that had four grazing intensity treatments (non-grazed, CK; low-intensity grazing (LG), moderate-intensity grazing (MG), and high-intensity grazing (HG)) in an Inner Mongolian typical grassland. The CK, LG, MG, and HG sites were grazed by 0.00, 1.33, 4.00, and 6.67 sheep ha?1, respectively. Bacterial community structure and diversity under grazing intensity treatments were assessed with PCR amplification of DNAs extracted from soils and denaturing gradient gel electrophoresis (DGGE) separation. The results showed that the CK soil had higher moisture, organic C, NH 4 + –N, and NO 3 ? –N concentrations than grazed soils, and the HG treatment had the lowest plant biomass and diversity across all the treatments. Principal component analysis of DGGE patterns showed that the LG and MG treatments were different from the CK and HG treatments. In addition, soil bacterial diversities in the LG and MG treatments were significantly higher than those in the other treatments. The relationships between environmental variables and soil bacterial community structure were assessed using redundancy analysis, and we found that soil moisture content, Artemisia frigida biomass, and pH were the best indicator of the changes in soil bacterial community structure among all the treatments. Overall, our results indicated that intermediate grazing intensities (LG and MG) increased soil bacterial diversities, and along with previous studies in this area, we suggested the MG treatment was the most suitable management practice in the Inner Mongolian steppe, not only supporting greater livestock amounts but also harboring greater bacterial diversity.  相似文献   

15.
Understanding the responses of soil C mineralization to climate change is critical for evaluating soil C cycling in future climatic scenarios. Here, we took advantage of a multifactor experiment to investigate the individual and combined effects of experimental warming and increased precipitation on soil C mineralization and 13C and 15N natural abundances at two soil depths (0–10 and 10–20?cm) in a semiarid Inner Mongolian grassland since April 2005. For each soil sample, we calculated potentially mineralizable organic C (C 0) from cumulative CO2-C evolved as indicators for labile organic C. The experimental warming significantly decreased soil C mineralization and C 0 at the 10–20-cm depth (P?<?0.05). Increased precipitation, however, significantly increased soil pH, NO 3 ? -N content, soil C mineralization, and C 0 at the 0–10-cm depth and moisture and NO 3 ? -N content at the 10–20-cm depth (all P?<?0.05), while significantly decreased exchangeable NH 4 + -N content and 13C natural abundances at the two depths (both P?<?0.05). There were significant warming and increased precipitation interactions on soil C mineralization and C 0, indicating that multifactor interactions should be taken into account in future climatic scenarios. Significantly negative correlations were found between soil C mineralization, C 0, and 13C natural abundances across the treatments (both P?<?0.05), implying more plant-derived C input into the soils under increased precipitation. Overall, our results showed that experimental warming and increased precipitation exerted different influences on soil C mineralization, which may have significant implications for C cycling in response to climate change in semiarid and arid regions.  相似文献   

16.
Published information, both theoretical and experimental, on As chemical behavior in soils is reviewed. Because of many emission sources, As is ubiquitous. Thermodynamic calculations revealed that As(V) species (HAsO 4 2- >H2AsO 4 - at pH 7) are more abundant in soil solutions that are oxidized more than pe+pH>9. Arsenic is expected to be in As(III) form (HAsO 2 0 =H3AsO 3 0 >AsO 2 - =H2AsO 3 - at pH 7) in relatively anoxic soil solutions with pe+pH<7. Adsorption on soil colloids is an important As scavenging mechanism. The adsorption capacity and behavior of these colloids (clay, oxides or hydroxides surfaces of Al, Fe and Mn, calcium carbonates, and/or organic matter) are dependent on ever-changing factors, such as hydration, soil pH, specific adsorption, changes in cation coordination, isomorphous replacement, crystallinity, etc. Because of the altering tendencies of soil colloids properties, adsorption of As has become a complex, empirical, ambiguous, and often a self contradicting process in soils. In general, Fe oxides/hydroxides are the most commonly involved in the adsorption of As in both acidic and alkaline soils. The surfaces of Al oxides/hydroxides and clay may play a role in As adsorption, but only in acidic soils. The carbonate minerals are expected to adsorb As in calcareous soils. The role of Mn oxides and biogenic particles in the As adsorption in soils appears to be limited to acidic soils. Kinetically, As adsorption may reach over 90% completion in terms of hours. Precipitation of a solid phase is another mechanism of As removal from soil solutions. Thermodynamic calculations showed that in the acidic oxic and suboxic soils, Fe-arsenate (Fe3(AsO4)4)2) may control As solubility, whereas in the anoxic soils, sulfides of As(III) may control the concentrations of the dissolved As in soil solutions. In alkaline acidic oxic and suboxic soils, precipitation of both Fe- and Ca-arsenate may limit As concentrations in soil solutions. Field observations suggest that direct precipitation of discrete As solid phases may not occur, except in contaminated soils. Chemisorption of As oxyanions on soil colloid surfaces, especially those of Fe oxide/hydroxides and carbonates, is believed to a common mechanisms for As solid phase formation in soils. It is suggested that As oxyanions gradually concentrate on colloid surfaces to a level high enough to precipitate a discrete or mixed As solid phase. Arsenic volatilization is another As scavenging mechanism operating in soils. Many soil organisms are capable of converting arsenate and arsenite to several reduced forms, largely methylated arsines which are volatile. These organisms may generate different or similar biochemical products. Methylation and volatilization of As can be affected by several biotic (such as type of organisms, ability of organism for methylation, etc.) and abiotic factors (soil pH, temperature, redox conditions, methyl donor, presence of other ions, etc.) factors. Information on the rate of As biotransformations in soils is limited. In comparison to the biologically assisted volatilization, the chemical volatilization of As in soils is negligible.  相似文献   

17.
The fluxes of N–NO 3 ? , N–NH 4 + , S–SO 4 2? , Na+, K+, Ca2+ and Mg2+ from bulk precipitation to throughfall, stemflow and soil water surface flows were studied during 1999–2003 in planted Norway spruce forest stands of different ages (11, 24, 91 and 116 years in 1999). Also, runoff from the corresponding Potok Dupniański Catchment in the Silesian Beskid Mts was studied. N deposition was above the critical load for coniferous trees. The interception increased with stand age as well as leaf area index and so did the leaching from the canopy of almost all the analysed elements, but especially S–SO 4 2? , H+ and K+. The nutrient fluxes varied with age of the spruce stands. Throughfall showed a high amount of S and of the strong acids (S–SO 4 2? and N–NO 3 ? ) deposited to the soil, especially in older spruce age classes. Decomposition of organic matter caused a rise in water acidity and an increase in the concentrations of all the analysed ions; the leaching of minerals, however, was low (under 1%). The horizontal soil water flow showed an increase in the amount of water and amount of ions and contributed to a further decrease of pH at the soil depth of 20 cm. Element concentrations and their amounts increased with water penetrating vertically and horizontally on the slopes. Considerable amounts of ions, especially S and alkaline cations, were carried beyond the reach of the root system and then left the catchment. In the long term, these mineral losses will adversely affect health and growth of the spruce stands, and the increased acidity with stand age will presumably have negative effects on the runoff water ecosystem.  相似文献   

18.
Many bryophytes rely to a large extent on atmospheric deposition for their nutrient uptake.However, increasing levels of atmospheric ammonium NH 4 + and nitrate NO 3 - attract concern as to the possible harmful effects onbryophytes from these two nutrient sources. Changes in nitrate reductase (NR) activities, cation(Ca, K and Mg), total nitrogen (N) and organic acid concentrations were investigated for themosses, Racomitrium lanuginosum, Rytidiadelphus loreus and Philonotis fontana, in response to asingle field misting with 3 mol m-3 NH 4 + and NO 3 - . Increases of 20% were recordedfor tissue N content, 48 hr after misting with N containing solutions. When labelled NH 4 + or NO 3 - were applied to R. Lanuginosum at 1, 3 and 6mol m-3 concentrations, partitioning ofincorporated 15N between different tissueregions occured, with the highest N uptake in the upper stem and leaves. High concentrations ofapplied N resulted in reduced efficiency of N uptake. NH 4 + applications caused declines in NR activities, organic acidsand cations, whereas, NO 3 - treatments causedthe reverse response. Changes in cation contents, organic acids and NR activity reflect short-termregulation of N metabolism in the presence of defined N sources, as well as potential mechanismsof regulating cell pH homoeostasis. The consistency of physiological responses, especially NRactivities, over short-term pollution episodes, provides evidence for their use as indicators of both NH 4 + and NO 3 - pollution.  相似文献   

19.
The atmospheric deposition of air pollutants at a forest edge was studied by means of monitoring canopy throughfall at the edge and at five different parallel lines in the forest behind the edge. The investigation was carried out at a pine forest on the Swedish west coast. Throughfall and bulk deposition samples were analyzed for volume, SO 4 2? , NO 3 ? , Cl?, NH 4 + , Na+, K+, Mg2+, Ca2+, and for pH. The results show that the throughfall flow at the edge was increased substantially for most ions. The ratios in throughfall flows between the edge and the line 50 m into the forest were for SO 4 2? , 1.5, NO 3 ? 2.9, NH 4 + 2.7, and Na+ 3.1. Since this effect is not only valid for forest edges but also for hillsides, hilltops, and edges between stands of different age, etc., there might be substantial areas which get much larger total deposition than the normally considered closed forest.  相似文献   

20.
Radiotracer experiments on the sorption of I? (iodide) and IO inf 3 p? (iodate) from water by soils such as field soil, rice paddy soil and sandy soil, as well as by some soil components, have been carried out with special reference to the effects of heating and gamma-irradiating the soil. Desorption phenomena of I from soil to various solutions were also studied. The sorption of I? by soil was markedly reduced through treatments of air-drying and heating the soil prior to its equilibration with water. The results indicated that I? sorption was by the soil fraction which was unstable at about 150 °C, while IO inf 3 p? sorption was by the soil fraction which was relatively stable to heating. Gamma-irradiation at 27 kGy affected the sorption to a smaller extent than heating at 150 °C. A very high sorption (or soil-water distribution coefficient, Kd) was found in untreated field soil (andosol) with a low organic C (humus) content, while the sorption by sandy soil was considerably smaller than the other soils. Neither I? or IO inf 3 p? were well sorbed by clay minerals, Al2O3 and quartz sand, while the sorption by Fe2O3 was IO inf 3 p? were desorbed by 1N NaOH solution. By acidifying this solution, only a part of the desorbed I was re-precipitated with humic acid. The desorption by solutions containing K2SO3 or KI was also high, while that by solutions containing HCI, CH3COONH4 or chemical fertilizer was considerably lower. These findings suggested the possibility that I was not directly associated with humic acid itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号